Lecture Notes

The lecture notes were typed by Morris Green, an MIT student, from Prof. Vuletic's handwritten notes.

1 Overview, scale of quantum mechanics, boundary between classical and quantum phenomena (PDF)
2 Planck's constant, interference, Fermat's principle of least time, deBroglie wavelength (PDF)
3 Double slit experiment with electrons and photons, wave particle duality, Heisenberg uncertainty (PDF)
4 Wavefunctions and wavepackets, probability and probability amplitude, probability density (PDF)
5 Thomson atom, Rutherford scattering (PDF)
6 Photoelectric effect, X-rays, Compton scattering, Franck Hertz experiment (PDF)
7 Bohr model, hydrogen spectral lines (PDF)
8 Bohr correspondence principle, shortcomings of Bohr model, Wilson-Sommerfeld quantization rules (PDF)
9 Schrödinger equation in one dimension, infinite 1D well (This resource may not render correctly in a screen reader.PDF)
10 Eigenfunctions as basis, interpretation of expansion coefficients, measurement (PDF)
11 Operators and expectation values, time evolution of eigenstates, classical limit, Ehrenfest's theorem (PDF)
12 Eigenfunctions of p and x, Dirac delta function, Fourier transform (PDF)
13 Wavefunctions and operators in position and momentum space, commutators and uncertainty (PDF)
14 Motion of wavepackets, group velocity and stationary phase, 1D scattering off potential step (PDF)
15 Boundary conditions, 1D problems: finite square well, delta function potential (PDF)
16 More 1D problems, tunneling (PDF)
17 Harmonic oscillator: series method (PDF)
18 Harmonic oscillator: operator method, Dirac notation (PDF)
19 Schrödinger equation in 3D: cartesian, spherical coordinates (PDF)
20 Angular momentum, simultaneous eigenfunctions (PDF)
21 Spherical harmonics (PDF)
22 Hydrogen atom: radial equation (PDF)
23 Hydrogen atom: 3D eigenfunctions and spectrum (PDF)
24 Entanglement, Einstein-Podolsky Rosen paradox (PDF)