Required Readings

In order to prepare for class, students are required to read selections from the course notes. These readings can be found on the lecture notes page.

1Classical and quantum Olshanetsky-Perelomov systems for finite Coxeter groupsChapter 2
2The rational Cherednik algebra IChapter 3, sections 3.1-3.13

The rational Cherednik algebra II

Finite Coxeter groups and the Macdonald-Mehta integral

Chapter 3, sections 3.14-3.17

Chapter 4, section 4.1

4The Macdonald-Mehta integralChapter 4, sections 4.2-4.4
5Parabolic induction and restriction functors for rational Cherednik algebrasChapter 5

The Knizknik-Zamolodchikov functor

Rational Cherednik algebras for varieties with group actions

Chapter 6

Chapter 7, sections 7.1-7.5

7Hecke algebras for varieties with group actionsChapter 7, sections 7.6-7.15
8Symplectic reflection algebras IChapter 8, sections 8.1-8.7
9Symplectic reflection algebras IIChapter 8, sections 8.8-8.13
10Calogero-Moser spacesChapter 9
11Quantization of Calogero-Moser spacesChapter 10

Supplemental Readings

Bezrukavnikov, R., and P. Etingof. "Parabolic Induction and Restriction Functors for Rational Cherednik Algebras." Selecta Math 14, nos. 3-5 (2009): 397-425.

Etingof, P., and V. Ginzburg. "Symplectic Reflection Algebras, Calogero-Moser Space, and Deformed Harish-Chandra Homomorphism." arXiv:math/0011114.

Rouquier, R. "Representations of Rational Cherednik Algebras." arXiv:math/0504600.

Etingof, P. Lectures on Calogero-Moser Systems. arXiv:math/0606233.

———. "Cherednik and Hecke Algebras of Varieties With a Finite Group Action." arXiv: math.QA/0406499.

———. "A Uniform Proof of the Macdonald-Mehta-Opdam Identity for Finite Coxeter Groups." arXiv:0903.5084.

———. "Supports of Irreducible Spherical Representations of Rational Cherednik Algebras of Finite Coxeter Groups." arXiv:0911.3208.