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PROFESSOR: Hi. Today we're going to conclude our study of vectors as applied to motion in the

plane. Now recall that for the last two units, we were discussing polar coordinates.

So today what we would like to do is investigate what velocity and acceleration

vectors would have looked like, had we elected to pick representative vectors in

terms of polar coordinates.

Now what do we mean by representative vectors? We mean, of course, analogs of i

and j, just like T and N in tangential-normal components were parallels to i and j.

Let's take a look and see what that means here. We call today's lecture "Vectors in

Polar Coordinates."

The idea is that we're given a curve c, which we have for some reason or other

elected to express in terms of polar coordinates. The polar equation of the curve c

is r equals f(theta). A typical point on the curve c would be called (r, theta), say,

where theta was the angle made by the horizontal and the radius vector, and r was

the distance from the origin to the point.

Now what we're saying is, that in terms of polar coordinates, a very natural vector to

pick-- especially if we think later in terms of the simple force fields that we've talked

about earlier, the idea that there may be a force that has its line of action from the

origin to the point on the curve-- a very natural vector to choose is the vector that

we elect to call u sub r. And what that vector is, apparently, is the vector 1 unit long

having the direction of the radius vector r. So here is u sub r over here.

If we think of u sub r as playing the role of i, then the vector which plays the role of j

should be a positive 90-degree rotation of u sub r. And we elect to call that vector u

sub theta, using the theta here more to indicate the fact that we're using polar
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coordinates than to indicate anything about the angle theta itself.

In other words, notice that u sub theta, by definition, is just a positive 90-degree

rotation of u sub r, where u sub r is a unit vector in the direction of the radius vector.

Now if we want to see this in terms of i and j components, what we're saying is that

u sub r is a unit vector whose i component is what? Since this angle here is also

theta, it's i component is cos(theta), and it's j component is sin(theta).

So u sub r is cos(theta) i plus sin(theta) j. u sub theta-- and I'm going to do a little

twist here that I didn't do in the T and N components, just to show you another

approach. Rather than to start with derivatives or anything like this, notice that what

we know about u sub theta is that it's obtained from u sub r by a positive 90-degree

rotation of theta. So that means if I replace theta in the expression for u sub r, by

theta plus 90 degrees, that should give me u sub theta.

If I now remember my trigonometric identities, that tells me that u sub theta is minus

sin(theta) i plus cos(theta) j. By the way, if we now look at this expression and

compare it with the expression for u sub r, we see at once that u sub theta is the

derivative of u sub r with respect to theta. And notice, as we said before, that part of

this should have been known to us by now. Namely, since u sub r varies with theta

but it has a constant magnitude, we know that the derivative of u sub r with respect

to theta has to be perpendicular to u sub r.

In other words, we knew that u sub theta had to be either plus or minus the

derivative of u sub r with respect to theta, but now we have a direct way of showing

this. And by the way, going one step further, if we now differentiate u sub theta with

respect to theta, we get what? Minus cos(theta) i minus sin(theta) j, which is just

minus u sub r. In other words, if you differentiate u sub r with respect to theta once,

you get u sub theta, just as we should. If you differentiate a second time, you get

minus u sub r. And therefore, it appears that the operation of differentiating with

respect to theta rotates u sub r by 90 degrees.

By the way, I should mention that I could have made all of these remarks when we

were studying tangential and normal components. In other words-- I just wrote this
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out here, but this was true with T and N. But the point was, we never had to

differentiate N with respect to T to find the acceleration vector a. In other words,

recall that the key step in using tangential and normal vectors-- and I'll mention this

in a little bit more detail later-- was that the velocity vector was simply ds/dt times

the unit tangent vector T. The coefficient of N was 0.

In polar coordinates, notice that v in general will have both a u sub r and a u sub

theta component. Therefore, to compute a, I have to differentiate v with respect to t.

That means, among other things, I'm going to have to take the derivative of u sub

theta with respect to t. By the chain rule, that's going to be the same as taking the

derivative of u sub theta with respect to theta times d(theta)/dt. But the important

point is, is that someplace along the line in studying kinematics and polar

coordinates, I am going to have to differentiate u sub theta with respect to theta.

And just to show you again very, very quickly what I mean by this, all I'm saying is

we already know in kinematics that the velocity vector is always tangential to the

curve. Notice in this particular diagram, for example, that if you look at u sub r and u

sub theta, if you think of a vector whose direction is tangent to the curve at this

particular point, that vector will have, in general, both a u sub theta and a u sub r

component. In fact, in this particular diagram, I shouldn't say "in general," it will have

u sub r and a u sub theta component.

OK. So far so good, but now I want to make one little caution, a caution which is not

at all self-evident, at least to me, and which gave me great difficulty myself when I

was a student. And that is, my feeling was that u sub r was simply the unit vector in

the direction of r. In fact, I said that earlier, that u sub r was the unit vector in the

direction of the radius vector r. And this is one of the reasons why even though

Professor Thomas in the textbook doesn't make such an issue over this, why I am

such a bug on using the phrase "sense" as well as direction. And that is, my claim is

that the unit vector u sub r need not be the radius vector R divided by the

magnitude of R. It'll have the same direction, but watch what happens with sense.

Instead of talking about this thing abstractly, let me give you a concrete example.
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Let's take the curve which in polar coordinates has the equation r equals cos(theta).

OK? As you recall, this would be this particular circle here. Now let's take theta to be

120 degrees. If I use our definition for u sub r, which is cos(theta) i plus sin(theta) j,

and replace theta by 120 degrees, what I get is, is that u sub r is cos(120 degrees) i

plus sin(120 degrees) j. Remember that the cosine of 120 is minus 1/2 and the sine

of 120 is plus 1/2 the square root of 3. u sub r turns out to be minus 1/2 i plus 1/2

the square root of 3 j.

On the other hand, my claim is that when theta is 120 degrees, what point are we at

the curve? You see, if I take theta to be 120 degrees-- notice that when theta is 120

degrees, r is negative 1/2. And that therefore I'm at the point P0 here. Recall that by

definition, r, the radius vector, is measured from the origin to the point. In other

words, according to our previous definition, it's this vector, which would be called r.

But our definition says that it's this vector, which is u sub r.

And in fact, if you just check the figures that we've obtained over here, notice that u

sub r has its i component equal to minus 1/2, its j component being plus 1/2 the

square root of 3. Therefore x is negative. y is positive. But if x is negative and y is

positive, you're in the second quadrant, not the fourth quadrant. You see? In other

words, u sub r is almost the radius vector. In fact, it would have been, if in polar

coordinates, little r happened to be positive.

In fact, let me summarize that in a different way. Let's assume that we have a curve,

c, whose polar equation is r equals f(theta). Then the idea is this. If f(theta) happens

to be at least as big as 0, then u sub r is equal to the radius vector r divided by its

magnitude. In other words, u sub r will be in the same direction as the radius vector.

And by the way, recall this is just another way of saying r. What we're saying is

again, if we had never let little r in polar coordinates be negative, no problem would

have occurred.

But we do let little r be negative. So we have to be a mite careful. The careful part

comes in where? If r happens to be negative. In which case, u sub r has the

opposite sense of the radius vector the capital R, which we saw in the previous
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example. In other words, in this case, u sub r is minus-- the negative of the radius

vector divided by its magnitude. In what cases is that? If r happens to be negative.

The important point to notice, however, that in either case, the radius vector r is

equal to the polar coordinate r times u sub r. In other words, if r happens to be

positive, these two vectors have the same sense. If r happens to be negative, these

two vectors have the opposite sense. In other words, in either case, this expression

is always correct. But the important thing to notice is that the sense of u sub r is

determined by theta, not by r, not by f(theta). OK?

At any rate, once we have this particular recipe established, we can now go ahead

and study motion in the plane. Namely, notice that our radius vector R is now given

by the polar coordinate r times u sub r. Or I guess I should say here that I'm

assuming that the equation of motion is given by r is some function of theta. That's

the r that I'm using in here. At any rate, what is the velocity vector? By definition, it's

just the derivative of the radius vector with respect to time. That's just d/dt of r times

u sub r.

Now keep in mind, that r and u sub r are both functions of time-- namely, the

distance of the particle from the origin as well as the direction of the line of action

that joins the particle to the origin will, in general, depend on time. Consequently, I

must use the product rule here. I already know that I can use the product rule for

vector and or scalar functions and any combination thereof. So I just differentiate

this thing with respect to time. I get what? This is dt/dt-- in other words, the

derivative, first times the second, which is u sub r, OK?-- plus the first times the

derivative of the second, which is the derivative of u sub r with respect to time.

Now keep in mind, again, there is nothing wrong with this recipe. But what I would

like is to have the velocity expressed in u sub r and u sub theta components. So far,

I have it expressed in terms of u sub r component and a d(u sub r)/dt component.

But now, here again is why the chain rule is so important. Keep in mind that I

already know that if this expression here had been the derivative of u sub r with

respect to theta instead of with respect to t, what would this expression have been?
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It would have been u sub theta. We solved that earlier in the lecture.

Well, here's what we do. We say, OK, these aren't the same. But let's cross this out.

Let's use the chain rule. And by the chain rule, the derivative of u sub r with respect

to t is the same as the derivative of u sub r with respect to theta-- times d(theta)/dt.

And rewriting this so that it becomes legible, we have that the velocity vector is dr dt

times u sub r plus r d theta dt times u sub theta.

And again notice that as far as u sub r and u sub theta are concerned, even if I did

not notice my subtlety-- and by the way, I'm going to leave this for the exercises--

but even if I didn't notice the subtlety that u sub r need not have the same sense as

the radius vector r-- notice that if I did not try to draw this thing to scale, I can still

get the-- I shouldn't have said the scale-- but if I didn't try to graph the answer here

given r as a function of theta and theta is a function of t, notice that dr/dt and r

d(theta)/dt are well-defined arithmetically with no possible chance of making a

geometrical mistake. The place that you can make the biggest mistake is if you

automatically think that u sub r must have the same sense as capital R. But as I say,

we'll leave any additional discussion of that for the exercises.

I should also point out that when I first learned this recipe myself, it turned out that

we were ahead of-- the physics class was ahead of the math class. And we learned

this thing in the physics class almost intuitively. In other words, as a geometric

aside, notice that if I'm given the curve and say s indicates the direction of

increasing arc length here, what I could do is think of a little differential region here.

Namely, here's my radius vector r, and here's my velocity vector in the direction of u

sub r. Then I take a little increment of angle d(theta), and I now think of v sub theta,

which is at right angles to v sub r, as being tangent to the circle I would have

obtained if I had imagined that this particular point-- the particle was being viewed

with respect to the circle rather than to the curve itself.

To make a long story short, what I'm driving at is that physically, it's very easy to

justify that the magnitude of the u sub r component of the velocity is the magnitude

of dr/dt-- how fast the radius vector is changing instantaneously. On the other hand,
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notice that for the u sub theta component, this arc length is given in differential form

by r d(theta). If I divide the arc length by the time, which is dt, I get r d(theta) divided

by dt, which leads to r d(theta)/dt, which is the same expression that we got

analytically. But the point that I want to bring out here is that our derivation required

no geometrical physical insight.

And the reason that I want to bring this out is I followed this argument fine in my

elementary physics course. The place I got hung up is that the instructor then went

into a fantastic hand-waving type of demonstration and showed us how the

acceleration looked in terms of u sub r and u sub theta components.

And actually, that was a blessing for me, because it was that day that I decided to

become a math major rather than a physics major, which was a blessing both for

me and society, I guess. But the thing that I want to show you is that the beauty of

our mathematical approach is that we can now obtain a, the acceleration vector,

from the velocity vector without having to know any great physical insight. In fact, we

have to know no physical insight to do this.

Namely, by definition, a is the derivative of the velocity vector with respect to time.

We also have seen that the velocity vector is the expression that I have here in

brackets. So I have to differentiate that with respect to time. Notice that this is the

sum of two terms, one of which is a product of two factors, and the other of which is

a product of three factors. And by the way, among other things to review here, this

is the first time in this course that we have actually had to use the product rule for a

function consisting of three variable factors.

Even though we discussed this in part one, here is a case where in a real-life

situation, what we need is the derivative rule for a product of three functions. At any

rate, this is done in great detail in the text. I do it more in the notes. So I'm just going

to hit the highlights here.

The point is I now differentiate this sum term by term. Namely, to differentiate this, I

take the derivative of the first term times the second plus the first term times the

derivative of the second. Now to differentiate this term, I have to differentiate a
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product of three factors. And recall-- and by the way, as I told you in part one--

whenever I say "recall," that means if you don't recall, it's my polite way of saying,

look it up. But to differentiate a product of three functions, we write the product

down three times, and each time differentiate a different factor.

For example, the first time we'll differentiate r with respect to t, which is dr/dt. The

second time, we'll differentiate d(theta)/dt with respect to t, which is the second

derivative of theta with respect to t. And the third time, we'll differentiate u sub theta

with respect to t, which is the derivative of u sub theta with respect to t. And

summarizing that, what do I have here? I have dr/dt d(theta)/dt times u sub theta

plus r d2 (theta)/dt^2 times u sub theta plus r d(theta)/dt times the derivative of u

sub theta with respect to t.

Now the point is that if I look at these five terms, some of them are in nice form.

Namely, here's a u sub r term. Here's a u sub theta term. Here's a u sub theta term.

But these terms are sort of mongrelized. Namely, what I have to do here is utilize

the chain rule. And remember that the derivative of u sub r with respect to theta

would have been u sub theta. The derivative of u sub theta with respect to theta

would have been minus u sub r. So by the chain rule, you see what I'm going to do

is, I'll replace each of these terms by their chain rule expression. Then I'll collect

terms. And the reason I'm going over this fairly rapidly is that it is a problem of sheer

mechanics.

But the punch line is that if I now collect my terms, the acceleration vector has as its

u sub r component d2(r)/dt^2 minus r [d(theta)/dt]^2. And the u sub theta

component is r d2(theta)/dt^2 plus 2 dr/dt d(theta)/dt. And the beautiful part, from

my point of view about all of this, is if I don't understand any physics at all, this

particular result is valid. It's mathematically self-contained. Now certainly there is no

harm in a man who understands physics well enough to say, look at it. This is the

acceleration in the radius direction alone. And this is some kind of a correction

factor proportional to the square of the angular velocity, see, d(theta)/dt being

angular velocity and what have you. And go through this particular thing.
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I'm saying fine, if you can do that. But notice the beauty. This complicated

expression gives us the acceleration vector in terms of u sub r and u sub theta with

no hand waving. It's mathematically self-contained. And by the way, keep in mind

that one of the reasons that we study polar coordinate motion is the fact that, in

many cases, we are going to be dealing with a central force field. And the

interesting thing is that in a central-- I'll just abbreviate this-- in a central force

situation, this expression is 0.

See central force means what? That the force is in the radial direction. That means

all of the acceleration-- if you're using Newtonian physics, F equals ma-- all the

acceleration is in the direction of u sub r. Therefore, the component in the direction

of u sub theta must be 0.

So this fairly complicated expression-- r d2(theta)/dt^2 plus 2 dr/dt d(theta)/dt

equals 0 becomes the fundamental equation for central force field motion. But

again, we'll talk about that more in the exercises. What I wanted to do now was to

make what I think is a very important summary. And that is that when we're studying

the position vector R, and the velocity vector v, and the acceleration vector a, that

none of these depend on the coordinate system. It's only their components that do.

In other words, at the expense of having a fairly jumbled figure which I rationalize

here-- it is small, but I think it is clear from context.

What I'm saying is, let's suppose I have a curve c, and some point P0 on this curve

c. I can draw in the pair of orthogonal vectors i and j in the plane. I can draw in the

pair of orthogonal vectors u sub r-- "orthogonal" means perpendicular, if we haven't

said that before-- u sub r and u sub theta. I can draw those in. And I can draw in T

and N. Now all I know is that if I have the velocity vector v, it must be tangential to

the curve. Hopefully by this time, we realize that the acceleration vector has no such

restriction. Let's just draw in a v and an a, call these the velocity vectors and the

acceleration vectors.

The point is that v and a are determined by the motion-- not by the coordinate

system. In other words, when we're talking about the velocity of this particle at the
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point P0, its velocity is the same, no matter what coordinate system we're using. It

just happens that if we're dealing with Cartesian coordinates, the velocity vector is

dx/dt i plus dy/dt j. In other words, it's this particular combination of i and j.

If we're using T and N components, the particular combination of T and N is what?

ds/dt times the unit tangent vector plus 0 N. And if we happen to be using polar

coordinates, the expression is dr/dt * u sub r plus r * d(theta)/dt * u sub theta. But let

me circle these, because it's the same velocity in each case. We use this when

horizontal and vertical motion are important. We use this when we're interested in

motion along the curve. And we use this primarily in central force fields. But it makes

no difference. It's the same velocity vector.

And in a similar way, it's also the same acceleration vector, whichever system you

happen to use. Namely, if we use Cartesian coordinates, the acceleration vector is

the second derivative of x with respect to t times i plus the second derivative of y

with respect to t times j. That same vector, if we express it in T and N components,

is d2(s)/dt^2 times T, plus kappa, the curvature number, times (ds/dt)^2 times N.

And if we express it in terms of polar coordinates, as we just saw earlier in our

lecture, this is the expression that we get.

In other words then, this summarizes our study of motion in the plane using either

Cartesian or polar or tangential and normal components. You see, the point is that

we pick whichever coordinate system happens to be of the greatest interest to us,

the greatest value to us. We make the coordinate system our slave, rather than the

other way around, and tackle the problem from that particular point of view.

At any rate, that ends this phase of our particular course. And in the next phase of

our course, we get to probably what is the most fundamental building block of the

entire course. We get to that particular topic which by and large most courses in

functions of several variables begin with. But we'll talk about that more the next time

we meet. And until that time, goodbye.
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