1. The following values:

0.312, 0.238, 0.446, 0.968, 0.576, 0.471, 0.596

were generated using R by the command

```
x <- rgamma(7, alpha, lambda)
```
to give 7 i.i.d. variables with a gamma(α, λ) distribution for some numerical values of α and λ that I gave. Estimate what those values were by method of moments.

2. Suppose in two independent trials with probability p of success on each we observe X successes.

(a) Find an unbiased estimator $T(X)$ of the function $g(p) = p^2$. \textit{Hint:} X has just three possible values 0, 1, 2, so the estimator is given by the three numbers $T(0)$, $T(1)$, and $T(2)$. For each p, each value of X has a certain binomial probability. So the condition for $T(X)$ to be unbiased gives an equation that has to be satisfied for all p with $0 < p < 1$.

(b) Does the equation in the hint give unique solutions for $T(j)$, $j = 0, 1, 2$, and what solution(s) do you find?

(c) What is most surprising about the results of part (b)?

3. A beta(a, b) distribution has a density

$$f_{a,b}(x) = x^{a-1}(1-x)^{b-1}/B(a,b)$$

for $0 < x < 1$ and 0 elsewhere, for $0 < a < +\infty$ and $0 < b < +\infty$, and $B(a,b)$ is the beta function, which normalizes the density to be a probability density and satisfies $B(a,b) = \Gamma(a)\Gamma(b)/\Gamma(a+b)$ where Γ is the gamma function. If X has this density then $EX = a/(a+b)$. The simplest example of such a distribution is the uniform $U[0,1]$ distribution with $a = b = 1$.

If p is the probability of success in each of n independent trials, suppose p has a prior distribution beta(a, b). Then if we observe X successes in the n trials, the posterior distribution will be beta($a + X, b + n - X$). The Bayes estimate $T(X, n)$ of p, minimizing the risk, i.e. minimizing the integral from 0 to 1 of $(T(X, n) - p)^2$ with respect to the posterior distribution, will just be the integral of p times the posterior density.

(a) For the beta($1/2, 1/2$) prior, what is the Bayes estimator of p as a function of n and X?

(b) Compare the estimator from part (a) to the classical estimator $\hat{p} = X/n$ in terms of their squared-error losses $E_p((\hat{p} - p)^2)$ and $E_p((T(X, n) - p)^2)$. For which values of p does each estimator perform better in the sense of having smaller expected loss?

4. Let X_1, \ldots, X_n be i.i.d. having a geometric distribution with for some p such that $0 < p \leq 1$, namely $P(X_1 = k) = (1 - p)^{k-1}p$ for $k = 1, 2, \ldots$.

(a) What is the maximum likelihood estimate (MLE) of p based on X_1, \ldots, X_n?

(b) What is the method-of-moments estimate of p?

(c) Suppose we view the situation as follows. We have done $S_n = X_1 + \cdots + X_n$ independent trials with probability p of success on each and observed exactly n successes. Then what
is the binomial MLE of p? (It isn’t obvious that this should be equivalent to (a), as we did a random number of trials and stopped after the nth success.)

5. Consider the family of mixtures of two normal distributions, having densities of the form

$$f(x, \theta) = \frac{\lambda}{\sqrt{2\pi\sigma_1}} \exp\left(-\frac{(x - \mu_1)^2}{2\sigma_1^2}\right) + \frac{1 - \lambda}{\sqrt{2\pi\sigma_2}} \exp\left(-\frac{(x - \mu_2)^2}{2\sigma_2^2}\right)$$

where $\theta = (\lambda, \mu_1, \sigma_1, \mu_2, \sigma_2)$ is a 5-dimensional parameter with μ_1 and μ_2 any real numbers, $0 < \sigma_j < \infty$ for $j = 1, 2$, and $0 < \lambda \leq 1/2$. Suppose given n observations X_1, \ldots, X_n, not all equal, assumed to be i.i.d. from such a distribution. If a value θ' of a parameter is such that as θ approaches θ' (possibly under some restrictions), the likelihood approaches $+\infty$, then we may consider θ' as a maximum likelihood estimate (MLE) of θ, or the MLE if it’s unique.

(a) For the given family of normal mixture densities, do there exist such θ'? Are they unique? *Hint:* the exponential of a nonpositive number is at most 1, so the likelihood can only approach $+\infty$ if at least one of the σ_j approaches 0. But if say σ_1 approaches 0, then $\exp(-(X_j - \mu_1)^2/(2\sigma_1^2))$ will approach 0 very fast if μ_1 is fixed and unequal to X_j. In the likelihood function the X_j are fixed and the parameters are free to vary, so for what value(s) of μ_1 would we get large likelihood as $\sigma_1 \downarrow 0$?

(b) Suppose the observations are really i.i.d. with a density of the given form having $0 < \lambda \leq 1/2$, $0 < \sigma_1 < \infty$, $0 < \sigma_2 < \infty$. How successful will choosing parameters for which the likelihood is very large, as in part (a), be in approximating the actual parameters, supposing we can take n as large as we want? Specifically, supposing $\lambda = 1/2$ is fixed, how well will the distribution function of the distribution with estimated parameters approximate the one for the true parameters?