Topics covered in lectures in 2006 are listed below. In some cases, links are given to new lecture notes by student scribes. All scribed lecture notes are used with the permission of the student named in the file. The recommended reading refers to the lectures notes and exam solutions from previous years or to the books listed below. Lecture notes from previous years are also found in the study materials section.
Recommended Texts
Hughes, B. Random Walks and Random Environments. Vol. 1. Oxford, UK: Clarendon Press, 1996. ISBN: 0198537883.
Redner, S. A Guide to First Passage Processes. Cambridge, UK: Cambridge University Press, 2001. ISBN: 0521652480.
Risken, H. The Fokker-Planck Equation. 2nd ed. New York, NY: Springer-Verlag, 1989. ISBN: 0387504982.
Further Readings
Bouchaud, J. P., and M. Potters. Theory of Financial Risks. Cambridge, UK: Cambridge University Press, 2000. ISBN: 0521782325.
Crank, J. Mathematics of Diffusion. 2nd ed. Oxford, UK: Clarendon Press, 1975. ISBN: 0198533446.
Rudnick, J., and G. Gaspari. Elements of the Random Walk. Cambridge, UK: Cambridge University Press, 2004. ISBN: 0521828910.
Spitzer, F. Principles of the Random Walk. 2nd ed. New York, NY: Springer-Verlag, 2001. ISBN: 0387951547.
LEC # | TOPICS | 2006 Lecture NOTES | 2006 READINGS |
---|---|---|---|
1 |
Overview History (Pearson, Rayleigh, Einstein, Bachelier) Normal vs. Anomalous Diffusion Mechanisms for Anomalous Diffusion |
2005 Lecture 1 (PDF) Hughes |
|
I. Normal Diffusion | |||
I.A. Linear Diffusion | |||
2 |
Moments, Cumulants, and ScalingMarkov Chain for the Position (in d Dimensions), Exact Solution by Fourier Transform, Moment and Cumulant Tensors, Additivity of Cumulants, “Square-root Scaling” of Normal Diffusion |
2005 Lecture 2 (PDF) Hughes |
|
3 |
The Central Limit Theorem and the Diffusion EquationMulti-dimensional CLT for Ssums of IID Random Vectors Continuum Derivation Involving the Diffusion Equation |
2005 Lecture 1 (PDF) 2005 Lecture 3 (PDF) |
|
4 |
Asymptotic Shape of the DistributionBerry-Esseen Theorem Asymptotic Analysis Leading to Edgeworth Expansions, Governing Convergence to the CLT (in one Dimension), and more Generally Gram-Charlier Expansions for Random Walks Width of the Central Region when Third and Fourth Moments Exist |
2005 Lecture 3 (PDF) 2005 Lecture 4 (PDF) Hughes Feller |
|
5 |
Globally Valid AsymptoticsMethod of Steepest Descent (Saddle-Point Method) for Asymptotic Approximation of Integrals Application to Random Walks Example: Asymptotics of the Bernoulli Random Walk |
2005 Lecture 6 (PDF) 2005 Lecture 7 (PDF) Hughes |
|
6 |
Power-law “Fat Tails”Power-law Tails, Diverging Moments and Singular Characteristic Functions Additivity of Tail Amplitudes |
2005 Lecture 5 (PDF) 2005 Lecture 6 (PDF) Bouchaud and Potters |
|
7 |
Asymptotics with Fat TailsCorrections to the CLT for Power-law Tails (but Finite Variance) Parabolic Cylinder Functions and Dawson’s Integral A Numerical Example Showing Global Accuracy and Fast Convergence of the Asymptotic Approximation |
(PDF) (Courtesy of Damian Burch. Used with permission.) Numerical Example (PDF) (Courtesy of Chris H. Rycroft. Used with permission.) |
2005 Lecture 5 (PDF) |
8 |
From Random Walks to DiffusionExamples of Random Walks Modeled by Diffusion Equations
Run and Tumble Motion, Chemotaxis
Additive Versus Multiplicative Processes |
(PDF) (Courtesy of Daniel Rudoy. Used with permission.) |
2005 Lecture 10 (PDF) Bouchaud and Potters |
9 |
Discrete Versus Continuous Stochastic ProcessesCorrections to the Diffusion Equation Approximating Discrete Random Walks with IID Steps Fat Tails and Riesz Fractional Derivatives Stochastic Differentials, Wiener Process |
(PDF) (Courtesy of Kwai Hung Henry Lam. Used with permission.) |
2005 Lecture 8 (PDF) 2005 Lecture 9 (PDF) 2005 Lecture 13 (PDF) Risken |
10 |
Weakly Non-identical StepsChapman-Kolmogorov Equation, Kramers-Moyall Expansion, Fokker-Planck Equation. Probability Flux Modified Kramers-Moyall Cumulant Expansion for Identical Steps |
2005 Lecture 8 (PDF) 2005 Lecture 9 (PDF) 2005 Lecture 13 (PDF) Risken |
|
I.B. Nonlinear Diffusion | |||
11 |
Nonlinear DriftInteracting Random Walkers, Concentration-dependent Drift Nonlinear Waves in Traffic Flow, Characteristics, Shocks, Burgers’ Equation Surface Growth, Kardar-Parisi-Zhang Equation |
(PDF) (Courtesy of Lou Odette. Used with permission.) | |
12 |
Nonlinear DiffusionCole-Hopf Transformation, General Solution of Burgers Equation Concentration-dependent Diffusion, Chemical Potential. Rechargeable Batteries, Steric Effects |
Problem set 3 solutions |
|
I.C. First Passage and Exploration | |||
13 |
Return Probability on a LatticeProbability Generating Functions on the Integers, First Passage and Return on a Lattice, Polya’s Theorem |
(PDF) (Courtesy of Chris H. Rycroft. Used with permission.) |
2005 Lecture 17 (PDF) 2005 Lecture 18 (PDF) Hughes Redne |
14 |
The Arcsine DistributionReflection Principle and Path Counting for Lattice Random Walks, Derivation of the Discrete Arcsine Distribution for the Fraction of Time Spent on One Side of the Origin, Continuum Limit |
(PDF) (Courtesy of Chris H. Rycroft. Used with permission.) | Feller |
15 |
First Passage in the Continuum LimitGeneral Formulation in One Dimension Smirnov Density Minimum First Passage Time of a Set of N Random Walkers |
2005 Lecture 16 (PDF) Exam 2 (problem 2) |
|
16 |
First Passage in Arbitrary GeometriesGeneral Formulation in Higher Dimensions, Moments of First Passage Time, Eventual Hitting Probability, Electrostatic Analogy for Diffusion, First Passage to a Sphere |
2005 Lecture 18 (PDF) Redner Risken |
|
17 |
Conformal InvarianceConformal Transformations (Analytic Functions of the Plane, Stereographic Projection from the Plane to a Sphere,…), Conformally Invariant Transport Processes (Simple Diffusion, Advection-diffusion in a Potential Flow,…), Conformal Invariance of the Hitting Probability |
(PDF) (Courtesy of Yee Lok Wong. Used with permission.) |
2003 Lecture 23 (PDF) An Article Redner |
18 |
Hitting Probabilities in Two DimensionsPotential Theory using Complex Analysis, Mobius Transformations, First Passage to a Line |
2003 Lecture 23 (PDF) Redner |
|
19 |
Applications of Conformal MappingFirst Passage to a Circle, Wedge/Corner, Parabola. Continuous Laplacian Growth, Polubarinova-Galin Equation, Saffman-Taylor Fingers, Finite-time Singularities |
2003 Lecture 23 (PDF) 2003 Lecture 24 (PDF) |
|
20 |
Diffusion-limited AggregationHarmonic Measure, Hastings-Levitov Algorithm, Comparison of Discrete and Continuous Dynamics Overview of Mechanisms for Anomalous Diffusion Non-identical Steps |
2003 Lectures 25 (PDF) 2003 Lecture 14 (PDF) 2003 Lecture 15 (PDF) |
|
II. Anomalous Diffusion | |||
II.A. Breakdown of the CLT | |||
21 |
Polymer Models: Persistence and Self-avoidanceRandom Walk to Model Entropic Effects in Polymers, Restoring Force for Stretching; Persistent Random Walk to Model Bond-bending Energetic Effects, Green-Kubo Relation, Persistence Length, Telegrapher’s Equation; Self-avoiding Walk to Model Steric Effects, Fisher-Flory Estimate of the Scaling Exponent |
2005 Lectures 19 (PDF) 2005 Lecture 20 (PDF) 2003 Lecture 9 (PDF) 2003 Lecture 10 (PDF) 2003 Lecture 11 (PDF) |
|
22 |
Levy FlightsSuperdiffusion and Limiting Levy Distributions for Steps with Infinite Variance, Examples, Size of the Largest Step, Frechet Distribution |
2005 Lecture 22 (PDF) 2003 Lecture 12 (PDF) 2003 Lecture 13 (PDF) Hughes |
|
II.B. Continuous-Time Random Walks | |||
23 |
Continuous-time Random WalksLaplace Transform. Renewal Theory Montroll-Weiss Formulation of CTRW DNA Gel Electrophoresis |
(PDF) (Courtesy of Michael Vahey. Used with permission.) |
2005 Lecture 23 (PDF) 2003 Lecture 15 (PDF) 2003 Lecture 16 (PDF) 2003 Lecture 17 (PDF) |
24 |
Fractional Diffusion EquationsCLT for CTRW Infinite Man Waiting Time, Mittag-Leffler Decay of Fourier Modes, Time-delayed Flux, Fractional Diffusion Equation |
2005 Lecture 24 (PDF) 2003 Lecture 18 (PDF) |
|
25 |
Non-separable Continuous-time Random Walks“Phase Diagram” for Anomalous Diffusion: Large Steps Versus Long Waiting Times Application to Flagellar Bacteria. Hughes’ General Formulation of CTRW with Motion between “turning points” |
2005 Lecture 25 (PDF) 2005 Lecture 26 (PDF) Hughes |
|
26 |
Leapers and CreepersHughes’ Leaper and Creeper Models Leaper Example: Polymer Surface Adsorption Sites and Cross-sections of a Random Walk Creeper Examples: Levy Walks, Bacterial Motion, Turbulent Dispersion |
2005 Lecture 26 (PDF) Hughes |