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PROFESSOR: Hi. Our lesson today involves a rather subtle difference between a curve and a

coordinate system. In other words, given a curve, that curve has a certain shape,

has a certain position, independently of where our coordinate axes are if we're

using Cartesian coordinates, or whether we're using other coordinate systems, or

what have you, but the equation of the curve may very well depend on what

coordinate system we're using.

The thing that we would like to do in this particular lecture is to hit a very important

highlight that comes up-- well, you can motivate it from a purely mathematical point

of view, but physically there's an even more natural interpretation. And basically

what the thing hinges on is this: If you're given a curve in space-- we'll start with a

curve in the plane, but it applies to curves in space as well. Given that curve in the

plane, does that curve have certain properties regardless of whether you know what

your coordinate system is or not?

Or in still other words, can you measure the shape of the curve, can you measure

the speed along the curve as a particle traverses it, if you had never heard of the x-

and y-coordinate system? And what this leads to is a new system of vectors by

which we study motion in space called tangential and normal vectors when we're

dealing in the plane. And there's a third number called the binormal vector, which

we'll talk about later when we deal in three-dimensional space.

Any rate, just for brevity, I call this lecture "Tangential and Normal Vectors". And the

idea is something like this. We're given a curve C. Now, given this particular curve

C, it happens that we have a Cartesian coordinate system here. And it also happens

that we prefer, at least as we've done things in the past, we write everything in

terms of i and j components.
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Notice that if a person were restricted to his universe being the curve C, i and j have

no basic meaning to him. What does have a basic meaning to him, as he's moving

along this curve, I would imagine, would be what?-- what is his motion tangential to

the curve? In other words, if you want to look at this from a calculus point of view, if

this is a smooth curve, in a sufficiently small neighborhood of this point, you cannot

distinguish between the curve and the tangent line. And consequently, one could

interpret that at a given instance the motion was always along the straight line

tangential to the curve.

What this leads to is the notion of inventing what we call a unit tangent vector, which

I'll call T. And what is that tangent vector? It's not a constant, mind you. It shifts with

position as you move along the curve. What is constant is its magnitude. It has

constant magnitude 1.

I guess what I'm trying to say, in sort of a surrealistic or metamathematical way, is

that T plays to a person who's living on the curve C the same role that i plays to a

person living in our ordinary space, but somehow or other he sees T as a constant

vector as he moves along the curve If he visualizes the curve as being a straight

line. He always sees it tangential to his motion.

Now, in the same way that j was a 90-degree positive rotation of i, one would like to

mimic the i and j Cartesian coordinate system by inventing another unit vector,

which is again what?-- a positive 90-degree rotation of T. And we'll call that vector

N.

So that now we have a new system of coordinates, T and N, new system of

variables, or vectors, whereby we can now study motion along a curve in a very

natural way. In other words, we talk about the unit tangent direction and the unit

normal direction. And we have this thing now established.

What we would like to do is to see what happens in our study of kinematics, motion

in the plane, motion in space, if we work in terms of tangential and normal

components now rather than in terms of i and j components. The first thing that
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we'd probably like to do is figure out how in the world do you compute T?

Well, for example, let's take a particular application. Let's take the example that we

were dealing with last time where we had the radius vector R-- in other the scalar

function t, where t denoted time-- and we were dealing what?-- motion in space

where the radius vector R was a function of t. And remember what we showed last

time?

We showed that the dR/dt, the velocity vector, has its what? Its direction is always

tangent to the curve. We proved that last time. Well, as long as the dR/dt is always

tangent to the curve, what prevents it from being a unit tangent vector?

Well, nothing prevents it from being a tangent vector, because it's already tangent

to the curve. All that could go wrong is that the magnitude of the dR/dt is not 1. Well,

look at that again-- a very simple point to fix up-- namely, if the magnitude of the

dR/dt is not 1, suppose we divide that vector by its magnitude? We have already

seen that given any non-zero vector, if you divide that vector by its magnitude, you

get the unit vector in the same direction as the vector that you started with.

In other words, if I take the vector dR/dt, which is already tangential to the curve at

the given point, and I divide that by the magnitude of the dR/dt, then I automatically

get the unit tangent vector. Is that clear? Well, since nobody says no, I assume it is

clear.

Look it. We also showed last time that the magnitude of dR/dt is speed along the

curve. Speed along the curve happens to be called ds/dt. So, again, another name

for the unit tangent vector is dR/dt divided by ds/dt.

By the chain rule, we can cancel dt. And by the way, notice the chain rule applies for

vector functions like this, the same as it did in part one of our course, by virtue of

what we showed in the last unit-- namely, that every formula for derivatives that was

true for scalar functions also happens to be true for what?-- vector functions of a

scalar variable. At any rate, notice then by the chain rule, another way of saying T is

that it's the derivative of a position vector R with respect to the arc length s.
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I'd like to make one comment on this. It's important enough so that I will also make

this comment in the notes as well when we're doing the exercises. The point is there

are many textbooks that will define T by saying it's dR/ds. Now, 999 times out of

1,000-- in fact, 999 times out of 998 even-- you will never be given R as a function

of arc length in the real world. In the real world, R is a function of some parameter,

usually time.

And the trouble that happens is if you try to use this definition, you find yourself

trying to convert things into s, and this makes sort of a mess for you. The thing I

would like to show you-- and, by the way, this does not depend on t standing for

time. If t is any variable-- and we show this in the notes in the exercises again-- if t is

any scalar, if you differentiate R with respect to that scalar, and divide that result by

the magnitude of this vector, you wind up with the unit tangent vector.

In other words, in a real life problem, do not worry about converting R into a function

of s. Simply differentiate R as it stands with respect to the given variable, divide by

the magnitude of the derivative, and, presto, you have the unit tangent vector.

Of course, you may ask, if it's so simple to do what I just said, why is it that every

book defines it this way? The answer is rather interesting, and that is, we have just

mentioned that we would like to believe that the shape of a curve depends only on

the curve itself, not on how we parameterize it. The beauty of this particular

definition simply says the natural parameter is arc length-- namely, arc length

doesn't depend on any coordinate system.

Given the curve, start at any point you want, and you can measure the arc length.

So s is a very natural parameter that does not depend on the coordinate system. In

other words, by defining the unit tangent vector to be dR/ds, you have a beautiful

philosophically pure mathematical definition, because you have a definition which

does not depend on any coordinate system or any unnatural parameter. But in

practice, this is the way we compute the unit tangent vector.

The question that comes up is how do you find the vector N? And I'm going to show

you the traditional way of doing this before I jazz it up with a more modern
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approach. Let's look at T over here. Let's call phi the angle that the unit tangent

vector makes with the curve here. Notice that in terms of this diagram, since the unit

tangent vector has magnitude 1, the i component of it will be cosine phi and the j

component will be sine phi.

In other words, T is equal to cos(phi) i plus sin(phi) j. Let's just differentiate. See, T

is a function of phi here. Let's just take the derivative of T with respect to phi, and

we get right away-- Remember, now, we're getting the mileage out of this basic

definition of derivative. That hasn't changed since last time. We just differentiate

term by term here.

We get minus sin(phi) i plus cos(phi) j. Right away we observe that dT/d(phi) is still a

unit vector. You see it's components are minus sin(phi) and cos(phi), so its

magnitude is still 1. And its slope is cos(phi) over minus sin(phi) , which is the

negative reciprocal of the slope here.

In other words, what this shows us through the traditional approach is that whatever

vector the dT/d(phi) is, it's a unit vector perpendicular to T. By the way, what that

tells us right away is that dT d phi must be either plus N or minus N before we go

any further. Why? Because we already saw that positive N, the vector that we called

N, was a positive 90-degree rotation of T. If we only knew that dT d phi was a

positive 90-degree rotation rather than a negative 90-degree rotation, we'd be

home free.

And, again, the beauty of trigonometry, in the non-surveyor's sense of the word,

analytically is this-- that sort of having a premonition of what we'd like to be true, we

simply verify the trigonometric identities that the cosine of phi plus 90 degrees is

minus sine phi, and the sine of phi plus 90 degrees is cosine phi, so that dT d phi is

what? It's [cos(phi) + 90 degrees] i, + [sin(phi) + 90 degrees] j.

And if we now compare this with this, we notice that we have exactly the same

expression, except that the angle has been increased by a positive 90 degrees. In

other words, dT d phi is a positive 90-degree rotation of T. Consequently, dT d phi

is the vector that was called N. OK? That's dT d phi.
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Now, let's go back to our kinematics. We have T and N now. Let's talk about our

velocity vector v, where R is still some function of time. By definition, v is dR/dt. That

isn't going to change. V was dR/dt last time. It's going to be dR/dt this time. It's

going to be dR/dt whenever we want to use it.

The only difference is that instead of expressing this in terms of i and j, we now want

to express it in terms of T and N. And notice that since v has as its direction the

direction of the tangent line, and as its magnitude ds/dt-- we saw that last time--

notice that in terms of T, v is just a scalar multiple of the unit tangent vector T. And

what scalar multiple is it? It's ds/dt. All right. All that says is what? That v is the

vector in the direction of T whose magnitude is ds/dt, which is speed along the

curve.

I now want to find a. a is acceleration. It's the same acceleration that I was talking

about before. It's dv/dt. The only thing that's going to change now is I am not going

to change the acceleration vector. I am going to change how it looks, because now

I'm going to try to find it in terms of T and N components.

So what do I do here? Look at this expression for v. ds/dt is speed along the curve.

That changes from time to time, in general. The unit tangent vector T is also a

variable function of T, unless T happens to be a straight line through the origin--

namely, notice that the unit tangent vector, even though it always has unit length,

changes its direction as we move along the curve.

So in other words, both of these factors are functions of T. Consequently, to

differentiate this with respect to T, we must use the product rule. And the fact that all

of our differentiation formulas are true for vector and scalar combinations as well as

the scalars, I now use the regular product rule-- namely, it's the derivative of the first

factor times the second, plus the first factor times the derivative of the second.

And I now have a expressed in terms of two vectors, T and the derivative of the unit

vector T with respect to time t. And somehow or other, all that's wrong here is I

would like to get this thing expressed in terms of N. You see, when I'm working with

6



T and N components, I want my answer to depend on T and N.

Now, here's where I become very shrewd. And, by the way, this is an insight that, if

you're going to pick it up at all, you're either born with it or you pick it up with

experience. But you just have to work with these things. There are tricks, if you

want. I guess the novice calls them "tricks." The expert calls it "keen analytical

insight,"

The point is I want to get an N out of this thing. I already know how to express N in

terms of dT d phi. In fact, N is dT d phi. So what I do is I take dT/dt and say, let me

write it so I can get a dT d phi factor out of this. I also want everything to be in terms

of arc length so I can ultimately have an answer which doesn't depend on a

coordinate system.

So what I really do is I use the chain rule to express this factor in terms of what?--

these three factors. You see, according to the chain rule, the d(phi) here cancels

the d(phi) here, the ds here cancels the ds here, and all I'm saying is that dT/dt can

be written as dT d phi times d(phi)/ds times ds/dt.

Now we're in very good shape, you see. dT/d(phi) we already know is N. And ds/dt

we already know can go with this. And the only new thing that we have to worry

about is what is d(phi)/ds.

See, again what so often happens, you apply logic, you get to a certain inescapable

conclusion, and then if you have brand new terms, you have a choice between

doing what?-- saying I don't like the new terms, I'm going to throw them away, or

saying I like the result, I had better interpret what this new term means.

All I want to show you is, is that the d(phi)/ds has a very natural interpretation--

namely, what is d(phi)/ds? Let me tell you what it's called first. It's usually denoted

by the Greek letter kappa, and it's called curvature. Its reciprocal, 1 over kappa, is

usually denoted by rho, and it's called the radius of curvature. And I give you plenty

of drill on the stuff. I just want to mention what these words are now.

In fact, part of the drill is that d(phi)/ds is not a very convenient thing to compute.
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Usually you're given y as some function of x. And many of the drill problems that we

have in calculus ask questions like, how do you express d(phi)/ds in terms of y, dy,

dx, et cetera? Those are problems that we can get into in more detail as we do the

exercises. But all I wanted to do in this lecture is to show you why d(phi)/ds is such a

natural thing.

Look at the curve s. As you move along this curve, notice that the change in phi with

respect to s in a way tells you how the shape of the curve is changing. In other

words, d(phi)/ds measures how-- what could be a more infactual word than

curvature? See, as phi changes as you move along the curve, that's measuring how

your curvature is changing.

As an extreme case, notice if the curve where a straight line, d(phi)/ds would be 0

because phi would be a constant. d(phi)/ds would be 0, and the curvature of a

straight line should be 0. At any rate, one defines d(phi)/ds to be the curvature.

And, in fact, to play it safely, since s can have two different senses-- in other words,

why couldn't somebody else say why don't you go this way along the curve, I don't

know what the sense is? Usually what one does to play it safe is we put the absolute

value signs around d(phi)/ds and just call the magnitude the curvature.

And the punch line is that once I call d(phi)/ds the curvature, what I wind up with is

what? Just substituting in here now, the acceleration vector is d^2s/dt^2 * T + kappa

* (ds/dt)^2 * N.

By the way, this entire recipe is derived in the text. I have you do it again as a

learning exercise because I want you to practice with this. And I make additional

comments on this in the notes. The textbook makes additional comments on it in the

text, which is where you'd expect it to be.

And all I want you to see is that this is the same acceleration vector that we were

talking about in the last lecture, only now we're talking about how it looks in terms of

tangential and normal components instead of i and j components. OK? And what's

so good about tangential and normal? What's so good about tangential and normal
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is that you're now moving along the curve rather than with respect to some isolated

x- and y-coordinate system.

By the way, in the last unit we showed a rather interesting result, that if T was any

vector function of the scalar x, and the magnitude of T was a constant, then dT/dx

was perpendicular to T. That was an exercise in the last unit.

Now, the interesting point is that the modern approach to calculus says this-- why

should we single out the xy-plane? After all, you can be given a particle moving

through space, or you can be using a different coordinate system. The natural

parameter is arc length. Consequently, the modern approach never talks about the

angle phi or anything like this. The modern approach simply says this-- define the

unit tangent vector as before.

Because the magnitude of T is a constant, since dT/ds is already perpendicular to

T, let's define a second vector N to be dT/ds divided by its magnitude. Again, the

same old trick. What have we done here? We have simply taken dT/ds, which we

know is perpendicular to T-- any scalar multiple of the dT/ds will still be

perpendicular to T-- but now this is what? It's a unit vector because we've divided

this vector by its magnitude. Therefore, N is a unit vector.

And where is it? It's perpendicular to T. If we now cross-multiply, notice that dT/ds is

equal to the magnitude of dT/ds * N. See, just cross-multiply. I now claim that the

magnitude of dT/ds is just d(phi)/ds. Now, why is that?

I guess I should have planned this better, but let me come back to the previous

board over here. Notice that since T is a constant vector, since T is a constant

vector, how does it change? It can't change in magnitude because it has constant

magnitude. Therefore, its only change must be due to direction alone.

But the direction of T is measured by phi. In other words, if dT/ds is changing at all--

in other words, if this is a variable, it must be changing only in direction, because the

magnitude of T is always 1. In other words, T cannot change in magnitude. It must

therefore change only in direction. In other words, the magnitude of dT/ds is the
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same as the magnitude of d(phi)/ds.

Recall that we just defined the magnitude of d(phi)/ds to be kappa, and therefore

dT/ds is kappa N, the same way as in the traditional approach. The beauty of this

approach is that we're no longer restricted to the xy-plane. We're not restricted to

any plane. We're not restricted to any coordinate system. We can now, in fact,

generalize this to go out into three dimensions.

And, in fact, some of you will probably have enough difficulty with what we've done

so far that you won't want to go into three dimensions. What I've done is I have

made up an optional unit that follows this one, a unit which has no lecture. It simply

has a batch of exercises for those who have mastered the material in this unit and

would like to see what happens in three-dimensional space. And, after all, when you

deal with real life orbit-type problems and things like this, notice that you do need

the geometry of three-dimensional space for this.

If you so desire, you can then do the optional unit. That's why it's called optional.

You can skip it if you want. There's no loss of continuity if you should skip it, but in

that optional unit I devote computational drill to what happens when our curve

happens to be a three-dimensional space curve-- in other words, a curve that winds

through space.

Notice, by the way, that in the same way as before, I can write R(t) = x(t) i + y(t) j +

z(t) k, where that is the vector form of the curve in Cartesian coordinates given in

scalar form by the three equations, x is some function of t, y is some function of t, z

is some function of t. Again, my claim is that if I just take the dR/ds, I still have the

unit tangent vector.

And to see that, just notice what we're saying here. This is a space curve now. I've

taken a small segment of it. Here's R, here's R plus delta R, so this difference is

delta R. Look what happens as you take delta R and divide it by delta s.

First of all, the direction of delta R does become the direction of the tangent line as

delta s approaches 0. So certainly we can believe that the direction of dR/ds is
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going to be the tangential direction. Also, if we invoke the result of geometry that we

talked about in part one of our course, when we talk about sin(theta) over theta as

theta approaches 0, the length of the arc is approximately the length of the chord

for small segments. So, therefore, delta R over delta s in magnitude approaches 1.

In other words, dR/ds is still the unit tangent vector, the same as before. Again from

a computational point of view, to find dR/ds you do not rewrite this in terms of s. You

simply do what? You take dR/dt, the same as before, divide by its magnitude, and

you automatically have dR/ds.

Similarly, once T is given, to find N you simply differentiate T with respect to s and

divide it by its magnitude. And again notice, even though I've written it again, if you

look back to the first third of our blackboard, this is the same definition for N as

before, because our original definition did not specify that the curve had to be in a

particular plane. See? The same general definition.

So I now have T and N. Now what do T and N do? T and N determine a plane. It's a

plane which we call the osculating plane to the curve. That's the plane which sort of

touches the curve at that particular moment. Remember, this curve is winding

through space.

And, again, this is done in more detail in the notes. Not quite as elegantly as going

like this, but the idea is you have this plane that's shifting along with the curve. The

only thing that's missing that causes new complications when you deal in three-

dimensional space is that in the same way that T and N take the place of i and j in

two-space, you need something that takes the place of k in three-dimensional

space.

What we do is-- again look at the structure-- we mimic how k is related to i and j and

invent a new vector called the binormal, hence abbreviated B, which is simply

defined to be T cross N, the vector that you get by rotating the unit vector T into the

unit vector N through the smaller-- namely, the positive 90-degree-- angle.

Now what is B? B is perpendicular to both T and N. In other words, B is a vector
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which is perpendicular to the osculating plane. Since B always has a constant

magnitude, because T and N are always perpendicular-- see, B always has

magnitude 1-- the point is that dB/ds, the magnitude of dB/ds, measures the twist of

the curve.

In other words, here's this tangent plane following a point, a particle, along the

curve. And what you're saying is how fast the direction of that tangent plane is

changing is measured by dB/ds. That is called the "twist." I call it the "twist." I put it

in quotation marks because nobody else calls it the "twist." The formal name is the

"torsion." See? This is called the torsion. I talk about that more in the notes.

The point being, by the way, that notice that if dB/ds happens to be 0-- in other

words, if B happens to be constant-- then the curve lies in the plane. We certainly

recognize that. For example, if the curve happens to be in the xy-plane, notice that

if T and N were i and j, i cross j would just be k, B would then be a constant. The

derivative of a constant with respect to any variable is 0, and, therefore, when the

curve does lie in the plane, the torsion, the twist, is 0.

In other words, the torsion does for three-dimensional space what the curvature in a

sense does for two-dimensional space. At any rate, our main aim is to get you

familiar with some vector calculus, and if in doing this we can also help you learn

how to use this stuff in some physical applications, that happens to be frosting on

the cake.

Next time, we are going to talk about the fact that we still have to invent additional

coordinate systems, that i and j isn't enough, T and N isn't enough. Next time we're

going to show why we need polar coordinates, but we'll worry about that next time.

Until next time then, goodbye.
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