CONTENTS

Chapter 1—REVIEW OF VECTOR ANALYSIS 1

1.1 COORDINATE SYSTEMS 2
 1.1.1 Rectangular (Cartesian) Coordinates 2
 1.1.2 Circular Cylindrical Coordinates 4
 1.1.3 Spherical Coordinates 4

1.2 VECTOR ALGEBRA 7
 1.2.1 Scalars and Vectors 7
 1.2.2 Multiplication of a Vector by a Scalar 8
 1.2.3 Addition and Subtraction 9
 1.2.4 The Dot (Scalar) Product 11
 1.2.5 The Cross (Vector) Product 13

1.3 THE GRADIENT AND THE DEL OPERATOR 16
 1.3.1 The Gradient 16
 1.3.2 Curvilinear Coordinates (a) Cylindrical 17
 (b) Spherical 17
 1.3.3 The Line Integral 18

1.4 FLUX AND DIVERGENCE 21
 1.4.1 Flux 22
 1.4.2 Divergence 23
 1.4.3 Curvilinear Coordinates (a) Cylindrical Coordinates 24
 (b) Spherical Coordinates 26
 1.4.4 The Divergence Theorem 26

1.5 THE CURL AND STOKES’ THEOREM 28
 1.5.1 Curl 28
 1.5.2 The Curl for Curvilinear Coordinates 31
 (a) Cylindrical Coordinates 31
 (b) Spherical Coordinates 33
 1.5.3 Stokes’ Theorem 35
 1.5.4 Some Useful Vector Relations 38
 (a) The Curl of the Gradient is Zero
 \[\nabla \times (\nabla f) = 0 \] 38
 (b) The Divergence of the Curl is Zero
 \[\nabla \cdot (\nabla \times A) = 0 \] 39

PROBLEMS 39

Chapter 2—THE ELECTRIC FIELD 49

2.1 ELECTRIC CHARGE 50
 2.1.1 Charging by Contact 50
 2.1.2 Electrostatic Induction 52
 2.1.3 Faraday’s “Ice-Pail” Experiment 53

2.2 THE COULOMB FORCE LAW BETWEEN STATIONARY CHARGES 54
 2.2.1 Coulomb’s Law 54
2.2.2 Units 55
2.2.3 The Electric Field 56
2.2.4 Superposition 57
2.3 CHARGE DISTRIBUTIONS 59
2.3.1 Line, Surface, and Volume Charge Distributions 60
2.3.2 The Electric Field Due to a Charge Distribution 63
2.3.3 Field Due to an Infinitely Long Line Charge 64
2.3.4 Field Due to Infinite Sheets of Surface Charge 65
 (a) Single Sheet 65
 (b) Parallel Sheets of Opposite Sign 67
 (c) Uniformly Charged Volume 68
2.3.5 Hoops of Line Charge 69
 (a) Single Hoop 69
 (b) Disk of Surface Charge 69
 (c) Hollow Cylinder of Surface Charge 71
 (d) Cylinder of Volume Charge 72
2.4 GAUSS'S LAW 72
2.4.1 Properties of the Vector Distance Between two Points r_{QP} 72
 (a) r_{QP} 72
 (b) Gradient of the Reciprocal Distance, $\nabla(1/r_{QP})$ 73
 (c) Laplacian of the Reciprocal Distance 73
2.4.2 Gauss's Law In Integral Form 74
 (a) Point Charge Inside or Outside a Closed Volume 74
 (b) Charge Distributions 75
2.4.3 Spherical Symmetry 76
 (a) Surface Charge 76
 (b) Volume Charge Distribution 79
2.4.4 Cylindrical Symmetry 80
 (a) Hollow Cylinder of Surface Charge 80
 (b) Cylinder of Volume Charge 82
2.4.5 Gauss's Law and the Divergence Theorem 82
2.4.6 Electric Field Discontinuity Across a Sheet of Surface Charge 83
2.5 THE ELECTRIC POTENTIAL 84
2.5.1 Work Required to Move a Point Charge 84
2.5.2 The Electric Field and Stokes' Theorem 85
2.5.3 The Potential and the Electric Field 86
2.5.4 Finite Length Line Charge 88
2.5.5 Charged Spheres 90
 (a) Surface Charge 90
 (b) Volume Charge 91
 (c) Two Spheres 92
2.5.6 Poisson's and Laplace's Equations 93

2.6 THE METHOD OF IMAGES WITH LINE CHARGES AND CYLINDERS 93

2.6.1 Two Parallel Line Charges 93

2.6.2 The Method of Images 96
 (a) General Properties 96
 (b) Line Charge Near a Conducting Plane 96

2.6.3 Line Charge and Cylinder 97

2.6.4 Two Wire Line 99
 (a) Image Charges 99
 (b) Force of Attraction 100
 (c) Capacitance Per Unit Length 101

2.7 THE METHOD OF IMAGES WITH POINT CHARGES AND SPHERES 103

2.7.1 Point Charge and a Grounded Sphere 103

2.7.2 Point Charge Near a Grounded Plane 106

2.7.3 Sphere With Constant Charge 109

2.7.4 Constant Voltage Sphere 110

PROBLEMS 110

Chapter 3—POLARIZATION AND CONDUCTION 135

3.1 POLARIZATION 136

3.1.1 The Electric Dipole 137

3.1.2 Polarization Charge 140

3.1.3 The Displacement Field 143

3.1.4 Linear Dielectrics 143
 (a) Polarizability 143
 (b) The Local Electric Field 145

3.1.5 Spontaneous Polarization 149
 (a) Ferro-electrics 149
 (b) Electrets 151

3.2 CONDUCTION 152

3.2.1 Conservation of Charge 152

3.2.2 Charged Gas Conduction Models 154
 (a) Governing Equations 154
 (b) Drift-Diffusion Conduction 156
 (c) Ohm’s Law 159
 (d) Superconductors 160

3.3 FIELD BOUNDARY CONDITIONS 161

3.3.1 Tangential Component of \mathbf{E} 162

3.3.2 Normal Component of \mathbf{D} 163

3.3.3 Point Charge Above a Dielectric Boundary 164

3.3.4 Normal Component of \mathbf{P} and $\varepsilon_0 \mathbf{E}$ 165

3.3.5 Normal Component of \mathbf{J} 168

3.4 RESISTANCE 169

3.4.1 Resistance Between Two Electrodes 169

3.4.2 Parallel Plate Resistor 170
3.4.3 Coaxial Resistor 172
3.4.4 Spherical Resistor 173

3.5 CAPACITANCE 173
3.5.1 Parallel Plate Electrodes 173
3.5.2 Capacitance for any Geometry 177
3.5.3 Current Flow Through a Capacitor 178
3.5.4 Capacitance of Two Contacting Spheres 178

3.6 LOSSY MEDIA 181
3.6.1 Transient Charge Relaxation 182
3.6.2 Uniformly Charged Sphere 183
3.6.3 Series Lossy Capacitor 184
 (a) Charging Transient 184
 (b) Open Circuit 187
 (c) Short Circuit 188
 (d) Sinusoidal Steady State 188
3.6.4 Distributed Systems 189
 (a) Governing Equations 189
 (b) Steady State 191
 (c) Transient Solution 192
3.6.5 Effects of Convection 194
3.6.6 The Earth and Its Atmosphere as a Leaky Spherical Capacitor 195

3.7 FIELD-DEPENDENT SPACE CHARGE DISTRIBUTIONS 197
3.7.1 Space Charge Limited Vacuum Tube Diode 198
3.7.2 Space Charge Limited Conduction in Dielectrics 201

3.8 ENERGY STORED IN A DIELECTRIC MEDIUM 204
3.8.1 Work Necessary to Assemble a Distribution of Point Charges 204
 (a) Assembling the Charges 204
 (b) Binding Energy of a Crystal 205
3.8.2 Work Necessary to Form a Continuous Charge Distribution 206
3.8.3 Energy Density of the Electric Field 208
3.8.4 Energy Stored in Charged Spheres 210
 (a) Volume Charge 210
 (b) Surface Charge 210
 (c) Binding Energy of an Atom 211
3.8.5 Energy Stored In a Capacitor 212

3.9 FIELDS AND THEIR FORCES 213
3.9.1 Force Per Unit Area On a Sheet of Surface Charge 213
3.9.2 Forces On a Polarized Medium 215
 (a) Force Density 215
 (b) Permanently Polarized Medium 216
 (c) Linearly Polarized Medium 218
3.9.3 Forces On a Capacitor 219

3.10 ELECTROSTATIC GENERATORS 223
 3.10.1 Van de Graaff Generator 223
 3.10.2 Self-Excited Electrostatic Induction Machines 224
 3.10.3 Self-Excited Three-Phase Alternating Voltages 227
 3.10.4 Self-Excited Multi-Frequency Generators 229

PROBLEMS 231

Chapter 4—ELECTRIC FIELD BOUNDARY VALUE PROBLEMS 257

4.1 THE UNIQUENESS THEOREM 258

4.2 BOUNDARY VALUE PROBLEMS IN CARTESIAN GEOMETRIES 259
 4.2.1 Separation of Variables 260
 4.2.2 Zero Separation Constant Solutions 261
 (a) Hyperbolic Electrodes 261
 (b) Resistor In an Open Box 262
 4.2.3 Nonzero Separation Constant Solutions 264
 4.2.4 Spatially Periodic Excitation 265
 4.2.5 Rectangular Harmonics 267
 4.2.6 Three-Dimensional Solutions 270

4.3 SEPARATION OF VARIABLES IN CYLINDRICAL GEOMETRY 271
 4.3.1 Polar Solutions 271
 4.3.2 Cylinder in a Uniform Electric Field 273
 (a) Field Solutions 273
 (b) Field Line Plotting 276
 4.3.3 Three-Dimensional Solutions 277
 4.3.4 High Voltage Insulator Bushing 282

4.4 PRODUCT SOLUTIONS IN SPHERICAL GEOMETRY 284
 4.4.1 One-Dimensional Solutions 284
 4.4.2 Axisymmetric Solutions 286
 4.4.3 Conducting Spheres in a Uniform Field 288
 (a) Field Solutions 288
 (b) Field Line Plotting 290
 4.4.4 Charged Particle Precipitation Onto a Sphere 293

4.5 A NUMERICAL METHOD—SUCCESSIVE RELAXATION 297
 4.5.1 Finite Difference Expansions 297
 4.5.2 Potential Inside a Square Box 298

PROBLEMS 301

Chapter 5—THE MAGNETIC FIELD 313

5.1 FORCES ON MOVING CHARGES 314
5.1.1 The Lorentz Force Law
5.1.2 Charge Motions in a Uniform Magnetic Field
5.1.3 The Mass Spectrograph
5.1.4 The Cyclotron
5.1.5 Hall Effect
5.2 MAGNETIC FIELD DUE TO CURRENTS
5.2.1 The Biot-Savart Law
5.2.2 Line Currents
5.2.3 Current Sheets
 (a) Single Sheet of Surface Current
 (b) Slab of Volume Current
 (c) Two Parallel Current Sheets
5.2.4 Hoops of Line Current
 (a) Single Hoop
 (b) Two Hoops (Helmholtz Coil)
 (c) Hollow Cylinder of Surface Current
5.3 DIVERGENCE AND CURL OF THE MAGNETIC FIELD
5.3.1 Gauss’s Law for the Magnetic Field
5.3.2 Ampere’s Circuital Law
5.3.3 Currents With Cylindrical Symmetry
 (a) Surface Current
 (b) Volume Current
5.4 THE VECTOR POTENTIAL
5.4.1 Uniqueness
5.4.2 The Vector Potential of a Current Distribution
5.4.3 The Vector Potential and Magnetic Flux
 (a) Finite Length Line Current
 (b) Finite Width Surface Current
 (c) Flux Through a Square Loop
5.5 MAGNETIZATION
5.5.1 The Magnetic Dipole
5.5.2 Magnetization Currents
5.5.3 Magnetic Materials
 (a) Diamagnetism
 (b) Paramagnetism
 (c) Ferromagnetism
5.6 BOUNDARY CONDITIONS
5.6.1 Tangential Component of H
5.6.2 Tangential Component of M
5.6.3 Normal Component of B
5.7 MAGNETIC FIELD BOUNDARY VALUE PROBLEMS
5.7.1 The Method of Images
5.7.2 Sphere in a Uniform Magnetic Field
5.8 MAGNETIC FIELDS AND FORCES
5.8.1 Magnetizable Media 368
5.8.2 Force on a Current Loop 370
(a) Lorentz Force Only 370
(b) Magnetization Force Only 370
(c) Lorentz and Magnetization Forces 374

PROBLEMS 375

Chapter 6—ELECTROMAGNETIC INDUCTION 393
6.1 FARADAY'S LAW OF INDUCTION 394
6.1.1 The Electromotive Force (EMF) 394
6.1.2 Lenz's Law 395
(a) Short Circuited Loop 397
(b) Open Circuited Loop 399
(c) Reaction Force 400
6.1.3 Laminations 401
6.1.4 Betatron 402
6.1.5 Faraday's Law and Stokes' Theorem 404
6.2 MAGNETIC CIRCUITS 405
6.2.1 Self-Inductance 405
6.2.2 Reluctance 409
(a) Reluctances in Series 410
(b) Reluctances in Parallel 411
6.2.3 Transformer Action 411
(a) Voltages are Not Unique 411
(b) Ideal Transformers 413
(c) Real Transformers 416
6.3 FARADAY'S LAW FOR MOVING MEDIA 417
6.3.1 The Electric Field Transformation 417
6.3.2 Ohm's Law for Moving Conductors 417
6.3.3 Faraday's Disk (Homopolar Generator) 420
(a) Imposed Magnetic Field 420
(b) Self-Excited Generator 422
(c) Self-Excited ac Operation 424
(d) Periodic Motor Speed Reversals 426
6.3.4 Basic Motors and Generators 427
(a) ac Machines 427
(b) dc Machines 428
6.3.5 MHD Machines 430
6.3.6 Paradoxes 430
(a) A Commutatorless dc Machine 431
(b) Changes In Magnetic Flux Due to Switching 433
(c) Time Varying Number of Turns on a Coil 433
6.4 MAGNETIC DIFFUSION INTO AN OHMIC CONDUCTOR 435
6.4.1 Resistor-Inductor Model 435
6.4.2 The Magnetic Diffusion Equation 437
6.4.3 Transient Solution With No Motion (U = 0) 438
6.4.4 The Sinusoidal Steady State (Skin Depth) 442
6.4.5 Effects of Convection 444
6.4.6 A Linear Induction Machine 446
6.4.7 Superconductors 450

6.5 ENERGY STORED IN THE MAGNETIC FIELD 451
6.5.1 A Single Current Loop 451
 (a) Electrical Work 452
 (b) Mechanical Work 453
6.5.2 Energy and Inductance 454
6.5.3 Current Distributions 454
6.5.4 Magnetic Energy Density 455
6.5.5 The Coaxial Cable 456
 (a) External Inductance 456
 (b) Internal Inductance 457
6.5.6 Self-Inductance, Capacitance, and Resistance 458

6.6 THE ENERGY METHOD FOR FORCES 460
6.6.1 The Principle of Virtual Work 460
6.6.2 Circuit Viewpoint 461
6.6.3 Magnetization Force 464

PROBLEMS 465

Chapter 7—ELECTRODYNAMICS—FIELDS AND WAVES 487
7.1 MAXWELL'S EQUATIONS 488
7.1.1 Displacement Current Correction to Ampere's Law 488
7.1.2 Circuit Theory as a Quasi-static Approximation 490

7.2 CONSERVATION OF ENERGY 490
7.2.1 Poynting’s Theorem 490
7.2.2 A Lossy Capacitor 491
7.2.3 Power in Electric Circuits 493
7.2.4 The Complex Poynting’s Theorem 494

7.3 TRANSVERSE ELECTROMAGNETIC WAVES 496
7.3.1 Plane Waves 496
7.3.2 The Wave Equation 497
 (a) Solutions 497
 (b) Properties 499
7.3.3 Sources of Plane Waves 500
7.3.4 A Brief Introduction to the Theory of Relativity 503

7.4 SINUSOIDAL TIME VARIATIONS 505
7.4.1 Frequency and Wavenumber 505
7.4.2 Doppler Frequency Shifts 507
7.4.3 Ohmic Losses 508
 (a) Low Loss Limit 509
 (b) Large Loss Limit 511
7.4.4 High-Frequency Wave Propagation in Media 511
7.4.5 Dispersive Media 512
7.4.6 Polarization 514
 (a) Linear Polarization 515
 (b) Circular Polarization 515
7.4.7 Wave Propagation in Anisotropic Media 516
 (a) Polarizers 517
 (b) Double Refraction (Birefringence) 518
7.5 NORMAL INCIDENCE ONTO A PERFECT CONDUCTOR 520
7.6 NORMAL INCIDENCE ONTO A DIELECTRIC 522
 7.6.1 Lossless Dielectric 522
 7.6.2 Time-Average Power Flow 524
7.6.3 Lossy Dielectric 524
 (a) Low Losses 525
 (b) Large Losses 525
7.7 UNIFORM AND NONUNIFORM PLANE WAVES 529
 7.7.1 Propagation at an Arbitrary Angle 529
 7.7.2 The Complex Propagation Constant 530
 7.7.3 Nonuniform Plane Waves 532
7.8 OBLIQUE INCIDENCE ONTO A PERFECT CONDUCTOR 534
 7.8.1 E Field Parallel to the Interface 534
 7.8.2 H Field Parallel to the Interface 536
7.9 OBLIQUE INCIDENCE ONTO A DIELECTRIC 538
 7.9.1 E Parallel to the Interface 538
 7.9.2 Brewster's Angle of No Reflection 540
 7.9.3 Critical Angle of Transmission 541
 7.9.4 H Field Parallel to the Boundary 542
7.10 APPLICATIONS TO OPTICS 544
 7.10.1 Reflections from a Mirror 545
 7.10.2 Lateral Displacement of a Light Ray 545
 7.10.3 Polarization by Reflection 546
 7.10.4 Light Propagation in Water 548
 (a) Submerged Source 548
 (b) Fish Below a Boat 548
 7.10.5 Totally Reflecting Prisms 549
7.10.6 Fiber Optics 550
 (a) Straight Light Pipe 550
 (b) Bent Fibers 551
PROBLEMS 552
Chapter 8—GUIDED ELECTROMAGNETIC WAVES

8.1 THE TRANSMISSION LINE EQUATIONS

8.1.1 The Parallel Plate Transmission Line
8.1.2 General Transmission Line Structures
8.1.3 Distributed Circuit Representation
8.1.4 Power Flow
8.1.5 The Wave Equation

8.2 TRANSMISSION LINE TRANSIENT WAVES

8.2.1 Transients on Infinitely Long Transmission Lines
8.2.2 Reflections from Resistive Terminations
 (a) Reflection Coefficient
 (b) Step Voltage
8.2.3 Approach to the dc Steady State
8.2.4 Inductors and Capacitors as Quasi-static Approximations to Transmission Lines
8.2.5 Reflections from Arbitrary Terminations

8.3 SINUSOIDAL TIME VARIATIONS

8.3.1 Solutions to the Transmission Line Equations
8.3.2 Lossless Terminations
 (a) Short Circuited Line
 (b) Open Circuited Line
8.3.3 Reactive Circuit Elements as Approximations to Short Transmission Lines
8.3.4 Effects of Line Losses
 (a) Distributed Circuit Approach
 (b) Distortionless Lines
 (c) Fields Approach

8.4 ARBITRARY IMPEDANCE TERMINATIONS

8.4.1 The Generalized Reflection Coefficient
8.4.2 Simple Examples
 (a) Load Impedance Reflected Back to the Source
 (b) Quarter Wavelength Matching
8.4.3 The Smith Chart
8.4.4 Standing Wave Parameters

8.5 STUB TUNING

8.5.1 Use of the Smith Chart for Admittance Calculations
8.5.2 Single-Stub Matching
8.5.3 Double-Stub Matching

8.6 THE RECTANGULAR WAVEGUIDE

8.6.1 Governing Equations
8.6.2 Transverse Magnetic (TM) Modes
Contents

8.6.3 Transverse Electric (TE) Modes 635
8.6.4 Cut-Off 638
8.6.5 Waveguide Power Flow 641
 (a) Power Flow for the TM Modes 641
 (b) Power Flow for the TE Modes 642
8.6.6 Wall Losses 643
8.7 DIELECTRIC WAVEGUIDE 644
 8.7.1 TM Solutions 644
 (a) Odd Solutions 645
 (b) Even Solutions 647
 8.7.2 TE Solutions 647
 (a) Odd Solutions 647
 (b) Even Solutions 648
PROBLEMS 649

Chapter 9—RADIATION 663
9.1 THE RETARDED POTENTIALS 664
 9.1.1 Nonhomogeneous Wave Equations 664
 9.1.2 Solutions to the Wave Equation 666
9.2 RADIATION FROM POINT DIPOLES 667
 9.2.1 The Electric Dipole 667
 9.2.2 Alternate Derivation Using the Scalar Potential 669
 9.2.3 The Electric and Magnetic Fields 670
 9.2.4 Electric Field Lines 671
 9.2.5 Radiation Resistance 674
 9.2.6 Rayleigh Scattering (or why is the sky blue?) 677
 9.2.7 Radiation from a Point Magnetic Dipole 679
9.3 POINT DIPOLE ARRAYS 681
 9.3.1 A Simple Two Element Array 681
 (a) Broadside Array 683
 (b) End-fire Array 685
 (c) Arbitrary Current Phase 685
 9.3.2 An N Dipole Array 685
9.4 LONG DIPOLE ANTENNAS 687
 9.4.1 Far Field Solution 688
 9.4.2 Uniform Current 690
 9.4.3 Radiation Resistance 691
PROBLEMS 695
SOLUTIONS TO SELECTED PROBLEMS 699
INDEX 711