CONVOLUTION, ADDING GAMMA VARIABLES, AND CHI-SQUARES

This will be a review of some facts from probability that might or might not be familiar. If \(f \) and \(g \) are two real-valued functions of a real variable, having in mind probability density functions, then their convolution is defined by

\[
(f * g)(t) = \int_{-\infty}^{\infty} f(t-y)g(y)dy = \int_{-\infty}^{\infty} f(x)g(t-x)dx,
\]

where if either integral exists for a given \(t \), so does the other one with the same value, by the substitutions \(x = t - y \) or \(y = t - x \). Convolution gives us the density of the sum of two independent random variables having densities:

Theorem 1. If \(X \) and \(Y \) are independent random variables having densities \(f \) and \(g \) respectively, then \(X + Y \) has density \(f * g \).

Proof. By independence, \((X,Y)\) has bivariate density \(f(x)g(y) \). Thus for any \(t \),

\[
P(X + Y \leq t) = \int \int_{x+y\leq t} f(x)g(y) \, dy \, dx.
\]

Since \(x + y \leq t \) is equivalent to \(y \leq t - x \), we get

\[
\int_{-\infty}^{\infty} f(x) \int_{-\infty}^{t-x} g(y) \, dy \, dx.
\]

Making the substitution \(u = y + x \) in the inner integral for each fixed value of \(x \), so that \(du = dy \), we get

\[
\int_{-\infty}^{\infty} f(x) \int_{-\infty}^{t} g(u-x) \, du \, dx = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x)g(u-x) \, dx \, du
\]

where the integrals were interchanged (justifiably since \(f \geq 0 \) and \(g \geq 0 \)). To find the density of \(X + Y \) we just have to differentiate with respect to \(t \), which by the fundamental theorem of calculus gives \((f * g)(t)\) as stated, Q.E.D.

Next, convolution will be applied to gamma densities. Recall that for any \(\alpha > 0 \) and \(\lambda > 0 \) a \(\Gamma(\alpha, \lambda) \) density is given by \(f_{\alpha,\lambda}(x) = 0 \) for \(x \leq 0 \) and for \(x > 0 \) it equals \(\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}/\Gamma(\alpha) \) where \(\Gamma(\alpha) \) is defined as \(\int_{0}^{\infty} x^{\alpha-1}e^{-x} \, dx \). The next fact can be called the “Addition theorem” for gamma variables. Also recall that \(X \sim D \) means that \(X \) has distribution or density \(D \).

Theorem 2. If \(X \) and \(Y \) are independent, \(X \sim \Gamma(\alpha, \lambda) \) and \(Y \sim \Gamma(\beta, \lambda) \) (with the same \(\lambda \)), then \(X + Y \sim \Gamma(\alpha + \beta, \lambda) \).

Proof. Applying Theorem 1 with \(f \) the \(\Gamma(\alpha, \lambda) \) density and \(g \) the \(\Gamma(\beta, \lambda) \) density, noting that \(f(u) = 0 \) for \(u \leq 0 \) and \(g(y) = 0 \) for \(y \leq 0 \), we have \((f * g)(x) = 0 \) for \(x \leq 0 \) while for \(x > 0 \) we have

\[
(f * g)(x) = \int_{-\infty}^{\infty} f(x-y)g(y)dy = \int_{0}^{x} f(x-y)g(y)dy
\]
because for the integrand to be non-zero we need \(y > 0 \) and \(x - y > 0 \) so \(y < x \). Then plugging in the definitions of the gamma densities, we have for the constant \(c = \lambda^{\alpha+\beta}/(\Gamma(\alpha)\Gamma(\beta)) \),

\[
(f \ast g)(x) = c \int_0^x (x - y)^{\alpha-1}e^{-\lambda(x-y)}y^{\beta-1}e^{-\lambda y} dy = ce^{-\lambda x} \int_0^x (x - y)^{\alpha-1}y^{\beta-1} dy.
\]

Making the substitution \(u = y/x \), noting that \(y \) and \(u \) are variables of integration and that integrals are evaluated for each fixed value of \(x > 0 \), we get

\[
(f \ast g)(x) = ce^{-\lambda x} x^{\alpha+\beta-1} \int_0^1 u^{\beta-1}(1 - u)^{\alpha-1} du.
\]

Now, \(B(\beta,\alpha) \), defined as \(\int_0^1 u^{\beta-1}(1 - u)^{\alpha-1} du \), and called the beta function of \(\beta \) and \(\alpha \), doesn’t depend on \(x \). So, since \(f \ast g \) is a probability density by Theorem 1, with \(\int_0^\infty (f \ast g)(x)dx = 1 \), it must be the \(\Gamma(\alpha + \beta, \lambda) \) density, as stated, Q.E.D.

Moreover, matching up the constants at the end of the last proof, we can express the beta function in terms of gamma functions:

\[
B(\beta,\alpha) = \Gamma(\alpha)\Gamma(\beta)/\Gamma(\alpha + \beta).
\]

From this it follows that \(B(\alpha,\beta) \equiv B(\beta,\alpha) \). A family of probability densities called beta densities on the interval \((0,1)\) is defined by \(b_{\alpha,\beta}(x) = x^{\alpha-1}(1 - x)^{\beta-1}/B(\alpha,\beta) \) for \(0 < x < 1 \) and \(b_{\alpha,\beta}(x) = 0 \) otherwise for any \(\alpha \) and \(\beta \) such that \(0 < \alpha < \infty \) and \(0 < \beta < \infty \).

For any positive integer \(k \), a \(\chi_k^2 \) variable, or a chi-squared variable with \(k \) degrees of freedom, is defined as a variable given by

\[
\chi_k^2 = Z_1^2 + \cdots + Z_k^2
\]

where \(Z_1,\ldots,Z_k \) are i.i.d. \(N(0,1) \) variables. This is the definition given in Rice, section 6.2, first for \(k = 1 \) and then for general \(k = 2,3,\ldots \). As Rice mentions, a \(\chi_k^2 \) variable has a \(\Gamma(k/2,1/2) \) distribution. To show this, for any \(x > 0 \), \(P(Z_1^2 \leq x) = P(|Z_1| \leq \sqrt{x}) \) and by the fundamental theorem of calculus and the chain rule we see that \(Z_1^2 \) does have a \(\Gamma(1/2,1/2) \) distribution. Then, the fact for all \(k = 2,3,\ldots, \), follows by induction, applying the addition theorem for gamma variables (Theorem 2) at each step. We have \(\lambda = 1/2 \) for all these distributions.