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PROFESSOR: Ladies and gentlemen, welcome to lecture number six. In this lecture I would like to

discuss with you the formulation and calculation of isoparametric finite elements. We

considered earlier already, in lecture four, the calculation all finite element matrices.

But in that lecture we considered the generalized coordinate finite element models.

The generalized coordinate finite element models were the first finite elements

derived.

However, I now want to discuss with you a more general approach of deriving the

required interpolation matrices and element matrices. And this more general

approach is the isoparametric finite element derivation. The isoparametric finite

elements that I will be discussing in this and the next lecture are, in my opinion, the

most effective elements currently available for plane stress, plane strain,

axisymmetric analysis, three dimensional analysis, thick and thin shell analysis.

These elements are being used, for example, in the computer program [? Aldena

?]. They are also used in other computer programs and represent a modern

approach to the solution off structure problems.

In this lecture, I would like to talk about the derivation of continuum elements. In the

next lecture we will talk about the derivation of structural elements, [INAUDIBLE]

and central elements, beam elements. The basic concept of isoparametric finite

element analysis, is that we interpolate the geometry of an element, and the

displacements of an element in exactly the same way.

Let us look at the geometry interpolation. Here you see for three dimensional

analysis, the interpolation of the x-coordinate within the element, where we use

interpolation functions h i. Of course these interpolation functions are unknown and I

will have to show you how we derive them for certain elements. The x i as a nodal

point coordinate. The x i value for i equals 1, for example, is nothing else than the x-

coordinate of nodal point one. And so on.
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So the x i, the nodal point coordinates for all nodes, they are given, they are input in

the analysis the way we have been discussing it in the previous lecture. And if we

know the h i, we have a direct relationship for the x-coordinates within the element,

as a function of the nodal point coordinates. Again, I have to show you how we

obtain the h i functions for the various elements that we are using. Similarly, for the

y interpolation and similarly for the z interpolation.

Having derived the h i functions we are using in the isoparametric finite element, the

same functions also to interpolate the displacements. Notice that we're having here,

the nodal point displacements u i, v i, and w i, and here we have the same

interpolation functions that we already used in the coordinate interpolations. And if

the number of nodes that are used in the description of the element-- and, in fact,

we will see that N can be a variable, it can be equal to three, four, five, up to a large

number of nodes. And in practice we generally don't go much further than 60.

I mentioned that I want to discuss in this lecture continuum elements. Well, the

continuum elements that we addressing ourselves to are the truss element, the two

d elements-- plane stress, plane strain, and axisymmetric elements-- and then, the

3 d elements for three dimensional and thick shell analysis. These are continuum

elements. We call them continuum elements, because we only use u, here u and v,

and here, u v and w-- the displacements-- to describe the internal element

displacements. We're only using the nodal point displacements u, u v, and u v w, for

all of the nodal points to describe the internal element displacements.

Structure elements, on the other hand, also use the rotations at the nodal point

theta x, theta y, and theta z, in order to describe the deformations within the

element. And I will be discussing structural elements in the next lecture, so, for the

moment, we do not have any rotations at the nodes. Or what we will allow, u v and

w displacements at the nodes. Typical examples are given on this Viewgraph.

These are elements that are available in the computer program [? Aldena ?].

Here we have a truss element, a two-noded truss element. The only displacement

of interest in the truss is the actual displacement here. Here we have a three-noded
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truss, or cable element. Here we have a set of two dimensional elements. Notice we

have triangular elements here, a triangular element here. We have here an eight

node element that is curved. We can construct curved elements in the isoparametric

approach. And here we have a rectangular, eight node element, straight sides, in

other words.

These elements are used in plane stress, plane strain, and axisymmetric analysis.

In three dimensional analysis we might be talking about-- we might be using-- such

elements such as the eight node brick. Each node now has three displacements, u,

v, and w. This is here a higher order element, where we have, in addition to the

corner nodes, we also have mid-side nodes. You don't need to have a mid-side

nodes along all sides. For example here, I did not put a mid-side node as an

example. In fact we could simply have mid-side nodes here, and no mid-side nodes

anywhere else. I will show you how we deconstruct these interpolation matrices in

the next few minutes.

Let us consider, as a very simple example, a special case. And the special case that

I would like to look at is a truss element, which is two units long. In other words, the

length from here to there, is equal to 1, and similarly the length from here to there,

is also equal to one. I'm describing the element with a coordinate r that I set equal

to zero at the midpoint of the element, plus one at the right end and minus one at

the left end. This is special geometry and we will later on have to generalize our

approach to more general geometries where the length is not equal to two and the

element might even be curved. But for instructive purposes, let's look at this

geometry first.

Similarly, for two dimensional analysis, I want to look at an element that has length

two this direction and length two that direction. In other words, a generalization of

the concept that we just looked at for the truss. Now we have two dimensions and in

each dimension we have a length of two. I embed into this element an rs-coordinate

system. And this coordinate system now has its origin here at r equals zero and s

equals zero. The r-axis bisects this side, and the s-axis bisects this side. Notice that

this is a coordinate system that is embedded into the element. We also call that the
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natural coordinate system, or the Isoparametric coordinate system. This element,

two by two, would lie in space in an x xy-coordinate system as indicated here.

Now for three dimensional analysis we would proceed in the same way, then we

would consider an element that is two by two by two units long into each coordinate

direction. And then we would have an rs-axis and a t-axis coming out of the

transparency in this particular case. Well, I want to look at the truss element, the

special truss element, and the special two d element. And I want to show you how

we can construct the interpolation matrices, the displacement interpolation matrices,

h i. These are also the coordinate interpolation matrices. I want to show you how we

construct them for the special elements, how we then can calculate the strain

displacement interpolation matrices for the special elements. And then I want to go

on and show you how we generalize to concepts to curved elements. And once we

have discussed the two dimensional case, I think you can see yourself how the

concepts are generalized to the three dimensional case.

Let's look then at our two-noded truss first. Here we have once more, the truss, and

we have node one on the right hand side, node two on the left hand side. Our r-

coordinate system starts in the middle of the truss. Notice what we want to obtain is

that we interpolate our u displacement via the interpolations. U being equal to h i

times u i, the h i are the unknowns. I want to show you how we obtain the h i. The u

i are the nodal point displacements. In this particular case it would be here, u two

and here we would have u one. I in other words, goes from one to two for this

particular case. The h i has to be a function of r. For a given r, however, we can

evaluate the u displacement if we have u i is given. In other words, when u one and

u two are given, then for a given r, we can evaluate directly from this relation the

displacement at that point r.

Well, with two nodes, we can only have a bi-- only a linear representation in the

displacements. The h one, from this relation, must be this function. Because if we

look at this, and we say let u two be equal to zero, we would simply have that u is

equal to h one u one. Well, therefore, our h one must look this one, because u one

has its full strength here. If we put u one equal to one, we would have u is equal to h
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one, and this would be the variation. Similarly, for h two, in this case, we would have

u is equal to h two u two. H one is now equal to zero. If we put you two equal to one,

as I have done in this particular case, then our linear variation is indicated as shown

here , and the function h two is given right here. Notice that h two is equal to zero

when r is equal to one. And h two is equal to one when r is equal to minus 1. So,

this gives us h two. The two-noded truss, therefore, simply has this description here

for the displacement and the coordinates. Remember that we're using the same h i

for displacement and coordinates. It simply has this description where h one and h

two are defined as shown.

Let us now say that we want to add another node, that we want to put another node

right there. In other words, we want to go from a two-noded description to a three-

noded description. On one of the earlier Viewgraphs, you could see a three-noded

cable element. Well, the way we proceed in the construction of the h i functions is as

follows.

The two-noded element simply had this description here. H one is given as shown

here on the left side of the blue line. H two was simply this. And we knew that we

could do no better than a linear description in displacements between two nodes.

However, now we have a third node right here. And a third node means that we can

use a parabolic description in displacements. Now h three must be equal to one at

the third node and zero at both sides. Why? Well, because, remember we have u

now equal to h i u I, where i equals one to three. And if we put u one equal to zero

and u to equal to zero, we simply have u equals h three u three, and, therefore, h

three is this function. I've written it down here when r is equal to zero its one when r

is equal to minus 1 or plus h three is zero. So this is our h three.

However, if we now look back to our earlier description of h one and h two for the

two-noded element, we remember that we had a linear variation here. That we had

a linear variation here and here. This one was a linear variation of h one-- let me

take here the green color to show once more what we are talking about-- that was

our linear variation. And here, this one here was our linear variation there.
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Well, now with the third node there, we recognize that, at this third node our h two--

our actual h two for the three-noded truss-- must be zero here. H one must be zero

here. Well, how can we make it zero here? We can make it zero by subtracting from

our two-noded truss h one, one half of this parabolic description. And that's what I

have done here. Similarly, we have to subtract it here, because then, what we are

doing is we are taking one half off this parabola, and we are putting it right on here.

This is one half of the bottom parabola. We are putting it on there. And that brings

this point back to that point. Remember this is equal to one. I want one half as a

correction here, and that's why I take one half of one minus r squared, to bring this

point back to there.

This total description then, this total part-- this part here, all of that together-- is our

h one for the three-noded element, for the three-noded element. And similarly, we

would have four h two. This total part here is this function here for our three-noded

element. Now the important point that I really would like you to understand is that,

we have started off with a two-noded element description-- h one only the linear

part, h two only the linear part. We have constructed the interpolation function for

the third node, and then we have corrected the earlier two-noded interpolation

functions via subtracting a certain part of the third interpolation function, in order to

obtain the new h one and h two for the three-noded element. And this is indeed the

actual procedure that we can use very effectively in constructing higher order

elements. We are starting off with the lower order element descriptions-- the ones

shown here dashed with a dashed line, the linear part only-- and we add in the

higher order description, and subtract the correction from the lower order

description. The correction has to be subtracted to bring this point back to zero,

because h one total must now be equal to zero here, h two total must be equal to

zero here, and this way we have constructed our new h one and h two for the three-

noded truss element.

Let's look at the four-noded element in two dimensions now. Here we use very

similar concepts. These are the four nodes for the element. The description along a

side is just like we have been discussing now for the truss, linear here and linear

here. Notice h one can directly be written down. It has to be equal to one here and
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zero everywhere else. This is a function which is bilinear and which satisfies these

conditions to be equal to one here and. Zero at the other nodes. It is a linear

variation along this side, along this side, and also across the surface. In other

words, for a given value of r, we have a linear variation across here too. How do we

obtain h two? Well, we simply have to change the signs over here-- the plus signs

here-- in an appropriate way. H two shall be equal to one here zero at all the other

nodes, while we see that this function satisfies these conditions, let's put in r equal

to minus 1. That makes this two, divided by four, gives us one half. S has to be

equal to plus 1 at this point-- you get another two in here-- so h two is equal to one

right there, and its zero everywhere else. Similarly we construct h three and h four.

Indeed we can immediately observe that these signs-- plus in both cases here, a

minus here, plus there, minus, minus, plus, minus-- these signs correspond to

nothing else in the signs of the r- and s-coordinates of the nodal point under

consideration. R and s is plus here, you have two plus signs here. R is negative

here, you put a negative sign here. But s is positive here, you put a plus sign there.

r and s both are negative here, so we have two negative signs here, et cetera.

Let us now see how we construct from this basic four node element, which really

corresponds to our basic two node element in the case of the truss, how we can

construct higher order elements. Well, we proceed in much the same way as in the

truss formulation. Here we have a four-noded basic element and we have added a

fifth node to it. Now let's look at this in detail. Since we now have added a fifth node

here, we know that we can allow a parabolic distribution. In fact, we should allow a

parabolic distribution of displacements along the side. Well, if its a parabola along

the side for s being plus 1, we immediately see that this function here-- this s equal

to plus one, this is equal to two, knocks out that one half, we have a one minus r

squared along the side-- just the same function that we already had in the truss.

Well, along this direction we can only vary things linearly because we have two

nodes only in along these directions. And this is the reason why we have to put in a

one plus s here. The linear variation is given by one plus s. And we also notice that

when s is equal to minus 1, in other words, we are looking at this side, this function
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is zero. When s is equal to plus one, as we pointed out earlier, this function here--

this part and that part-- gives us a one together, and we have simply a one minus r

squared along here. So, here you can see these triangles that show the linear

variation along this side. These parabolas here run really across here, but with a

different intensity. The intensity off the parabola goes down linearly from one at this

end, to is zero at that end.

This is our h five. Well, if we have this as our h five, we remember that our original h

one of the of the four-noded element had a linear variation along here, and also a

linear variation along here. We will now have to take this h one and subtract some

correction from it. In order to make this point here have zero displacement, four h

one. Well, what we will do is we take this h five and subtract a multiple of h five from

h one. In fact, you can see since the original h one is equal to one half here, we

simply have to subtract one half of this function to obtain the new h one. And this is

what I have done on this Viewgraph.

The h one now is the original h one that we had. And we are subtracting one half of

h five, which is one half of the parabolic distribution, to bring this point here down to

zero in displacements. And that's what we have done here. The resulting function

then is shown here. And our h one for the five-noded element is shown right here.

Similarly, for h two-- this is the h two function for the five-noded element--

interesting to note that h three and h four are for the five-noded element, the same

as for the four-noded element. Because this fifth node lies between nodes one and

two. And there is no effect along this side and along this side here-- along that side

four h three and h four-- so, we have our original functions also for the five-noded

element.

Let us look now at a generalization of this concept. Here we have a typical nine-

noded element. A very effective element for many types of applications. I already

show it here in its curved form, but think of it, please, as follows. This is the x-axis.

This is the r-axis. S is equal to zero along this side. S is equal to plus one along this

side. S is equal to minus 1 along this side. R is equal to plus one along this side. R

is equal to minus one along the side. And r is zero along this axis. So, in the r s

8



description, in the embedded coordinate system, this element is still a two by two

squared element.

Well, if we look then at the interpolation functions, for this element, they look as

follows. Now maybe you have difficulty seeing all this information, so, please then

refer to the study guide where you'll find this Viewgraph. For the four-noded

element, we had these interpolation functions. If we want to deal with the five-noded

element, what we have to do is, we add this interpolation function. And-- as I

pointed out earlier-- we have to correct our h one and h two. But that is all of the

correction that is required. H three and h four not corrected-- they are blank spots

here, they are blank spots here. So, our five-noded element would have these

interpolation functions now shown in red.

For if we added a sixth node-- and I now should go back to our earlier picture-- if I

wanted to add, in addition to the fifth node, also the sixth node. Well, then, I have to

put another interpolation function down here, which now is parabolic in s and linear

in r. And I have to correct h two and h three again, these are the corrections. So,

now I have in green here shown to you the interpolation functions off a six-noded

element. And like that we can proceed by adding interpolation functions and

correcting the earlier constructed interpolation functions as shown. Like that we can

proceed to directly obtain the interpolation functions for the five-noded, six-noded,

seven-, eight-, and nine-noded element.

In fact, its also important to notice that we could have this node, that node, this

node, and that node, and just h nine also added. We could have, in other words, a

five-noded element which looks like this. It has this node, that one, that one, and

that one, and that one in the middle. Another five-noded element would be this one,

this one, this one, this one with that node in there. So there is no necessity in having

all the nodes below a certain number. But we can simply use four nodes, and then

add whichever nodes we want to have into the element.

This is, then, how we construct interpolation functions. And once we had the h i, we

directly can obtain the h matrix, the matrix that gives the displacements in terms of
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the nodal point displacements. Notice that the h matrix really is constructed from the

hi's. And the elements of the b matrix-- the strain displacement interpolation matrix--

are the derivatives of the h i or zero. And I will show you an example right now.

Because we are using four, we are still looking at the special case of a two by two

by two element in a truss case, only this two. Plane stress, plane strain,

axisymmetry, two dimensional analysis, we have these two two's. In other words,

we're talking about a two by two element. And in three dimensional analysis we

would talk about a two by two by two element. In these cases, we have x equal to r,

y equal to s, z equal to t. So the strains-- which are derivatives with respect to x the

actual physical coordinates-- can also directly be obtained by simply taking the

derivative with respect to r, and then similarly for s and t.

Let us look at a four node, two dimensional element. This is really the element that

we have used in our earlier example of the cantilever analysis. Here we would

simply have that u r s, v r s, are described as shown. Notice that in the first row we

are really saying nothing else than u is a summation h i u i. Where i equals one to

four because we have a four-noded element. H i u i. In the second row we are really

saying nothing else than v being the summation of i equals one to four h i v i. And all

I have done is I have taken these hi's and assembled them into a matrix form to

obtain our h matrix.

This h matrix here-- the entries in that h matrix-- are dependent on the ordering that

you're using here for u one, v one, u two, et cetera. With this ordering, these are the

entries. Notice there are zeroes here, because the v degrees of freedom at the

nodes have no contribution to the u displacement in the element.

Well, if we look at the plane stress case and want to construct our b matrix,

remember the b matrix gives the strains in terms of the nodal point displacements.

And we remember also that our epsilon xx is equal to a dy dx, our epsilon yy is

equal to dv dy and our gamma xy is equal to a du dy plus dv dx. Well, if we

recognize these facts. And we also note again that for the two by two element, r is

identical to x, s is identical to y. Then, we can obtain the epsilon rr or epsilon xx by
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simply taking the derivatives of the hi's with respect to r. Notice here, since u is

equal to the summation of h i u i, dy dr, which is equal to du dx, is nothing else then

the summation of partial h i dr u i. And this part, which runs from one to four-- i

going from one to four-- I simply put right in there.

I proceed similarly for epsilon yy. Now I'm talking about the v displacements, which

are stored after the u displacements. That's why I'm looking here at the second

column, the last column. And here we have dh one ds, because we are talking

about the derivative with respect to y or with respect to s, which is the same thing.

So here we have the entries for the epsilon ss part. Now for the strain part, we are

talking du dy or du ds, dv dx, dv dr. And all we have to do in now is take this term

and put it right in there, and take this term and put it right in there. And then the last

row here gives us the shearing strength.

So this is our b matrix for the special two by two element. It is constructed in a very

simple way. The h i are known, and if we had five or six or seven nodes, we would

proceed in exactly the same way. All we would have to do is include additional

columns in the b matrix that would give us the appropriate entries for strains

generated by the additional nodal point displacements.

Let us now look how we can generalize these concepts to the element that is not,

anymore, in the physical x and y space, two by two element. In the physical x and y

space, this element-- four-noded element now-- might look as shown here.

However, what we do is we still deal with the r- and s-coordinate system embedded

on the element. We are on s one here, minus one s plus one here, r and s both

minus one here, plus one here s minus one. So in the natural coordinate space, the

rs space, we still have a two by two element.

The interpolation of the displacement therefore-- the interpolation of the

displacements-- even for the distorted element, is exactly still as shown here.

Provided we are entering always with the appropriate r and s. H one is a function of

r and s. So if we look at a point in the general element, if we look at a point in the

general element, here, for example, at such a point. Because that point has a
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specific r and s value. And if we want to find the displacement at that point, well, we

would have to put the r and s value of that point into h one, h two, h three, h four,

and that gives us then the displacement at that point, in terms of the nodal point

displacement. So, the displacement interpolation for this element can still be done in

the r and s space.

However, difficulties arise-- or additional considerations I should say rather-- arise

when we talk about strains, because the physical strains that we have to deal with

are derivatives with respect to x and y, and not r and s anymore. Well, so what we

have to do is, use a Jacobian Transformation. What we want are the derivatives

with respect to x and y. What we can find easily are derivatives with respect to r and

s on the displacements, because the displacements are given in terms of r and s

values. So, remember u is equal to some of h i u i and the h i is a function of r and

s, so, we can directly find derivatives with respect to r and s of u. What we cannot

find easily are derivatives with respect to x.

This is the relationship that we use. It gives us a transformation from derivatives of x

and y to derivatives r and s. A question must immediately be in your mind, why do

we not write down directly this relationship, which is given by the [INAUDIBLE]. If we

want d dx of displacements, why not just use d dx being equal to d dr, dr dx, and so

on. Well, the difficultly is that we cannot find dr dx very easily. We have x being this

function of h i x i. This is the interpolation which we have to use now.

I mentioned earlier on the first slide that we interpolate displacement and

coordinates in the same way. So, here we have a linear interpolation of the

coordinates, from this node to that node, and in between here too. So we are using

this interpolation here on the coordinates. And we can easily dx dr, but we cannot

easily find dr dx. You would have to invert this relationship somehow so that we

have r in terms of x. Well, it is easier, therefore, to write this relationship down,

which is really the chain rule. This is also the chain rule, its a chain rule the other

way around, which gives d dr being equal to d dx, dx dr plus d dy dy dr, if we

multiply this out. And its this relationship that we can use effectively.

12



Well, this relationship in three dimensional analysis would involve a third row and

third column. In one dimensional analysis we only talk about one by one. In other

words, in one dimension analysis for a truss we just have that entry. In general we

can write it in this way, where j is the Jacobian transformation from the xyz-

coordinate system to the rst-coordinate system. And since we want these derivative-

- because these derivatives give us actual strains, we have to invert this

relationship.

Having constructed then, these derivatives in terms of these derivatives, which we

can find just as we have done before, we can now establish the b matrix in much

the same way as earlier. And since we now have h and b matrices for an element--

these are a function r, s, and t-- we would perform the integration. And now I'm

referring to the integration of the stiffness matrix. Remember k is equal to b,

transposed cb over the volume. Now notice that since the b matrix that we are using

in here is a function of r and s in a two dimensional analysis. And r runs from minus

one to plus one, and s runs from minus one to plus one. We now have to use a

transformation also on dv to integrate over the r s volume. And that integration--

and that dv element is expressed as shown here-- and that is given to us from

mathematical analysis.

So basically what we are saying here is that we are replacing this integral over the

physical volume by an integral minus one to plus one, minus one to plus one. And

that signifies from minus one to plus one over r and over s, if we had a three

dimensional analysis we would have another integral sign here. B transposed now r

and s function of r and s, cb, function of r and s. And then our dv, now in terms of r

and s. So this is how we really do things. And remember this dv here, this dv, is that

one there. This integration is effectively performed using numerical integration and I

will discuss later on.

Let's look once at the Jacobian transformation for some very simple examples-- the

Jacobian transformation for some very simple examples-- just to make things a little

clearer. In this case we really have taken our two by two element and we have

stretched it into the x- and y-axes. That stretching is giving us a three here and a
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two there because our two by two element has a length of two here, and six divided

by two gives us three. Similarly here we have stretched the element by a factor of

two. This relationship here is, in general, calculated-- the j is, in general, calculated--

as shown here. And the result of that, by putting these interpolations into there are

these values here. Physically what these mean is a stretching, in this particular

case, into the x- and y-axis.

Somewhat-- the case where we cannot directly-- not easily directly write down to j

matrix is this one. Here we would go through the actual evaluation the way I have

indicated it. In other words, we would go through this actual evaluation, substituting

from here and of course for y also. And this would be the result Notice that we now

have a stretching here of three, compression from a two length to a one length--

therefore we have a one half here-- and there's also an angle change that gives us

the off-diagonal element here.

Another interesting case here, as an example, we have the same lengths here-- two

same lengths here-- but a distortion in the element because this node two has come

down from there to its midpoint. And the resulting Jacobian is given here. Now

notice that that Jacobian is a function r and s, so the inverse, which is used in the

construction of the b matrix would also be a function of r and s. A particularly

interesting case is the one where we shift nodes to advantage. See here we have

our original-- our three-noded element that we talked about already-- in the r space

now. Its a truss element. And let's say that in our actual physical space, we have

this node there, the three node there, and the two node there. The element in the

actual physical space has a length of l. We have taken this node and shifted it to the

quarter point of the element, to the quarter point of the element.

What I will show you right now is that by having done so-- by having taken this node

from its midpoint and shift it over in the actual physical space to the quarter point--

we will find that the strain has a singularity here of one over square root x. This is a

very important point which can be used in the analysis of fracture problems,

because we know that in the analysis of fracture problems, we have a one over

square root x singularity at a crack tip. And, if we want to predict the actual stress
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there or the displacement around the crack tip, it can be of advantage to use this

fact, shifting nodes to quarter points in order to capture the stress singularity more

accurately.

Well let me show you then how this strain or stress singularity comes about. If we

look at this element here and we use our interpolation on the coordinates, this

would be the result. Now, notice that we have substituted the x i values here. X one

is zero, x two is l, x three is l over four. We have substituted those values and

directly come up with this result. Well, we can see that this indeed is true. Let's put r

equal to plus one n. In other words, the right hand side node-- for the right hand

side node-- and we would have a two here squared, gives us four, goes out with

that four. So at i equals plus 1 we have x equal to l, which is correct of course. Let's

put i equal to minus one n, we find x is equal to zero. Let's put i equal to zero n we

find x is equal to l over four. In other words, this has been a simple check in that we

have the right interpolation-- geometry interpolation-- for this element.

Our j now is simply, dx dr, X is given here. If you take the differentiation of that you

get the two in front that gives l over two times one plus r, this value here, in other

words. Then our b matrix is constructed by the inverse of the j-- that is this one--

two times the r derivative of the interpolation functions. Of course here we talk only

about one strain. Remember, in the truss, the only displacement of concern is the u

displacement and the strain is simply epsilon xx, a strain into this direction also.

Well, this is our b matrix then. And if we take our h one, two, and three, and we

differentiate these-- as indicated here with respect to r-- we directly obtain these

functions here. If we now recognize that since we have x related to r here, we can

also invert this relationship. We can write r in terms of x. And if we have done so we

can take that relationship and put it right in here. Then we would get b in terms of x.

And that's what I have done here. The first line shows simply r in terms of x now,

and I have substituted that r value into the b matrix and this is there is the result.

Notice that we have a strain singularity. This is the first element here. The next

element-- this is here-- the next element in b matrix, and that is the third element in
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the b matrix. Notice that we have in this element, that one, and that one the one

over square root x, which means that we have one over square root x singularity at

x equal to zero.

Well, this fact is used very effectively in fracture mechanics analysis. Assume that

we have crack here and that we want to analyze the stress conditions around that

crack. What we can do is we use now two dimension elements, as its a plane stress

situation. We would put a two dimensional triangular element there and we shift the

midpoint nodes. This is now very small here, but I hope you can still follow. You shift

these midpoint nodes to the quarter point, just the way we have been doing it here.

You are putting the third node the quarter point and the result is that at this crack tip

we have a one over square root x singularity, using this element layout. And we

know that in fact, there is a one over square root x singularity in linear fracture

mechanics analysis. And so this is an effective way of capturing this singularity, and

has been used or is currently being used very abundantly in practice.

The important point that I wanted to make really is that we can shift nodes in the

element to our advantage. But, we really do that in specific applications such as

fracture mechanics. In general we will see later when I talk about modeling of finite

element systems, in general, it is most effective to leave the mid-side nodes at their

physical midpoints. In other words for an eight-noded element, two dimensional

analysis, we would put this mid-node in the physical space also, actually at the

midpoint. We would not shift it. Then the element has good convergence

characteristics into all directions and this is really how the element is used most

effectively for general applications. However, in specific applications, such as

fracture mechanics analysis, it can be of advantage to shift these mid-side nodes to

pick up certain strain or stress singularities that we know do exist.

Now on the last transparency that I wanted to show you, I wanted to indicate

something to you that I will be talking about in later lectures more abundantly,

namely the fact that we're using numerical integration. B, for the k matrix as an

example, is once again now a function of r and s. This part here is also a function of

r and s. So we have here function of r and s. and we have here also a function of r
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and s. So this f matrix here is a function of r and s. Notice that the b also includes

the inversion of the j, the Jacobian matrix. It includes the inversion of the j, because

we had to construct the x and y and z derivatives from the r, s, and t derivatives.

So, what we do in practical analysis is that we use numerical integration to evaluate

the k matrix. I have indicated that here schematically, if you look at this element

here. What we do is, we evaluate the f matrix-- this is a matrix. In two dimensional

analysis we would only run over i and j. I is this direction. J is that direction. In three

dimensional analysis, which is in general analysis, we run i, j, and k this way. We

evaluate the f matrix here at specific points, r, s, and t. T now being this axis. And

then multiply that f matrix by certain weight constants and sum these contributions

over all i, j, and k, in order to obtain an accurate enough approximation to the actual

stiffness matrix.

The order of approximation with which we obtain the actual stiffness matrix-- or

rather how closely the numerically calculated stiffness matrix approximates the

actual stiffness matrix-- depends on, number one, how many integration points we

are using and what kind of integration scheme we are using. These points here

correspond to the Gauss numerical integration. In this case for two dimensional

analysis, we would use a two by two integration. In other words, i and j would both

run from one to two. K is not applicable and we would have altogether four

evaluations off the Fs here. Multiply each of them by weighting factors, which has

been derived for us by Gauss some long time ago. And summing up these

contributions gives us a close enough approximation to the k matrix.

Of course, the question of how many points we have to use, what integration

scheme we should use, is a very important one. We must use enough integration

points to get a close enough approximation to the actual stiffness matrix and I will

be addressing those questions in a later lecture. This is all I wanted to say in this

lecture. Thank you very much for your attention.
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