When is a minimal surface not area-minimizing? (PDF) (Courtesy of Nizameddin H. Ordulu. Used with permission.)

Characterizations of Complete Embedded Minimal Surfaces: Finite Curvature, Finite Topology, and Foliations (PDF) (Courtesy of Michael Nagle. Used with permission.)

Modern Examples of Complete Embedded Minimal Surfaces of Finite Total Curvature (PDF) (Courtesy of David Glasser. Used with permission.)

Minimal Surfaces as Isotropic Curves in C^{3}: Associated minimal surfaces and the Bjoorling's problem (PDF-2.2MB) (Courtesy of Kai-Wing Fung. Used with permission.)

Work through Oprea's book, choosing topics that you would like to explore. Give an expository account of the theory that you learn, do relevant exercises and try to make up your own exercises, or extend the ones that are there. Write maple routines to give pictures of the surfaces that you study. You may also want to do some of the soap film experiments that he lists. One possibility is to focus on the Weierstrass-Enneper representation (minimal surfaces from complex analytic data) and Björling's problem (minimal surfaces from real-analytic curves and normal vector fields), but the best thing is to find what interests you, and study that.

Hoffman/Meeks's discovery, for each *g*>0, of a complete embedded minimal surface in *R ^{3}* of genus

Schwarz's Theorem states that if *M* is a minimal surface in *R ^{3}* spanning a curve

This is not a theorem about minimal surfaces, but it is probably the most important theorem in surface theory, and it plays a role in projects 2 and 5 and is relevant to chapter 9 of Osserman, which is the last section we will cover in this course. For *M* a compact orientable surface, it states that

*∫ _{M}*

where *χ*(*M*) is the Euler characteristic of *M*. Do Carmo has a proof of it, as does Singer and Thorpe's book. Give an account of the proof, and some applications.

From the mathscinet review of [3]: "In the present paper the authors first explain the flux formula for minimal surfaces, derive the catenoid equation, and present embedded minimal annuli. Then, complete embedded minimal surfaces with finite total curvature are discussed. The Weierstrass representations are given and beautiful computer graphics produced by J. T. Hoffman are provided. The authors also report on new finite total curvature examples. Then minimal surfaces foliated by convex curves in parallel planes are considered, and Shiffman's beautiful theorems for this class of surfaces are presented. Furthermore, the authors treat Riemann's examples of minimal surfaces foliated by circles and lines in parallel planes. Finally, embedded periodic minimal surfaces are discussed. They appear as interfaces in certain materials. This paper gives an excellent account of the progress in this very active, interesting area of minimal surface theory." This paper is fairly accessible (though probably too long to study in its entirety), and includes some nice examples. However, it relies heavily on the Gauss-Bonnet Theorem, so you will need to either take this theorem on faith, or spend some time understanding its proof.

Osserman made major strides in the understanding of complete regular minimal surfaces in *R ^{3}*, which we will study in chapter 9. He made extensive use of the Gauss map, and was able to extend some of his results to surfaces in

Again, this is not a minimal surfaces project, but connections are very important in differential geometry. First learn about the Levi-Civita connection for surfaces in *R ^{3}*, then how it is defined intrinsically, and move on to higher dimensions and more abstract definitions. Do Carmo, and Singer and Thorpe are places to start; ask me for other references when you know what direction you want to take this project.

Barbosa, J. L., and M. Do Carmo. "On the size of a stable minimal surface in *R ^{3}.*

Hoffman, D. "The computer aided discovery of new embedded minimal surfaces." *The Mathematical Intelligencer* 9, no. 3 (1987): 8–21.

Hoffman, D., and W. Meeks. "Minimal surfaces based on the catenoid." *Amer. Math. Monthly* 97, no. 8 (1990): 702–730.