
MITOCW | watch?v=xRLaQ4My3ms
The following content is provided under a Creative Commons license. Your support will help MIT
OpenCourseWare continue to offer high quality educational resources for free. To make a donation or view
additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu.

[MUSIC PLAYING]

PROFESSOR: In the last lecture, we introduced an alternative set of algorithms for computation of the fast

Fourier transform or rather, computation of the discrete Fourier transform. And we refer to

these as the decimation in frequency form of the algorithm. As you recall, we developed the

decimation in frequency form of the algorithm by essentially organizing the computation of the

even numbered DFT points and the odd numbered DFT points separately and then

proceeded in a similar manner.

This corresponded to breaking the computation into two and over two point DFT's proceeded

in a similar manner to decompose the computation of these separately into their even

numbered points and odd numbered points, et cetera. And the flow graph that resulted from

this procedure was-- as I've shown here-- which is one form, then, of the decimation in

frequency form of the fast Fourier transform algorithm. It begins with the data sorted in normal

order and proceeds to the data sorted in big reversed order.

And as I stressed last time, it also corresponds to an in-place computation because of the way

in which the butterflies are laid out. In particular, the output nodes for each butterfly are

horizontally adjacent to the input nodes. Now this is similar in a number of respects to one of

the decimation in time forms of the FFT algorithm.

Although, as I also indicated last time, the basic structure of the butterfly computation is

somewhat different. In particular, for this set of algorithms, the multiplication by powers of W is

implemented at the output of the butterfly, as opposed to the decimation in time forms, where

the multiplication by powers of W are implemented at the input to the butterfly. However, there

is a very close relationship between this flow graph and the original flow graph that we

implemented for the decimation in time algorithm.

In particular, the two flow graphs are transposes of each other. Now I remind you that in one

of the early lectures, when we introduced the notation of flow graphs and some of the

properties of flow graphs, one of the properties of flow graphs that I mentioned-- although we

didn't derive it-- was the fact that transposition of a flow graph doesn't change the input output

characteristics. So then in fact, if we took this flow graph, changed the direction of all of the



arrows, treated this set of nodes as the input nodes and this set of nodes as the output nodes,

then since the flow graph, as it's indicated here, computes the discrete Fourier transform, the

transposed flow graph would also compute the discrete Fourier transform.

And in fact, the transposition of this flow graph is identical to the first flow graph-- FFT flow

graph-- that we introduced, which was the initial decimation in time form. And that I refer you

to again, here. So this is the decimation in time form of the algorithm with the input bit

reversed and the output in normal order.

This is the transposition of this flow graph, which is the decimation in frequency form of the

algorithm with the input in normal order and the output in bit reversed order. The fact that

these are related through transposition of the flow graph isn't a particularly important point

from a practical point of view. But it is a useful piece of insight into the relationship between

these various algorithms.

All right, now just as we did with the decimation in time forms of the algorithm, we can

rearrange the decimation in frequency form of the algorithm to either arrange the output to be

in normal order, as opposed to having the input in normal order, or rearrange it so that both

the input and output are in normal order or rearrange it as we will, so that we can utilize

sequential memory rather than random access memory. To rearrange the flow graph so that

the output is in normal order, we would, again, simply take horizontal lines and re-sort them so

that the output nodes are sorted in a normal order. And the flow graph that results is a

decimation in frequency form of the algorithm, for which the outputs are in normal order.

But the inputs are in bit reversed order. Again, as this flow graph has been sorted, it is an in-

place computation. In-place, again, because the butterflies are laid out in such a way that they

involve horizontally adjacent nodes. So this is an in-place computation with the input in bit

reversed order and the output in normal order.

Again this is a transposition of one of the flow graphs that we discussed in the previous

lecture. In particular, it is a transposition of the flow graph for which, if you imagine this flow

graph being transposed so that the direction of the arrows are reversed and this is the input,

then it corresponds to the decimation in time form of the algorithm for which the input is in

normal order and the output comes out in bit reversed order. And that is the flow graph that I

have indicated here. So this is a decimation in time form of the algorithm, which is the

transposition of the decimation in frequency form of the algorithm that we just looked at.



All right, that corresponds then to two possible decimation in frequency algorithms. One in

which the input is in normal order, the output is bit reversed. This one in which the input is bit

reversed and the output is in normal order. We can also rearrange this so that the input is in

normal order and the output is in normal order.

And the flow graph that results when we implement that is similar to the corresponding

decimation in time flow graph. In fact, it is a transposition of that flow graph. And just as we

found in the decimation in time algorithm, for this case, although the input is sorted in normal

order and the output comes out in normal order, the indexing is generally complicated as we

proceed from stage to stage.

And furthermore, it does not correspond to an in-place computation, because of the fact that

the outputs of the butterflies are no longer horizontally adjacent to the inputs to the butterfly.

So generally, this flow graph and its decimation in time counterpart are not practically very

important. A final rearrangement of the flow graph is the rearrangement which permits the use

of sequential memory rather than random access memory.

And this, then, is the flow graph that is the counterpart to the flow graph that we discussed last

time, which I referred to as the Singleton algorithm, or I attributed to Singleton. This is a

variation of that type of algorithm, in which now, again, we recognize that the indexing is

identical from stage to stage. The input is in normal order.

And the output comes out in bit reversed order. And let me just compare this for you with the

corresponding flow graph that we had last time, which I've indicated here. That has the input in

bit reversed order, the output in normal order. In fact, the transposition of this flow graph is the

decimation in frequency form of the algorithm, for which the input is in normal order, and the

output is in bit reversed order.

All right, so the indexing is identical from stage to stage. And just as we had previously, we can

implement this algorithm by utilizing sequential memory as opposed to random access

memory. Although the organization of the memory for the decimation in frequency form of the

Singleton algorithm is somewhat different than the organization of the memory for the

decimation in time form of the Singleton algorithm.

In particular, last time when we discussed the decimation in time algorithm, we had four

memories, as we will this time. The first half of the data in memory A, the second half of the

memory in memory B. We went, first of all, through all of memory A, then through all of



memory in memory B. We went, first of all, through all of memory A, then through all of

memory B, storing results alternatively in memories C and D.

In this case, the strategy in utilizing the memory is somewhat different. In this case, we store

the first half of the data points, again, in memory A, the second half of the data points, again,

in memory B. But notice that now in the computation utilizing the computation for this point, for

example, we use the first output point from memory A and the first output point from memory

b.

We store the result in the first register in memory C and in the second register in memory C.

Then, to compute the next two points, we take the next point from memory A and the next

point from memory B, do the appropriate addition and subtraction, multiplication by powers of

W, and store those in the next two registers in memory C. For this particular example, namely

n equals eight, that fills up memory C.

And we proceed, likewise, accessing the input data, alternating between the two input

memories and storing data first in all of one of the output memories and then in all of the

second of the output memories. And then we proceed in that fashion from stage to stage. But

again, one of the important aspects is that it utilizes sequential memory, for example, disk or

drum or tape or shift register memory.

OK, so this then is essentially a picture of a variety of the algorithms, which can be used for

the computation of the discrete Fourier transform, some of which were derived on the basis of

a decimation in time argument. Some were derived on the basis of a decimation in frequency

argument. But we saw, in fact, that the decimation in frequency forms of the algorithm are, in

terms of flow graph notation or interpretation, transposes of the decimation in time form.

What I would like to discuss now are a few of the computational issues that are involved in the

implementing the fast Fourier transform algorithm and return, also, to a brief discussion of at

least one situation in which there is a preference for using decimation in time or using

decimation in frequency. After we've discussed some of the computational considerations, I

will then just very briefly discuss the generalization of the fast Fourier transform algorithm to

situations in which the number of data points is not a power of two, but is a more arbitrary

composite number. Well first of all, then, let me introduce a few of the computational issues

that I would like to draw your attention to.

The first is-- and it's a point that I raised in the first lecture, in which I introduced the fast



Fourier transform algorithm-- that whereas our discussion has been directed entirely toward

the computation of the DFT, it applies also, in a very straightforward way, to a computation of

the inverse DFT. In particular, we know that the inverse discrete Fourier transform relationship

is given by 1 over N times the sum of x of k W sub-N to the minus NK. In contrast to the

discrete Fourier transform-- that is the forward transform-- which does not have the factor of 1

over N and involves multiplication by W sub-N to the plus NK, rather than W sub-N to the

minus NK.

To use the algorithms that we have just been discussing for the computation of the inverse

discrete Fourier transform, the modification is relatively straightforward. First of all, it involves a

factor of 1 over N, which we can accommodate in a number of ways. One is, of course, by

shifting the output or by applying scaling at each stage of the FFT, for example.

So this factor of 1 over N is easily accommodated. And the other difference is the inclusion of

a minus sign in the exponent in powers of W rather than a plus sign for the forward transform.

That means, in essence, that these coefficients are the complex conjugate of these

coefficients.

Because W sub-capital N is e of the J two pi over capital N. This minus sign represents a

conjugation of W. And so one procedure that we can follow for implementing the inverse

discrete Fourier transform using all of the flow graphs that we've talked about is simply

conjugate the powers of W that are involved in the computation.

An alternative procedure, which is basically equivalent, is to use the flow graphs as they stand,

in which case the output data, which is obtained, is the desired result with little n replaced by

minus n. So we can either compute the inverse DFT from an algorithm, which is aimed at the

forward DFT, by conjugating the coefficients or equivalently by essentially flipping the output,

modulo capital N. So all of the algorithms that we have talked about, then, relate in a very

straightforward manner to the computation of the inverse discrete Fourier transform.

The second issue is that as we've seen in essentially all of the algorithms of practical interest,

they involve either bit reversal at the input to the flow graph or a bit reversal at the output of

the flow graph. Bit reversal, again, is a relatively straightforward thing to implement. First of all,

it is important to recognize that bit reversal is an in-place computation, if we think of it as a

computation.

In particular, suppose that we had the seven data indices zero through seven. And we want to



rearrange this data so that the data is arranged in bit reversed order. Well that means that, of

course, zero bit reversed is zero, one bit reversed is four. But of course, four bit reversed is

one.

So in fact, we would want to store data with whose index is one in storage location four. But we

will also want to store data whose data index is four in storage location one. So in fact,

implementing the bit reversal can be accomplished in place by essentially swapping these two

pieces of data.

Similarly of course, two bit reverses two. And so that wouldn't move. Three bit reversed is six.

But six bit reversed is three.

And so again, we can carry out that interchange as an in-place computation. So bit reversal,

then, can be implemented in place. And consequently, as we restore the data in a bit reversed

order, we don't require double the storage, since we can carry that out as an in-place

operation. Second of all, to implement bit reversal, of course, to implement bit reversal in

hardware, to obtain a bit reversed index and hardware is very simple.

We just simply rearrange the order of the wires. To implement a bit reversed index register or

an index algorithmically is a little more difficult. But in fact-- and this is discussed in some more

detail in the text-- one of the most straightforward procedures, normally, is to implement a bit

reversed counter so that as we proceed along with an index register accessing through an

index in normal order, we can also run a counter that runs in bit reversed order and use,

essentially, those two as index registers to tell us how to swap the data.

So a bit reversal, in fact, algorithmically is relatively straightforward. It's an interesting point

that it is a somewhat inefficient procedure, as you'll see if you try to program bit reversal. But

algorithmically and conceptually, it's a fairly straightforward procedure to implement.

A third computational issue, which I would like to draw your attention to is the question of

obtaining the coefficients to use in the FFT computation. And there are basically two

procedures that are commonly used. One, of course, is to store the coefficients in a table and

then simply access them as they're needed.

A second, which saves storage but requires some computational time, is to generate the

coefficients recursively. That is essentially using an oscillator-- programming an oscillator--

and generating the coefficients as they're needed. Along those lines, it's interesting to observe



that in both the decimation in time and decimation in frequency forms of the algorithm, as you

proceed from stage to stage, the powers of W that are involved in the computation are powers

of a basic power of W that doubles-- or at least that changes-- in each stage as you go

through the computation.

And this has implications as you think of either storing a table of coefficients and accessing

them or as you think of generating the coefficients recursively. The fact that the powers of W

are related from stage to stage suggests some fairly efficient procedures for doing this. One

additional consideration, though, in obtaining the coefficients is that in some of the forms of the

FFT algorithm, the coefficients are naturally accessed in a normal order, whereas in some

other forms, they are naturally accessed in a bit reversed order.

For example, if we think of the decimation in frequency form of the algorithm, here is the

decimation in frequency form of the algorithm with the input in normal order and the output in

bit reversed order. Notice that the powers of W that we have here occur in what looks like

normal order. At least these powers are in normal order.

And this is normal input order, bit reversed output order. Whereas if we took, let's say, the

decimation in time form of the algorithm-- where we have normally ordered input and bit

reversed output-- in that case, if you look at these powers of W, they're not in normal order. In

fact, what they're in is bit reversed order.

So in fact, in addition to the consideration as to whether the input is bit reversed or the output

is bit reversed, in some forms of the algorithm, the coefficients would tend to be stored in

normal order, whereas in some other forms of the algorithm, the coefficients would tend to be

stored in a bit reversed order. Or if we think about generating the coefficients, clearly it is

simpler to think of generating coefficients in normal order than it is to think of them as being

generated in bit reversed order. Now with regard to the question of the input and output being

bit reversed, one important area in which the computation of the DFT-- in other words, the

FFT algorithms-- play a role is in implementing convolution or correlation.

In that case, we compute a transform, multiply by something-- in the case of a convolution, we

multiply by the transform of the impulse response-- and then implement an inverse transform.

Well the fact that there are two transforms involved suggests the possibility that we can

organize the computation in such a way that we completely avoid bit reversal. For example,

we can choose an algorithm for the direct transform, which utilizes the input in normal order



and generates the transform in bit reversed order.

We then simply have the transform of the impulse response stored in bit reversed order, carry

out the multiplication, and then choose a form of the algorithm for the inverse transform, which

has bit reversed input and results in a normally ordered output. So in that case, what we would

have is the forward transform, normally ordered data being transformed to bit reversed data.

And then as the inverse transform, bit reversed input and normally ordered output.

Well even given that, there are a number of options available. For example, we have an

algorithm-- the decimation in time algorithm-- which is normally ordered input. I'm sorry,

normally ordered input and bit reversed output, which we could use as our forward transform.

Although as we just illustrated, it involves bit reversed coefficients.

Well we could think of storing the coefficients in bit reversed order and then using the

companion decimation in time form of the algorithm, which has bit reversed input and normally

ordered output, to achieve the inverse transform. However, in this case the coefficients are in

normal order. So if we match up the algorithms that way, then we're faced with the problem

that in the direct transform, the coefficients would be stored in bit reversed order, whereas in

the inverse transform they would be stored in normal order.

Well you can ask whether for the decimation of frequency form of the algorithm, we can avoid

that. But in fact, the same problem arises there. If we have the decimation in time in frequency

form of the algorithm with normal input, bit reversed output, then the coefficients are stored in

normal order.

But for the inverse decimation in frequency transform with bit reversed input and normally

ordered output, the coefficients would be stored in bit reversed order. The solution is to match

up a decimation in time form of the algorithm with a decimation in frequency form of the

algorithm so that, for example, we can choose as the forward transform the decimation in

frequency form of the algorithm with the input in normal order, the output in bit reversed order,

and the coefficients normally ordered, which is generally more convenient. And then choose

for the inverse transform not the decimation in frequency algorithm, but the decimation in time

algorithm, for which the input is now bit reversed, the output is in normal order, and the

coefficients are also in normal order.

So in fact, this suggests that if we are implementing a forward transform and an inverse

transform, generally there are advantages to matching up the decimation in time form and the



decimation in frequency form so that we have similarly accessed coefficients in both cases.

Well there are, of course, a large variety of other computational issues to be considered in

implementing the fast Fourier transform algorithms. Some of these are discussed in the text.

Many of them you will discover for yourselves as you try to program the algorithm. But

hopefully, this discussion provides at least some indication of what some of the strategies are

and some of the issues are that are involved in computation of the FFT of the forms that we've

been talking about. Now all of this discussion has been related to the computation of the

discrete Fourier transform when the number of data points is a power of two.

And these algorithms are referred to as the radix two forms of the FFT algorithm. As I

indicated in the first lecture, in which we discussed the FFT, the FFT, in fact, is more general

in that it generally applies when N is a highly composite number. We chose it to be composed

of powers of two.

But in fact, there are a variety of other forms of the FFT algorithm for different radices. And in

some cases, there are some advantages to be found in using not a power of two algorithm,

but a different algorithm. On the other hand, in many situations, the disadvantages of that

outweigh the advantages.

However, what I would like to do is conclude the discussion of the fast Fourier transform

algorithm by just very briefly outlining what the structure of the FFT algorithm is more

generally. And again, in the text there are a number of examples of FFT algorithms for radices

other than a power of two and a more complete discussion than I feel that is appropriate to go

through right now. However, let me just outline what some of the issues are in discussing a

more general radix FFT algorithm.

Generally the computation of the discrete Fourier transform using this class of algorithms is

directed toward capitalizing on the fact that the size transform to be implemented is a product

of numbers. And it turns out that the more numbers-- the more terms in the decomposition--

the greater the efficiency that can be obtained in implementing the transform. In that case,

generally one would think of these numbers as primes, since that is the biggest decomposition

of any number that we can carry out.

But in fact, for the derivation, it is not a requirement that the p's be primes. So let's think of N,

then, as decomposed as a product of p1 times p2, et cetera, through p sub-Nu, which we can

alternatively write as p1 times q1, where q1 is then represented by the product of the



alternatively write as p1 times q1, where q1 is then represented by the product of the

remaining terms. And we can proceed, essentially, along a root similar to the decimation in

time algorithms or along a root similar to the decimation in frequency algorithms.

Let me just indicate the strategy paralleling the decimation in time form of the algorithm, as we

discussed that for N, a power of two. In that case, we decomposed p1 is equal to two, and q1

is equal to N over two. And we decompose the original sequence into two sub-sequences, one

consisting of the even numbered points, the other consisting of the odd numbered points.

More generally, we would decompose the sequence into a set of sub-sequences consisting of

every p1th point. So how many sequences are there? Well, there are p1 sequences. And the

length of each sequence is q1.

For example, if p1 was equal to two, and q1 was N over two, this would be every other point.

That's choosing the even numbered points and the odd numbered points. There would be two

sub-sequences, each sub-sequence of length N over two.

More generally, then, if we had, say, N equal to 12, and p1 equal to three, we would generate

three sub-sequences, each consisting of four points chosen by selecting every p1th, or every

third point. So one sub sequence, which I've denoted here by A, would be this point and this

one and this one and that one. The second sub-sequence would be the sub-sequence B,

which is comprised of this point, this, this, and that.

And the third sub-sequence would be sub-sequence C, which is this point, this point, that

point, and that point. All right, so we decompose the original sequence, then, into p1

sequences, each of length q1. Given that, we can organize the sum involved in the discrete

Fourier transform by decomposing the sum into separate sums, involving each one of these

p1 sub-sequences.

In particular, if we think of the argument p1 times r, as r ranges from zero to q1 minus one,

we're selecting, with this argument, every p1th point, starting with the zero-eth point. If we

think of the argument p1 r plus one, as r runs from zero to q1 minus one, we're then collecting

together the terms, which are every p1th point, starting with the first point. Et cetera, we can

proceed to decompose this into a set of p1 sub-sums, as I've indicated here.

Or when we combine these together, then, we can express x of k, the DFT, as a double sum,

where we have the terms involving the separate sub sequences and then the multiplication by

a power of W to combine the computation on these sub-sequences together to obtain the



DFT. These terms, of course, are obtained by the fact that this power of W is p1 r plus one. In

the next sum, it will be p1 r plus two, p1 r plus three, et cetera.

We decompose that into a product of two powers of W. And then one of those terms-- since it

doesn't depend on r-- can be removed from the sum on r and shows up in this second sum.

Well I would suggest-- that's a somewhat rapid treatment-- I would suggest just simply working

through that for an example.

And I think it will be clear how this original sum is decomposed into this one. All right, well now,

just as we did in both the decimation in time and decimation in frequency forms of the

algorithm for powers of two, we can recognize this power of W sub-N as a different power of a

W with a different subscript. In particular, W sub-N to the p1 rk, as I have here, is equal to e to

the j two pi over capital-N times p1 rk.

But N is equal to p1 times q1. That's the way we originally decomposed it. And the p1's cancel

out. And we're left with e to the j two pi over q1 times rk or equivalently, W sub-q1 to the rk.

So substituting this for W sub-N to the p1 r k in the previous expression, what results is then x

of k expressed as a sum from l equals zero, p1 minus one, of these powers of W sub-N. But

then the important thing is that the inner sum involves q1 point sequences. This factor is W

sub-q1 to the rk. And in fact, this entire summation is a q1 point DFT.

So pursuing this, then, what we basically decomposed the computation into is the computation

of p1 q1 point DFT's. We obtained the q1 point DFT's and then combined them, according to

the expression as we have here. This would then lead to the generalization of the butterfly

computation as we had it for the radix two algorithms.

And if you count up the number of multiplies and adds, again, you'll see that there is some

computational efficiency that results from doing this. And then, just as we did with the radix two

algorithms, we can continue to decompose these transforms so that we have q1 is given by

the product p2 times p3 through p sub-Nu. This product we denote as q2.

And then we can proceed to decompose these transforms-- these q1 point transforms-- into

p2 q2 point transforms. Then we can decompose the q2 point transforms, et cetera. If you do

this, then what you'll find-- and the counting is done a little more carefully in the text-- what

you'll find is that the number of multiplies and adds involved in computing the discrete Fourier

transform this way is proportional to N times a sum of the factors involved in the



decomposition of N. I've indicated an additional factor here of minus Nu.

Depending on how you choose to count multiplies and adds, this factor of minus Nu either

shows up or not. In fact, to make this expression consistent with what we obtained for the

power of two algorithms, the minus Nu should be in here. And it's simply a question of whether

you count or don't count some multiplications by unity.

Well OK, that's a very quick treatment-- discussion-- of the generalization of the radix two

algorithms to more arbitrary radix. And there, as I indicated, are some examples of this, which

are given in the text. Although, in fact, what you'll find is that in most practical contexts, it is a

radix two algorithm that is the most efficient to use.

And I indicate, incidentally, that if you are faced with the problem of transforming data, which is

of a length which is not a power of two, it of course can always be made to be of length power

of two by simply augmenting the sequence with zeros. Well this concludes, then, the

discussion of the FFT algorithms, the computation of the discrete Fourier transform. And there

are, I hope, a number of issues which you will have an opportunity to dwell on some as you

read through the text and as your attention will be drawn to in the study guide. Thank you.

[MUSIC PLAYING]


