
Lecture 11 

Con˝dence Sets 

1 Introduction 

So far, we have been considering point estimation. In this lecture, we will study interval estimation. Let 

X denote our data. Let θ ∈ R be our parameter of interest. Our task is to construct a data-dependent 

interval [l(X), r(X)] so that it contains θ with large probability. One possibility is to set l(X) = −∞ and 

r(X) = +∞. Such an interval will contain θ with probability 1. Of course, the problem with this interval 

is that it is too long. So, we want to construct an interval that will be shorter. More generally, instead 

of intervals, we can consider con˝dence set C(X) ⊂ R such that it contains θ with large probability. The 

concept of con˝dence sets can be also applied to any set of possible parameter values Θ, not just for R. 
Let us introduce the basic concepts related to con˝dence sets. 

De˝nition 1. Coverage probability of the set C(X) ⊂ Θ is the probability (under the assumption that the 

true value is θ) that con˝dence set C(X) contains θ, i.e. Coverage Probability(θ) = Pθ{θ ∈ C(X)}. 

Of course, in practice, we are interested in con˝dence sets that contain the true parameter value with 

large probability uniformly over the set of possible parameters values. 

De˝nition 2. Con˝dence level is the minimum of coverage probabilities over the set of possible parameter 

values, i.e. Con˝dence Level = infθ∈Θ Pθ{θ ∈ C(X)}. We say that con˝dence set C(X) has con˝dence level 

α if infθ∈Θ Pθ{θ ∈ C(X)} ≥ α. 

Let us consider how we can construct con˝dence sets. 

2 Test Inversion 

For each possible parameter value θ0 ∈ Θ, consider the problem of testing the null hypothesis, H0 : θ = θ0 

against the alternative, Ha : θ ≠ θ0. Suppose that for each such hypothesis we have a test of size α. Then 

the con˝dence set C(X) = {θ0 ∈ Θ : the null hypothesis that θ = θ0 is not rejected} is of con˝dence level 

1 − α. Indeed, suppose that the true value of the parameter is θ0. Since the test of θ = θ0 against θ ̸= θ0 has 

level α by construction, Pθ0 {the test rejects θ = θ0} ≤ α. So, with probability of at least 1 − α, θ0 ∈ C(X). 

In other words, Pθ0 {θ0 ∈ C(X)} ≥ 1 − α. The same holds for all θ0 ∈ Θ. So, infθ∈Θ Pθ{θ ∈ C(X)} ≥ 1 − α. 

This procedure is known as test inversion. 
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We may ˝nd that the con˝dence set construction is a dual problem for testing. Note that if we have a 

way to construct a con˝dence set, we can construct a test for any hypothesis H0 : θ = θ0. Indeed, once we 

have a con˝dence set C(X) of level 1 − α, we can form a test of the null hypothesis, H0, that θ = θ0 against 

the alternative, Ha, that θ ̸= θ0 by accepting the null hypothesis if and only if θ0 ∈ C(X). This test will be 

of size α. 

Example 1 Let X1, ..., Xn be a random sample from a distribution with two ˝nite moments. Let us use 

test inversion to construct a con˝dence set for µ = EXi of (asymptotic) level 1 − α. Let us consider the 

problem of testing the null hypothesis, H0 : µ = µ0 against the alternative, Ha : µ ̸= µ0. Under the 
√ X−µ0null hypothesis we have the following asymptotic statement: t(µ0) = 

√ 
n s ⇒ N(0, 1). One possible 

n(X−µ0) test of size α is to accept the null hypothesis if and only if zα/2 ≤ ≤ z1−α/2, where zα is the s 

quantile of the standard normal distribution. This test will accept the null hypothesis µ = µ0 if and only if [ ] 
s s s s X − z1−α/2 √ ≤ µ0 ≤ X − zα/2 √ . So, the con˝dence set is X − z1−α/2 √ , X − zα/2 √ . Note that we 
n n n n 

actually end up with an interval in this example. 

Example 2 Let X1, ..., Xn be a random sample from the distribution N(µ, σ2). Let us use test inversion 

to construct a con˝dence set for σ2 of level 1 − α. Consider the problem of testing the null hypothesis, 

H0 : σ2 = σ2 against the alternative, Ha : σ2 ̸= σ0
2 . Under the null hypothesis, (n − 1)s2/σ2 ∼ χ2(n − 1). 0 0 

One possible test of size α is to accept the null hypothesis if and only if 

χ2 (n − 1) ≤ (n − 1)s 2/σ0
2 ≤ χ2 (n − 1). α/2 1−α/2 

This test will accept the null hypothesis σ2 = σ2 if and only if 0 

(n − 1)s 2/χ2 (n − 1) ≤ σ0
2 ≤ (n − 1)s 2/χ2 (n − 1).1−α/2 α/2 

So, the con˝dence set is [ ] 
2 2 (n − 1)s (n − 1)s 

, . 
χ2 (n − 1) χ2 (n − 1) 1−α/2 α/2 

This is not the shortest interval, apparently we may cut o˙ unequal tails, but tails whose probability would 

sum up to α: say [ ] 
2 2 (n − 1)s (n − 1)s 

χ2 ,
χ2 (n − 1) (n − 1) 1−α+δ δ 

for 0 < δ < α is also a valid con˝dence set, we may try to optimize over δ to ˝nd the shortest interval. 

In general, if we can ˝nd a (asymptotically) pivotal quantity Q = q(X1, ..., Xn, θ0) such that distribution 

of Q under the null hypothesis θ = θ0 does not depend on the choice of θ0 (in ˝nite samples or asymptotically), 

then we can use Q for testing and con˝dence set construction. Indeed, since distribution of Q is independent 

of the true parameter value, we can ˝nd numbers a and b such that Pθ0 {a ≤ Q ≤ b} = 1 − α for all θ0 ∈ Θ. 

Then one possible test is to accept the null hypothesis that θ = θ0 if and only if a ≤ q(X1, ..., Xn, θ0) ≤ b. 
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The con˝dence set will consists of all parameter values θ0 which are accepted: 

C(X) = {θ0 : a ≤ q(X1, ..., Xn, θ0) ≤ b}. 

If q(X, θ0) considered as a function of θ0 is continuous monotonic and there exists a unique inverse, then we 

would have C(X) as an interval with end points q−1(X1, ..., Xn, a) and q−1(X1, ..., Xn, b). Though in many 

interesting cases inversion of a test will not lead to an interval. 

3 Pratt's Theorem 

Informally, the theorem states that if we use a uniformly-most-powerful test (UMP) for the con˝dence set 

construction, the expected length of the con˝dence set will be the shortest among all con˝dence sets of a 

given level. 

Theorem 3. Let X ∼ f(x|θ) be our data. Let C(X) be our con˝dence set for θ. Then, under some regularity 

conditions, for any θ0, ∫ 
Eθ0 [length of C(X)] = Pθ0 {θ ∈ C(X)}dθ. 

Moreover, if C(X) is constructed by inverting a UMP test of size α, then C(X) has the shortest expected 

length among all con˝dence sets of level 1 − α for any θ0. 

Proof. The ˝rst result follows from ∫ 
Eθ0 [length of C(X)] = Eθ0 [ I{θ ∈ C(X)}dθ] 

θ ∫ ∫ 
= I{θ ∈ C(X)}dθf(x|θ0)dx 

x θ∫ ∫ 
= I{θ ∈ C(X)}f(x|θ0)dxdθ 

θ x∫ 
= Pθ0 {θ ∈ C(X)}dθ. 

∫ ∫ 
Note that Pθ0 {θ ∈ C(X)}dθ = Pθ0 {θ ∈ C(X)}dθ and, for any θ ̸= θ0, Pθ0 {θ ∈ C(X)} equals 1 minus 

θ ̸=θ0 

the power of the test based on con˝dence set C(X). So, if C̃(X) denotes the con˝dence set constructed by 

inverting a UMP test, 

Pθ0 {θ ∈ C(X)} ≥ Pθ0 {θ ∈ C̃(X)} 

and ∫ ∫ 
Pθ0 {θ ∈ C(X)}dθ ≥ Pθ0 {θ ∈ C̃(X)}dθ. 

Combining this inequality with the ˝rst result yields the second result of Pratt's theorem. 

Example 3 Let X1, ..., Xn be a random sample from distribution N(µ, σ2). We have already seen that 

the UMP test of the null hypothesis, H0, that µ = µ0 against the alternative, Ha, that µ ̸= µ0 accepts the 
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√ 
null hypothesis if and only if |(Xn − µ)/ s2/n| ≤ t1−α/2(n − 1). So, the con˝dence interval with shortest 

expected length is [ ] 
s s 

Xn − √ t1−α/2, Xn + √ t1−α/2 . 
n n 

4 Asymptotic Theory for Interval Construction 

Let X1, ..., Xn be a random sample from distribution f(x|θ) with θ ∈ Θ. Under some regularity conditions, 

√ 
n(θ̂  

ML − θ) ⇒ N(0, I−1(θ)).

For any function h : Θ → R, under some regularity conditions, by the delta-method, 

√ 
n(h(θ̂  

ML) − h(θ)) ⇒ N(0, (h ′ (θ))2I−1(θ)).

We can consistently estimate (h ′ (θ))2I−1(θ) by n(h ′ (θ̂  
ML))

2(−∂2ln(θ̂  
ML)/∂θ

2)−1 . Denote 

V̂ (h(θ̂  
ML)) = (h ′ (θ̂  

ML)
2(−∂2ln(θ̂  

ML)/∂θ
2)−1 

By the Slutsky theorem, 

h(θ̂  
ML) − h(θ) √ ⇒ N(0, 1).
V̂ (h(θ̂  

ML)) 

So, we can construct a con˝dence interval for h(θ) as [ √ √ ] 
ˆ ˆ h(θ̂  

ML) + zα/2 V (h(θ̂  
ML)), h(θ̂  

ML) + z1−α/2 V (h(θ̂  
ML)) .

Note that this con˝dence set is essentially constructed based on the Wald statistic. 

Example 4 Let X1, ..., Xn be a random sample from distribution Bernoulli(p). Suppose we want to 

construct a con˝dence set for h(p) = p/(1 − p). Denote p̂ = Xn. Then 

√ 
n(p̂ − p) ⇒ N(0, p(1 − p)). 

In addition, 
(1 − p) + p 1 

h ′ (p) = = . 
(1 − p)2 (1 − p)2 

By delta-method, 
√ 
n(h(p̂) − h(p)) ⇒ N(0, p/(1 − p)3). 

So, V̂ (h(p̂)) = p/̂ ((1 − p̂)3n). Thus, a con˝dence interval for p/(1 − p) is [ √ √ ] 
p̂  p̂  p̂  p̂  

+ zα/2 , + z1−α/2 . 
1 − p̂  (1 − p̂)3n 1 − p̂  (1 − p̂)3n 
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4.1 Con˝dence Sets Based on LM and LR Tests 

In addition to the Wald statistic, we can invert tests based on the LM and LR statistics as well. However, 

these con˝dence sets are usually more involved, as the inversion procedure is less straightforward. 

Let X1, ..., Xn be a random sample from the distribution Bernoulli(p). Then the joint log-likelihood is ( ∑ ∑ ) ∑ ∑ 
Xiln = log p Xi (1 − p)n− = Xi log p + (n − Xi) log(1 − p). 

So, ∑ ∑ 
∂ln 

∂p 
= 

Xi n − Xi − , 
p 1 − p 

and 
1 

I(p) = . 
p(1 − p) 

Thus, (∑ ∑ )2 
Xi/p − (n − Xi)/(1 − p) 

LM = √ 
n/(p(1 − p)) ( )2 ∑ ∑ 

(1 − p) Xi − (n − Xi)p 
= √ 

np(1 − p) ( ∑ )2 
Xi − np 

= √ .
np(1 − p)

We know that LM ⇒ χ2
1. So, the con˝dence set based on inverting the LM test is { } ∑

Xi − np
p ∈ (0, 1) : √ ≤ z1−α/2 , 

np(1 − p) 

which is the solution to a quadratic inequality. 

As for the LR test, 

∑ ∑ 
lur − lr = Xi log(p̂/p0) + (n − Xi) log((1 − p̂)/((1 − p0)). n n 

So, the con˝dence set based on inverting the LR test is { (∑ ∑ ) } 
p ∈ (0, 1) : 2 Xi log(p̂/p) + (n − Xi) log((1 − p̂)/((1 − p)) ≤ χ1

2 
−α(1) .

It is the solution to a nonlinear inequality. 
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5 Bootstrap con˝dence sets 

Assume one wants to create a con˝dence set for a parameter θ for which s/he has a consistent estimator 

θ̂ = δ(X) where X is a random draw from unknown distribution F . One way to construct a bootstrap 
ˆ con˝dence set is by bootstrapping a statistic T (θ0) = θ − θ0 whenever testing H0 : θ = θ0. In particular, we 

∗ would draw a bootstrapped sample X∗ from an approximating distribution F̂  and calculate T = δ(X∗) − θ̂  . 
∗ Then quantiles of T will serve as critical values for the corresponding test. Notice that inverting this test 

is exceptionally easy! 

• For b = 1, ..., B repeat the following: 

� Draw a random sample X∗ from distribution F̂ ; b 

∗ � Calculate T = δ(X∗) − θ̂; b b 

2 

∗ • Order the bootstrapped statistics from smallest to largest: T ≤ ... ≤ T( 
∗ 
B). (1) 

∗ ∗ • Test of H0 : θ = θ0 accepts if T ≤ θ̂  − θ0 ≤ T ([ α B]) ([(1−α )B]). 2 

2 
• Con˝dence set is θ̂  − T ∗ ≤ θ0 ≤ θ̂  − T ∗ 

([(1− α ([ α 
2 )B]) B]). 

When does this work? When the di˙erence between the distributions of T and T ∗ converges almost surely to 

zero as the sample size increases. Notice that this interval implicitly bias-corrects. Most often the application 

2 

of this method happens when θ̂  is asymptotically Gaussian (and you choose not to calculate standard errors). 

Though if one decided to calculate standard errors then s/he may bootstrap a t-statistic. One would 
δ(X ∗ )−θ̂  

b then bootstrap statistics Z∗ = and ˝nd the proper quantiles of it. The resulting con˝dence set will s.e. ∗ 

be θ̂  − Z∗ s.e. ≤ θ0 ≤ θ̂  − Z∗ s.e.([(1− α ([ α 
2 )B]) B]) 

Grid bootstrap One may construct a con˝dence set by inverting other statistics as well, though the 

inversion is less obvious. This is called a grid bootstrap. One would impose a ˝ne grid on the space of Θ and 

will test each value θ0 on this grid. In particular, one would calculate the test statistic testing H0 : θ = θ0, 

say, G(θ0, X), and ˝nd its bootstrapped critical values. That is the hypothesis is accepted for example i˙ 

G(θ0, X) < G∗ (if the test uses only one-side of the ˝nal distribution). Then on the grid we would ([(1−α)B]) 

decide which θ0 are accepted, and the result does not have to be an interval. 

6 Some notes on joint con˝dence sets and the projection method 

Imagine you are trying to estimate two parameters, α and β, from the same data set, and you have estimates 

α̂ and β̂  that are consistent and jointly gaussian, that is, ( ) ( ) 
√ α̂ − α σ2 σαβα n ⇒ N(0, Σ), Σ = , 

ˆ σ2 β − β σαβ β

ˆ and you have a consistent estimator for Σ, say Σ. You can easily construct con˝dence sets for α: [α̂ − 

√σ̂β √σ̂β 1.96 √σ̂α , α̂ + 1.96 √σ̂α ] and for β: [β̂  − 1.96 , β̂ + 1.96 ]. However, these two con˝dence intervals are not 
n n n n 
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jointly valid, that is the probability that both of them cover the true values simultaneously is less than 95%. 

To get a joint con˝dence set one should invert the test for the joint hypothesis H0 : α = α0, β = β0. For 

example (if we still decide to stick with the Wald statistic), we may accept the null i˙: 

( ) ( ) 
α̂ − α0 

W (α0, β0) = n α̂ − α0, β̂  − β0 Σ̂−1 ≤ χ2
2,1−α. 

β̂ − β0 

The set of (α0, β0) described by the inequality above is ellipse, call it A. Then to construct con˝dence sets 

for α and β, which would be jointly valid, we may project it onto two axes. That is, [ ] √ √ σ̂β σ̂β ˆ χ2 ˆ χ2 Cβ = {β0 : ∃α s.t. (α, β0) ∈ A} = {β0 : min W ald(α, β0) ≤ χ2
2,1−α} = β − 2,1−α √ , β + 2,1−α √ . 

α n n 

This con˝dence set is constructed using the projection method. It is conservative, in the sense that 

Pα0,β0 {α0 ∈ Cα and β0 ∈ Cβ } ≥ 1 − α, 

as the event under the probability sign is the rectangle containing the con˝dence ellipse A. Another idea, 

may be to construct a rectangle to start with. For that we may consider other statistics, like: { } 
ˆ α̂ − α0 √ β − β0 √ 

S(α0, β0) = max n , n . 
σ̂α σ̂β 

We may calculate the critical values from asymptotics (and they would depend on Σ) or by the bootstrap. 

√σα √σα Assuming that the bootstrap gives us critical value C, the con˝dence sets will be Cα = [α̂ − C ˆ , α̂+ C ˆ ] 
n n 

√σ̂β ˆ √σ̂β and Cβ = [β̂  − C , β + C ]. 
n n 
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