34: Heisenberg's Uncertainty Principle

{'English - US': '/courses/physics/8-01-physics-i-classical-mechanics-fall-1999/video-lectures/lecture-34/lec34.srt'}

Flash and JavaScript are required for this feature.

Download the video from iTunes U or the Internet Archive.

Topics covered: Classical Mechanics, in spite of all of its impressive predictive power, fails to explain many microscopic behaviors. This led to the development of Quantum Mechanics, where electrons orbit nuclei in discrete energy levels, light can behave as a particle, and particles behave as waves. The location of microscopic particles can only be expressed in terms of probabilities. Heisenberg's uncertainty principle is discussed and demonstrated.

Instructor/speaker: Prof. Walter Lewin

Date recorded: December 6, 1999

Video Index

Please make sure you play the Video before clicking the links below.

  • Discrete Energy Levels
    Electrons orbit their atomic nucleus in well defined orbits corresponding to discrete energy levels. The electrons can jump from one energy level to a vacant energy level, but they cannot exist in between. Transitions between these energy levels gives rise to absorption and emission of light in discrete spectral lines (wavelengths). The students are encouraged to look through their diffraction gratings at helium and neon light sources to see evidence of these discrete wavelengths of emitted light.

  • Particles and Waves
    Quantum mechanics introduces some very non-intuitive concepts, e.g. light behaves as both a particle (a photon) and a wave, and a particle behaves like a wave with a wavelength inversely proportional to its momentum. Interference is a wave phenomenon, and indeed particles can interfere with each other. Both the position and momentum of a particle cannot be accurately specified at the same time (Heisenberg's uncertainty principle).

  • Diffraction by a Slit
    Diffraction of light by a narrow vertical slit is a well understood classical wave phenomenon consistent with Heisenberg's uncertainty principle. The narrower the slit, the smaller is the uncertainty in the horizontal position of the photons which have to sneak through the narrow opening, so the greater is the horizontal spread of the transmitted protons (uncertainty in their momentum). Quantum mechanics only allows you to predict positions of particles with certain probabilities. In the classical, Newtonian, world you can predict the position and movement of a particle to any degree of accuracy - NOT in the microscopic quantum world. The Newtonian picture is perfect for describing the behaviour of basketballs and planets in the macroscopic world.

Free Downloads


Free Streaming


  • English - US (SRT)