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Preface

These lecture notes were written for the course 18.5997:  High Dimensional
Statistics at MIT. They build on a set of notes that was prepared at Princeton
University in 2013-14.

Over the past decade, statistics have undergone drastic changes with the
development of high-dimensional statistical inference. Indeed, on each indi-
vidual, more and more features are measured to a point that it usually far
exceeds the number of observations. This is the case in biology and specifically
genetics where millions of (or combinations of) genes are measured for a single
individual. High resolution imaging, finance, online advertising, climate stud-
ies ...the list of intensive data producing fields is too long to be established
exhaustively. Clearly not all measured features are relevant for a given task
and most of them are simply noise. But which ones? What can be done with
so little data and so much noise? Surprisingly, the situation is not that bad
and on some simple models we can assess to which extent meaningful statistical
methods can be applied. Regression is one such simple model.

Regression analysis can be traced back to 1632 when Galileo Galilei used
a procedure to infer a linear relationship from noisy data. It was not until
the early 19th century that Gauss and Legendre developed a systematic pro-
cedure: the least-squares method. Since then, regression has been studied
in so many forms that much insight has been gained and recent advances on
high-dimensional statistics would not have been possible without standing on
the shoulders of giants. In these notes, we will explore one, obviously sub-
jective giant whose shoulders high-dimensional statistics stand: nonparametric
statistics.

The works of Ibragimov and Has'minskii in the seventies followed by many
researchers from the Russian school have contributed to developing a large
toolkit to understand regression with an infinite number of parameters. Much
insight from this work can be gained to understand high-dimensional or sparse
regression and it comes as no surprise that Donoho and Johnstone have made
the first contributions on this topic in the early nineties.
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Required background. 1 assume that the reader has had basic courses in
probability and mathematical statistics. Some elementary background in anal-
ysis and measure theory is helpful but not required. Some basic notions of
linear algebra, especially spectral decomposition of matrices is required for the
latter chapters.



Notation

FUNCTIONS, SETS, VECTORS

[n] Set of integers [n] = {1,...,n}

Si-1 Unit sphere in dimension d

1) Indicator function

|z|q {q norm of x defined by |z[, = (X, |xl|‘1)% forg >0

|z]o ¢y norm of z defined to be the number of nonzero coordinates of =

f® k-th derivative of f

€; j-th vector of the canonical basis

A€ complement of set A

conv(S) Convex hull of set S.

an < by, an < Cb,, for a numerical constant C' > 0
MATRICES

1, Identity matrix of IRP

Tr(A) trace of a square matrix A

Mt Moore-Penrose pseudoinverse of M

V. f(x) Gradient of f at x

Vo f(2)|z=z, Gradient of f at xg

DISTRIBUTIONS

il
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iv

N(u,0?)
Na(p, 2)
subG(c?)
subGg(0?)
subE(0?)
Ber(p)
Bin(n,p)
Lap())
Px
FUNCTION SPACES
W(B,L)
0(8,Q)

Univariate Gaussian distribution with mean p € IR and variance o2 > 0
d-variate distribution with mean 1 € IR? and covariance matrix ¥ € R%*¢
Univariate sub-Gaussian distributions with variance proxy o2 > 0
d-variate sub-Gaussian distributions with variance proxy o2 > 0
sub-Exponential distributions with variance proxy o2 > 0

Bernoulli distribution with parameter p € [0, 1]

Binomial distribution with parameters n > 1,p € [0, 1]

Double exponential (or Laplace) distribution with parameter A > 0

Marginal distribution of X

Sobolev class of functions

Sobolev ellipsoid of ¢2(IN)
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Introduction

This course is mainly about learning a regression function from a collection
of observations. In this chapter, after defining this task formally, we give
an overview of the course and the questions around regression. We adopt
the statistical learning point of view where the task of prediction prevails.
Nevertheless many interesting questions will remain unanswered when the last
page comes: testing, model selection, implementation,. . .

REGRESSION ANALYSIS AND PREDICTION RISK

Model and definitions

Let (X,Y) € X x Y where X is called feature and lives in a topological space X
and Y € Y C R is called response or sometimes label when ) is a discrete set,
e.g., ¥ ={0,1}. Often X C R?, in which case X is called vector of covariates
or simply covariate. Our goal will be to predict Y given X and for our problem
to be meaningful, we need Y to depend nontrivially on X. Our task would be
done if we had access to the conditional distribution of Y given X. This is the
world of the probabilist. The statistician does not have access to this valuable
information but rather, has to estimate it, at least partially. The regression
function gives a simple summary of this conditional distribution, namely, the
conditional expectation.
Formally, the regression function of Y onto X is defined by:

fl)=E[Y|X=2], zeX.

As we will see, it arises naturally in the context of prediction.

Best prediction and prediction risk

Suppose for a moment that you know the conditional distribution of Y given
X. Given the realization of X = z, your goal is to predict the realization of
Y. Intuitively, we would like to find a measurable! function g : X — ) such
that g(X) is close to Y, in other words, such that |Y — ¢g(X)| is small. But
|Y — ¢g(X)] is a random variable so it not clear what “small” means in this
context. A somewhat arbitrary answer can be given by declaring a random

Lall topological spaces are equipped with their Borel o-algebra
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variable Z small if IE[Z2] = [[EZ]? + var[Z] is small. Indeed in this case, the
expectation of Z is small and the fluctuations of Z around this value are also
small. The function R(g) = IE[Y — g(X)]? is called the Ly risk of g defined for
EY? < oo.

For any measurable function g : X — IR, the Lg risk of g can be decom-
posed as

E[Y — g(X)]* = E[Y - f(X) + f(X) — g(X)]?
= E[Y — f(X)]* + B[f(X) — g(X)]* + 2B[Y — f(X)][f(X) - g(X)]

The cross-product term satisfies

E[Y — f(X)][f(X) - g(X)]

[E()Y — FOONFX) — g(X)]|X)]
[E(Y]X) - £(X)

E
E[|
E[[f(X) - F(X)]If(X) - g(X)]] = 0.

The above two equations yield
E[Y - g(X)]* = E[Y - f(X)]* + E[f(X) - g(X)]* 2 E[Y - f(X)]?,

with equality iff f(X) = g(X) almost surely.
We have proved that the regression function f(z) = E[Y|X = z],z € X,
enjoys the best prediction property, that is

E[Y — f(X)]? = inf E[Y — g(X)]?,
g
where the infimum is taken over all measurable functions g : X — R.

Prediction and estimation

As we said before, in a statistical problem, we do not have access to the condi-
tional distribution of Y given X or even to the regression function f of Y onto
X. Instead, we observe a sample D,, = {(X1,Y1),...,(Xy,Ys)} that consists
of independent copies of (X,Y). The goal of regression function estimation is
to use this data to construct an estimator fn : X — Y that has small L, risk

R(fn).
Let Px denote the marginal distribution of X and for any A : X — IR,
define

I3 = [ Ky
X
Note that ||h||3 is the Hilbert norm associated to the inner product
(h,h')s = / hi'dPy .
X

When the reference measure is clear from the context, we will simply write
||h||2L = ||h||L2(PX) and <ha h/>2 = <ha h/>L2(PX)'
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It follows from the proof of the best prediction property above that

R(fa) =BIY = FOOP + fu — 113
— Wl B[ — g0 + £~ /13

In particular, the prediction risk will always be at least equal to the positive
constant IE[Y — f(X)]?. Since we tend to prefer a measure of accuracy to be
able to go to zero (as the sample size increases), it is equivalent to study the
estimation error || fn — f]|3. Note that if f, is random, then ||f, — f||? and
R( fn) are random quantities and we need deterministic summaries to quantify
their size. It is customary to use one of the two following options. Let {¢y, }n
be a sequence of positive numbers that tends to zero as n goes to infinity.

1. Bounds in expectation. They are of the form:

Ellfo = f15 < ¢

where the expectation is taken with respect to the sample D,. They
indicate the average behavior of the estimator over multiple realizations
of the sample. Such bounds have been established in nonparametric
statistics where typically ¢,, = O(n™%) for some « € (1/2, 1) for example.

Note that such bounds do not characterize the size of the deviation of the
random variable || f,, — f||3 around its expectation. As a result, it may be
therefore appropriate to accompany such a bound with the second option
below.

2. Bounds with high-probability. They are of the form:
P(|[fu = fl5 > ¢n(0)] <6, Vo6€(0,1/3).

Here 1/3 is arbitrary and can be replaced by another positive constant.
Such bounds control the tail of the distribution of || f, — f||2. They show
how large the quantiles of the random variable ||f — f,||2 can be. Such
bounds are favored in learning theory, and are sometimes called PAC-
bounds (for Probably Approximately Correct).

Often, bounds with high probability follow from a bound in expectation and a
concentration inequality that bounds the following probability

Pl fo— 713 - Bl — F13 > 1]

by a quantity that decays to zero exponentially fast. Concentration of measure
is a fascinating but wide topic and we will only briefly touch it. We recommend
the reading of [BLM13] to the interested reader. This book presents many
aspects of concentration that are particularly well suited to the applications
covered in these notes.
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Other measures of error

We have chosen the Lj risk somewhat arbitrarily. Why not the L, risk defined
by g — E|Y — g(X)P for some p > 1?7 The main reason for choosing the Lo
risk is that it greatly simplifies the mathematics of our problem: it is a Hilbert
space! In particular, for any estimator fn, we have the remarkable identity:

R(fa) = E[Y = FOOP + Ifa = fII5-

This equality allowed us to consider only the part || f, — f||3 as a measure of
error. While this decomposition may not hold for other risk measures, it may
be desirable to explore other distances (or pseudo-distances). This leads to two
distinct ways to measure error. Either by bounding a pseudo-distance d( f, 1)
(estimation, error) or by bounding the risk R(f,) for choices other than the Ly
risk. These two measures coincide up to the additive constant IE[Y — f(X)]?
in the case described above. However, we show below that these two quantities
may live independent lives. Bounding the estimation error is more customary
in statistics whereas, risk bounds are preferred in learning theory.

Here is a list of choices for the pseudo-distance employed in the estimation
error.

e Pointwise error. Given a point xy, the pointwise error measures only
the error at this point. It uses the pseudo-distance:

do(fns f) = |fn(x0) = f(0)| -
e Sup-norm error. Also known as the Ly-error and defined by

doo(fns f) = sup |fu(z) = f(2)].

It controls the worst possible pointwise error.

e L,-error. It generalizes both the L, distance and the sup-norm error by
taking for any p > 1, the pseudo distance

dy(fur f) = /X o fPdPy

The choice of p is somewhat arbitrary and mostly employed as a mathe-
matical exercise.

Note that these three examples can be split into two families: global (Sup-norm
and L,) and local (pointwise).

For specific problems, other considerations come into play. For example,
if Y € {0,1} is a label, one may be interested in the classification risk of a
classifier h : X — {0,1}. It is defined by

R(h) = P(Y # h(X)).
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We will not cover this problem in this course.

Finally, we will devote a large part of these notes to the study of linear
models. For such models, X = IR? and f is linear (or affine), i.e., f(z) =26
for some unknown 6 € IRY. In this case, it is traditional to measure error
directly on the coefficient 6. For example, if f,(z) = z'6, is a candidate
linear estimator, it is customary to measure the distance of fn to f using a
(pseudo-)distance between 6,, and 6 as long as 6 is identifiable.

MODELS AND METHODS

Empirical risk minimization

In our considerations on measuring the performance of an estimator fn, we
have carefully avoided the question of how to construct fn This is of course
one of the most important task of statistics. As we will see, it can be carried
out in a fairly mechanical way by following one simple principle: Empirical
Risk Minimization (ERM2). Indeed, an overwhelming proportion of statistical
methods consist in replacing an (unknown) expected value (IE) by a (known)
empirical mean (% > 1)- For example, it is well known that a good candidate
to estimate the expected value IEX of a random variable X from a sequence of
ii.d copies X1,..., X, of X, is their empirical average

S
=1

In many instances, it corresponds the maximum likelihood estimator of IE.X.
Another example is the sample variance where IE(X — IE(X))? is estimated by

X:

S|

It turns out that this principle can be extended even if an optimization follows
the substitution. Recall that the Lo risk is defined by R(g) = IE[Y —g(X)]?. See
the expectation? Well, it can be replaced by an average to from the empirical
risk of g defined by

n

3 (- g(X0)”.

i=1

Rn(g9) =

S|

We can now proceed to minimizing this risk. However, we have to be careful.
Indeed, R, (g) > 0 for all g. Therefore any function g such that Y; = g(X;) for
alli =1,...,n is a minimizer of the empirical risk. Yet, it may not be the best
choice (Cf. Figure 1). To overcome this limitation, we need to leverage some
prior knowledge on f: either it may belong to a certain class G of functions (e.g.,
linear functions) or it is smooth (e.g., the La-norm of its second derivative is

2ERM may also mean Empirical Risk Minimizer
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Figure 1. It may not be the best choice idea to have fn(Xi) =Y, foralli=1,...,n.

small). In both cases, this extra knowledge can be incorporated to ERM using
either a constraint:

min R

veg (9)

or a penalty:
min {Rn (9) + pen(g)} ,

g

or both

gneig {Rn(g) + pen(g)} :

These schemes belong to the general idea of regularization. We will see many
variants of regularization throughout the course.

Unlike traditional (low dimensional) statistics, computation plays a key role
in high-dimensional statistics. Indeed, what is the point of describing an esti-
mator with good prediction properties if it takes years to compute it on large
datasets? As a result of this observation, much of the modern estimators, such
as the Lasso estimator for sparse linear regression can be computed efficiently
using simple tools from convex optimization. We will not describe such algo-
rithms for this problem but will comment on the computability of estimators
when relevant.

In particular computational considerations have driven the field of com-
pressed sensing that is closely connected to the problem of sparse linear regres-
sion studied in these notes. We will only briefly mention some of the results and
refer the interested reader to the book [FR13] for a comprehensive treatment.
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Linear models

When X = IR?, an all time favorite constraint G is the class of linear functions
that are of the form g(x) = x'#6, that is parametrized by § € IR?. Under
this constraint, the estimator obtained by ERM is usually called least squares
estimator and is defined by fn(ac) =270, where

n

- 1
0 € argmin — Y; — X1 0)%.
geRd T ;( )

Note that 6 may not be unique. In the case of a linear model, where we assume
that the regression function is of the form f(z) = z'6* for some unknown
0* € R%, we will need assumptions to ensure identifiability if we want to prove
bounds on d(f,6*) for some specific pseudo-distance d(-,-). Nevertheless, in
other instances such as regression with fixed design, we can prove bounds on
the prediction error that are valid for any 6 in the argmin. In the latter case,
we will not even require that f satisfies the linear model but our bound will
be meaningful only if f can be well approximated by a linear function. In this
case, we talk about misspecified model, i.e., we try to fit a linear model to data
that may not come from a linear model. Since linear models can have good
approximation properties especially when the dimension d is large, our hope is
that the linear model is never too far from the truth.

In the case of a misspecified model, there is no hope to drive the estimation
error d( fus f) down to zero even with a sample size that tends to infinity.
Rather, we will pay a systematic approximation error. When G is a linear
subspace as above, and the pseudo distance is given by the squared Lo norm
d(frs f) = 1fn — f3, it follows from the Pythagorean theorem that

I fn = F15 = WFn = FI3+ 1F = £1I3,

where f is the projection of f onto the linear subspace G. The systematic
approximation error is entirely contained in the deterministic term | f — f||2
and one can proceed to bound || f, — f||3 by a quantity that goes to zero as n
goes to infinity. In this case, bounds (e.g., in expectation) on the estimation
error take the form

Ellfo = fI5 < I = £II3 + -

The above inequality is called an oracle inequality. Indeed, it says that if ¢,,
is small enough, then fn the estimator mimics the oracle f. It is called “oracle”
because it cannot be constructed without the knowledge of the unknown f. It
is clearly the best we can do when we restrict our attentions to estimator in the
class G. Going back to the gap in knowledge between a probabilist who knows
the whole joint distribution of (X,Y") and a statistician who only see the data,
the oracle sits somewhere in-between: it can only see the whole distribution
through the lens provided by the statistician. In the case, above, the lens is
that of linear regression functions. Different oracles are more or less powerful
and there is a tradeoff to be achieved. On the one hand, if the oracle is weak,
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then it’s easy for the statistician to mimic it but it may be very far from the
true regression function; on the other hand, if the oracle is strong, then it is
harder to mimic but it is much closer to the truth.

Oracle inequalities were originally developed as analytic tools to prove adap-
tation of some nonparametric estimators. With the development of aggregation
[Nem00, Tsy03, Rig06] and high dimensional statistics [CT07, BRT09, RT11],
they have become important finite sample results that characterize the inter-
play between the important parameters of the problem.

In some favorable instances, that is when the X;s enjoy specific properties,
it is even possible to estimate the vector 6§ accurately, as is done in parametric
statistics. The techniques employed for this goal will essentially be the same
as the ones employed to minimize the prediction risk. The extra assumptions
on the X;s will then translate in interesting properties on 9 itself, including
uniqueness on top of the prediction properties of the function fn(:c) =z70.

High dimension and sparsity

These lecture notes are about high dimensional statistics and it is time they
enter the picture. By high dimension, we informally mean that the model has
more “parameters” than there are observations. The word “parameter” is used
here loosely and a more accurate description is perhaps degrees of freedom. For
example, the linear model f(z) = 2" 6* has one parameter 6* but effectively d
degrees of freedom when #* € IR%. The notion of degrees of freedom is actually
well defined in the statistical literature but the formal definition does not help
our informal discussion here.

As we will see in Chapter 2, if the regression function is linear f(z) = x
6* € R%, and under some assumptions on the marginal distribution of X, then
the least squares estimator fn(x) = 270, satisfies

To*

)

Blj. - flg <2, 1)

where C' > 0 is a constant and in Chapter 5, we will show that this cannot
be improved apart perhaps for a smaller multiplicative constant. Clearly such
a bound is uninformative if d > n and actually, in view of its optimality,
we can even conclude that the problem is too difficult statistically. However,
the situation is not hopeless if we assume that the problem has actually less
degrees of freedom than it seems. In particular, it is now standard to resort to
the sparsity assumption to overcome this limitation.

A vector § € R? is said to be k-sparse for some k& € {0,...,d} if it has
at most k non-zero coordinates. We denote by |0]¢p the number of nonzero
coordinates of @ is also known as sparsity or “fp-norm” though it is clearly not
a norm (see footnote 3). Formally, it is defined as

d

0o =D 1(6; #0).

j=1
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Sparsity is just one of many ways to limit the size of the set of potential
0 vectors to consider. One could consider vectors 6 that have the following
structure for example (see Figure 2):

e Monotonic: 81 > 65 > --- > b,
e Smooth: 0; — ;| < Cli — j|* for some o > 0
e Piecewise constant: Z‘j;ll T(0j41 #6) <k

e Structured in another basis: § = ¥y, for some orthogonal matrix and u
is in one of the structured classes described above.

Sparsity plays a significant role in statistics because, often, structure translate
into sparsity in a certain basis. For example a smooth function is sparse in the
trigonometric basis and a piecewise constant function has sparse increments.
Moreover, as we will real images for example are approximately sparse in certain
bases such as wavelet or Fourier bases. This is precisely the feature exploited
in compression schemes such as JPEG or JPEG-2000: only a few coefficients
in these images are necessary to retain the main features of the image.

We say that 0 is approzimately sparse if |0]p may be as large as d but many
coefficients |0;| are small rather than exactly equal to zero. There are several
mathematical ways to capture this phenomena, including £4- “balls” for ¢ < 1.
For ¢ > 0, the unit £,-ball of R? is defined as

d
By(R)={0cR": |0]1=> [0,/ <1}

Jj=1

where |6, is often called ¢;,-normZ. As we will see, the smaller ¢ is, the better
vectors in the unit £, ball can be approximated by sparse vectors.

Note that the set of k-sparse vectors of IR? is a union of Z;C:O (;l) linear
subspaces with dimension at most k£ and that are spanned by at most k vectors
in the canonical basis of R?. If we knew that 6* belongs to one of these
subspaces, we could simply drop irrelevant coordinates and obtain an oracle
inequality such as (1), with d replaced by k. Since we do not know what
subspace 8* lives exactly, we will have to pay an extra term to find in which

subspace 6* lives. This it turns out that this term is exactly of the the order

of
log (%50 (), klox ()

n n

Therefore, the price to pay for not knowing which subspace to look at is only
a logarithmic factor.

3Strictly speaking, |0|4 is a norm and the ¢4 ball is a ball only for ¢ > 1.
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Figure 2. Examples of structures vectors 6 € IR>®

Nonparametric regression

Nonparametric does not mean that there is no parameter to estimate (the
regression function is a parameter) but rather that the parameter to estimate
is infinite dimensional (this is the case of a function). In some instances, this
parameter can be identified to an infinite sequence of real numbers, so that we
are still in the realm of countable infinity. Indeed, observe that since Lo(Px)
equipped with the inner product (-, -)2 is a separable Hilbert space, it admits an
orthonormal basis {¢k }rez and any function f € Ly(Px) can be decomposed

as
F=> aner,

kEZ

where ai = (f, vi)2.

Therefore estimating a regression function f amounts to estimating the
infinite sequence {ay}trez € f2. You may argue (correctly) that the basis
{¢k }kez is also unknown as it depends on the unknown Px. This is absolutely
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correct but we will make the convenient assumption that Px is (essentially)
known whenever this is needed.

Even if infinity is countable, we still have to estimate an infinite number
of coefficients using a finite number of observations. It does not require much
statistical intuition to realize that this task is impossible in general. What if
we know something about the sequence {ay},? For example, if we know that
ar = 0 for |k| > ko, then there are only 2ko + 1 parameters to estimate (in
general, one would also have to “estimate” kq). In practice, we will not exactly
see ay, = 0 for |k| > ko, but rather that the sequence {ay}x decays to 0 at
a certain polynomial rate. For example |ax| < C|k|™7 for some v > 1/2 (we
need this sequence to be in ¢3). It corresponds to a smoothness assumption on
the function f. In this case, the sequence {ay}i can be well approximated by
a sequence with only a finite number of non-zero terms.

We can view this problem as a misspecified model. Indeed, for any cut-off

kg, define the oracle
Jro = Z Ak Pk -

|k|<ko

Note that it depends on the unknown «y and define the estimator

where é&;, are some data-driven coefficients (obtained by least-squares for ex-
ample). Then by the Pythagorean theorem and Parseval’s identity, we have

1= F1I3 =117 = £115 + 11fn = FII3
= Z g+ Z (Gp — a)?
|k|>ko |k|<ko

We can even work further on this oracle inequality using the fact that |ay| <
C|k|=". Indeed, we have*

Y oag<C? Y k< ChyTY

|k|>ko |k|>ko

The so called stochastic term IE 3, o (& — ay)? clearly increases with ko

(more parameters to estimate) whereas the approzimation term Cké_% de-
creases with kg (less terms discarded). We will see that we can strike a com-
promise called bias-variance tradeoff.

The main difference here with oracle inequalities is that we make assump-
tions on the regression function (here in terms of smoothness) in order to

4Here we illustrate a convenient notational convention that we will be using through-
out these notes: a constant C' may be different from line to line. This will not affect the
interpretation of our results since we are interested in the order of magnitude of the error
bounds. Nevertheless we will, as much as possible, try to make such constants explicit. As
an exercise, try to find an expression of the second C as a function of the first one and of ~.
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control the approximation error. Therefore oracle inequalities are more general
but can be seen on the one hand as less quantitative. On the other hand, if
one is willing to accept the fact that approximation error is inevitable then
there is no reason to focus on it. This is not the final answer to this rather
philosophical question. Indeed, choosing the right kg can only be done with
a control of the approximation error. Indeed, the best ky will depend on ~.
We will see that even if the smoothness index v is unknown, we can select kg
in a data-driven way that achieves almost the same performance as if v were
known. This phenomenon is called adaptation (to 7).

It is important to notice the main difference between the approach taken
in nonparametric regression and the one in sparse linear regression. It is not
so much about linear vs. nonlinear model as we can always first take nonlinear
transformations of the x;’s in linear regression. Instead, sparsity or approx-
imate sparsity is a much weaker notion than the decay of coefficients {ay }
presented above. In a way, sparsity only imposes that after ordering the coef-
ficients present a certain decay, whereas in nonparametric statistics, the order
is set ahead of time: we assume that we have found a basis that is ordered in
such a way that coefficients decay at a certain rate.

Matrix models

In the previous examples, the response variable is always assumed to be a scalar.
What if it is a higher dimensional signal? In Chapter 4, we consider various
problems of this form: matrix completion a.k.a. the Netflix problem, structured
graph estimation and covariance matrix estimation. All these problems can be
described as follows.

Let M,S and N be three matrices, respectively called observation, signal
and noise, and that satisfy

M=S+N.

Here N is a random matrix such that IE[N] = 0, the all-zero matrix. The goal
is to estimate the signal matrix S from the observation of M.

The structure of S can also be chosen in various ways. We will consider the
case where S is sparse in the sense that it has many zero coefficients. In a way,
this assumption does not leverage much of the matrix structure and essentially
treats matrices as vectors arranged in the form of an array. This is not the case
of low rank structures where one assumes that the matrix S has either low rank
or can be well approximated by a low rank matrix. This assumption makes
sense in the case where S represents user preferences as in the Netflix example.
In this example, the (4, j)th coefficient S;; of S corresponds to the rating (on a
scale from 1 to 5) that user 7 gave to movie j. The low rank assumption simply
materializes the idea that there are a few canonical profiles of users and that
each user can be represented as a linear combination of these users.

At first glance, this problem seems much more difficult than sparse linear
regression. Indeed, one needs to learn not only the sparse coefficients in a given
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basis, but also the basis of eigenvectors. Fortunately, it turns out that the latter
task is much easier and is dominated by the former in terms of statistical price.
Another important example of matrix estimation is high-dimensional co-
variance estimation, where the goal is to estimate the covariance matrix of a
random vector X € IR%, or its leading eigenvectors, based on n observations.
Such a problem has many applications including principal component analysis,
linear discriminant analysis and portfolio optimization. The main difficulty is
that n may be much smaller than the number of degrees of freedom in the
covariance matrix, which can be of order d?. To overcome this limitation,
assumptions on the rank or the sparsity of the matrix can be leveraged.

Optimality and minimax lower bounds

So far, we have only talked about upper bounds. For a linear model, where
f(x) = 276*, we will prove in Chapter 2 the following bound for a modified
least squares estimator f, =z '@

2 d
El|fn - flI3 < C—.
n

Is this the right dependence in p and n? Would it be possible to obtain as
an upper bound: C(logd)/n, C/n or v/d/n?, by either improving our proof
technique or using another estimator altogether? It turns out that the answer
to this question is negative. More precisely, we can prove that for any estimator
fn, there exists a function f of the form f(z) = 2T 6* such that

- d
B fo = fl3 > e
n

for some positive constant c. Here we used a different notation for the constant
to emphasize the fact that lower bounds guarantee optimality only wup to a
constant factor. Such a lower bound on the risk is called minimaz lower bound
for reasons that will become clearer in chapter 5.

How is this possible? How can we make a statement for all estimators?
We will see that these statements borrow from the theory of tests where we
know that it is impossible to drive both the type I and the type II error to
zero simultaneously (with a fixed sample size). Intuitively this phenomenon
is related to the following observation: Given n observations X1, ..., X,, it is
hard to tell if they are distributed according to N'(6,1) or to N'(¢',1) for a
Euclidean distance |§ — 0’|z is small enough. We will see that it is the case for
example if |0 — | < C/d/n, which will yield our lower bound.
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Sub-Gaussian Random Variables

1.1 GAUSSIAN TAILS AND MGF

Recall that a random variable X € IR has Gaussian distribution iff it has a
density p with respect to the Lebesgue measure on IR given by

1 (z —p)?

P = e (e

where 1 = IE(X) € R and 0? = var(X) > 0 are the mean and variance of
X. We write X ~ N (u,0?). Note that X = 0Z + p for Z ~ N(0,1) (called
standard Gaussian) and where the equality holds in distribution. Clearly, this
distribution has unbounded support but it is well known that it has almost
bounded support in the following sense: IP(|X — p| < 30) ~ 0.997. This is due
to the fast decay of the tails of p as |z| — oo (see Figure 1.1). This decay can
be quantified using the following proposition (Mills inequality).

), r€eR,

Proposition 1.1. Let X be a Gaussian random variable with mean p and
variance o2 then for any ¢ > 0, it holds

_ 2
e 202

1
PX—pu>t) < —
( p>t) < Cra

By symmetry we also have

+2
1 e 27

PX—-—p<—t) < —
(X —n )_%ﬁi

14
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Figure 1.1. Probabilities of falling within 1, 2, and 3 standard deviations close to the
mean in a Gaussian distribution. Source http://www.openintro.org/

and

26_;72
P(lX — t) <4/— .
(X =l > 1) < 25

Proof. Note that it is sufficient to prove the theorem for u = 0 and 62 = 1 by
simple translation and rescaling. We get for Z ~ N(0, 1),

2

]P(Z>t)—\/%/tooexp(—%)dz

S\/%/tooéexp<—%2)dx
IR

= % exp(—t?/2).

The second inequality follows from symmetry and the last one using the union
bound:

P(Z]|>t) =P{Z>t}U{Z < —t}) <P(Z>t) +P(Z < —t) = 2P(Z > 1).
O

The fact that a Gaussian random variable Z has tails that decay to zero
exponentially fast can also be seen in the moment generating function (MGF)

M : s— M(s) =Elexp(sZ)].
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Indeed in the case of a standard Gaussian random variable, we have

M(s) = Blexp(s2)] = = [ e
r/ S

s2
=e? .

It follows that if X ~ N (u,0?), then E[exp(sX)] = exp (s + 02252).
1.2 SUB-GAUSSIAN RANDOM VARIABLES AND CHERNOFF BOUNDS

Definition and first properties

Gaussian tails are practical when controlling the tail of an average of inde-
pendent random variables. Indeed, recall that if X,..., X, are i.i.d N(p,0?),
then X = L3 X, ~ N(p,0%/n). Using Lemma 1.3 below for example, we
get

nt?

Equating the right-hand side With some confidence level 6 > 0, we find that
with probability at least: 1 —

\/W U\/@} 7 (1.1)

This is almost the confidence interval that you used in introductory statistics.
The only difference is that we used an approximation for the Gaussian tail
whereas statistical tables or software use a much more accurate computation.
Figure 1.2 shows the ration of the width of the confidence interval to that of
the confidence interval computer by the software R. It turns out that intervals
of the same form can be also derived for non-Gaussian random variables as
long as they have sub-Gaussian tails.

Definition 1.2. A random variable X € IR is said to be sub-Gaussian with
variance proxy o2 if IE[X] = 0 and its moment generating function satisfies

252

Elexp(sX)] < exp (C’ ) , VseR. (1.2)
In this case we write X ~ subG(c?). Note that subG(c?) denotes a class of
distributions rather than a distribution. Therefore, we abuse notation when
writing X ~ subG(o?).

More generally, we can talk about sub-Gaussian random vectors and ma-
trices. A random vector X € IR is said to be sub-Gaussian with variance

1We will often commit the statement “at least” for brevity
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Figure 1.2. Width of confidence intervals from exact computation in R (red dashed)
and (1.1) (solid black).

proxy o2 if IE[X] = 0 and u' X is sub-Gaussian with variance proxy o2 for
any unit vector u € S?7!. In this case we write X ~ subGy(c?). A ran-
dom matrix X € IR*7T is said to be sub-Gaussian with variance proxy o?
if E[X] = 0 and u' Xv is sub-Gaussian with variance proxy o2 for any unit
vectors u € S471 v € ST~1. In this case we write X ~ subGgxr(c?).

This property can equivalently be expressed in terms of bounds on the tail
of the random variable X.

Lemma 1.3. Let X ~ subG(c?). Then for any t > 0, it holds

2 2
P[X > {] Sexp(—;ij)7 and ]P[X<—t]§exp(—%). (1.3)

Proof. Assume first that X ~ subG(c?). We will employ a very useful technique

called Chernoff bound that allows to to translate a bound on the moment

generating function into a tail bound. Using Markov’s inequality, we have for

any s > 0,

]E[esX}

est

P(X >t) <P(e** > e) <
Next we use the fact that X is sub-Gaussian to get

2,2

P(X>t)<e”

—st
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The above inequality holds for any s > 0 so to make it the tightest possible, we
2. 2
minimize with respect to s > 0. Solving ¢'(s) = 0, where ¢(s) = 75~ — st, we

find that infsso ¢(s) = —%. This proves the first part of (1.3). The second
inequality in this equation follows in the same manner (recall that (1.2) holds

for any s € R).

O

Moments
Recall that the absolute moments of Z ~ N(0,0?) are given by

%(202)’“/2r(ﬂ)

E[Z]") = -

where I'(+) denote the Gamma function defined by
L) = / o' le ™ dr, t>0.
0

The next lemma shows that the tail bounds of Lemma 1.3 are sufficient to
show that the absolute moments of X ~ subG(c?) can be bounded by those of
Z ~ N(0,0?) up to multiplicative constants.

Lemma 1.4. Let X be a random variable such that
t2
P[X|> 1] <2 (— —)
1X| > 1] < 2650 (- 57
then for any positive integer k > 1,
E[|X[*] < (20%)"2kT(k/2).

In particular,

(BIXPYY < oe/ovE, k>2.
and E[|X|] < ov27.
Proof.

]E[|X|k]:/ P(|X[F > t)dt
0
:/ P(X] > t/%)dt
0
oo 2/k
g2/ ez dt
0
_ (20,2)k/2k/ efuuk/Qfldu7
0

= (20%)*/2kT(k/2)

tQ/k

T 202
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The second statement follows from I'(k/2) < (k/2)¥/? and k'/* < e'/€ for any
k > 2. It yields

1/k o2k .
((202)*2kT(k/2)) kl/’a/ 5 <eoVk.

Moreover, for k = 1, we have v/2I'(1/2) = v/27. O
Using moments, we can prove the following reciprocal to Lemma 1.3.

Lemma 1.5. If (L.3) holds, then for any s > 0, it holds
Elexp(sX)] < eto’s”
As a result, we will sometimes write X ~ subG(c?) when it satisfies (1.3).

Proof. We use the Taylor expansion of the exponential function as follows.
Observe that by the dominated convergence theorem

sX <1+Z |X|

2 2k/2
< 1"’2 (20%s%) k'kF(k/Q)

k=2

(2025 kzkr 2)kH1/2(2) + DT(k 4+ 1/2
_”Z Z (2(k+ ).)( 5

k=

<1+ (2+ V20282 i (20°s ))
=1

§1+(1+\/022‘92) (20 - )" 2(k1)2 < (2Kk)!

O

From the above Lemma, we see that sub-Gaussian random variables can
be equivalently defined from their tail bounds and their moment generating
functions, up to constants.

Sums of independent sub-Gaussian random variables

Recall that if Xi,...,X,, are ii.d N(0,0?), then for any a € R",

Z a; X; ~ N (0, |al30?).

=1
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If we only care about the tails, this property is preserved for sub-Gaussian
random variables.

Theorem 1.6. Let X = (X1,...,X,) be a vector of independent sub-Gaussian
random variables that have variance prozy 2. Then, the random vector X is
sub-Gaussian with variance prozy 2.

Proof. Let v € S™~! be a unit vector, then

n n
252 02523 2.2

02s2u2 o2s
]E[GSUTX] — HE[65U1X1] S He 5 = e 2 —=e 2

=1 =1

Using a Chernoff bound, we immediately get the following corollary

Corollary 1.7. Let X1,...,X,, be n independent random variables such that
X; ~ subG(c?). Then for any a € R"™, we have

n t2
]P|:ZG'ZX’L >t:| Sexp(— W),

=1

and

]P[ PN —t:| < ex (— 7)
Z-E_l a; X; < exp 2072

Of special interest is the case where a; =1 /n for all i. Then, we get that
the average X = 2 3" | X;, satisfies

nt?

— nt? > t
P(X >t)<e 202 and P(X <—t)<e 22

just like for the Gaussian average.

Hoeffding’s inequality

The class of subGaussian random variables is actually quite large. Indeed,
Hoeffding’s lemma below implies that all randdom variables that are bounded
uniformly are actually subGaussian with a variance proxy that depends on the
size of their support.

Lemma 1.8 (Hoeffding’s lemma (1963)). Let X be a random wvariable such
that TE(X) = 0 and X € [a,b] almost surely. Then, for any s € R, it holds

s2(b—a)?
8

E[e**] <e

. (b—u,)2
In particular, X ~ subG(*=5=).
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Proof. Define v(s) = log E[e**], and observe that and we can readily compute

W(s) = E[X e E[X%Y] []E[Xesx]r

E[esX] U(s) = E[esX] E[esX]

Thus ¢ (s) can be interpreted as the variance of the random variable X under
€

the probability measure dQ = ﬁfx]d]P. But since X € [a,b] almost surely,
we have, under any probability,

a+b a+b\2 (b—a)?
- 2T < - < ,
var(X) Var(X 5 ) _]E[(X 5 ) } < )
The fundamental theorem of calculus yields
s s2(b—a)?
v = [ [T apan < L2
0o Jo 8
using 1(0) =log1 =0 and ¢'(0) = EX = 0. O

Using a Chernoff bound, we get the following (extremely useful) result.

Theorem 1.9 (Hoeffding’s inequality). Let X1,...,X,, be n independent ran-
dom variables such that almost surely,

X € [ai, bi], Vi

Let X = 23" | X;, then for any t > 0,

2,2
P(X —IE(X) >t) <exp 2n’t ),

( (b - ap)?

and
2n2¢2 )
> im (bi — ai)?
Note that Hoeffding’s lemma is for any bounded random variables. For
example, if one knows that X is a Rademacher random variable. Then

P(X - E(X) < —t) < exp ( -

eS+e”*®
2

Note that 2 is the best possible constant in the above approximation. For such
variables a = —1,b = 1, IE(X) = 0 so Hoeffding’s lemma yields

2

E(esX) <eT.

E(eX) = — cosh(s) < %

Hoeffding’s inequality is very general but there is a price to pay for this gen-
erality. Indeed, if the random variables have small variance, we would like to
see it reflected in the exponential tail bound (like for the Gaussian case) but
the variance does not appear in Hoeffding’s inequality. We need a more refined
inequality.
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1.3 SUB-EXPONENTIAL RANDOM VARIABLES

What can we say when a centered random variable is not sub-Gaussian?
A typical example is the double exponential (or Laplace) distribution with
parameter 1, denoted by Lap(1). Let X ~ Lap(1) and observe that

P(|X|>t)=e" t>0.

In particular, the tails 02f this distribution do not decay as fast as the Gaussian
ones (that decay as e~*"/2). Such tails are said to be heavier than Gaussian.
This tail behavior is also captured by the moment generating function of X.

Indeed, we have
1
sX :
E[e™*] =1 if |s|] <1,

and is not defined for s > 1. It turns out that a rather week condition on
the moment generating function is enough to partially reproduce some of the
bounds that we have proved for sub-Gaussian random variables. Observe that
for X ~ Lap(1)

E[e*X] < e’ if [s| < 1/2,

In particular, the Laplace distribution has its moment generating distribution
that is bounded by that of a Gaussian in a neighborhood of 0 but does not
even exist away from zero. It turns out that all distributions that have tails at
least as heavy as that of a Laplace distribution satisfy such a property.

Lemma 1.10. Let X be a centered random variable such that P(|X| > t) <
272t/ for some X\ > 0. Then, for any positive integer k > 1,

E[|X|*] < \k!.

Moreover,

(E[X M)V < 20k,

and the moment generating function of X satisfies

1
E sX < 25272 v <
[et] < e, Isl < o3
Proof.
]E[|X|’“]:/ P(X|* > t)dt
0

:/ P(|X]| > tY/*)dt
0

© 1/k
< / 2e~ 35— dt
0

=2()\/2)k/€/ e uFtdu, u
0

2tl/k
D)

< NET (k) = Ak
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The second statement follows from I'(k) < k* and k'/k < el/e < 2 for any
k> 1. It yields

1/k

(A"ET(K)) ™™ < 2)k.

To control the MGF of X, we use the Taylor expansion of the exponential
function as follows. Observe that by the dominated convergence theorem, for
any s such that |s] < 1/2A

0 k k
] < 1+ 57 PEIX
k=2

<1+ (5N
k=2

oo

=142 ([s|V)F

k=0
< 1425702 |s] < =

242
<e28>\

This leads to the following definition

Definition 1.11. A random variable X is said to be sub-exponential with
parameter A (denoted X ~ subE(}\)) if IE[X] = 0 and its moment generating
function satisfies

1
E sX < s2A?/2 v < —
[e } <e , [s] < 3
A simple and useful example of of a sub-exponential random variable is

given in the next lemma.

Lemma 1.12. Let X ~ subG(c?) then the random variable Z = X? — E[X?]
is sub-exponential: Z ~ subE(1602).
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Proof. We have, by the dominated convergence theorem,

IE[X2]]

o k2k I(E[XQk]—i-(]E[XQ])k)

<1+ Z x (Jensen)
k=2
> kgkTR[ X 2k
<1+ Z 8(7]{[')] (Jensen again)
k=2
2. sk4k2(202)F k!
<14y — 2D (Lemma 1.4)
k=2
+ (8s0?) QZ (8s0?)
k=0
=14 128s%" for [ < —
~ 1602
< pl28s%"t

O

Sub-exponential random variables also give rise to exponential deviation
inequalities such as Corollary 1.7 (Chernoff bound) or Theorem 1.9 (Hoeffd-
ing’s inequality) for weighted sums of independent sub-exponential random
variables. The significant difference here is that the larger deviations are con-
trolled in by a weaker bound.

Berstein’s inequality

Theorem 1.13 (Bernstein’s inequality). Let Xi,..., X, be independent ran-
dom variables such that IE(X;) = 0 and X; ~ subE(\). Define

RNt

3|>—‘

jhen ’07 any 1’: > () we ha/Ue

Proof. Without loss of generality, assume that A = 1 (we can always replace
X; by X;/X and t by t/\. Next, using a Chernoff bound, we get for any s > 0

n
H sX7L —snt
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Next, if |s| < 1, then ]E[esxi] < e /2 by definition of sub-exponential distri-
butions. It yields

ns?
P(X >t)<ez
Choosing s = 1 At yields
P(X >t)<e 307/
We obtain the same bound for IP(X < —t) which concludes the proof. g

Note that usually, Bernstein’s inequality refers to a slightly more precise
result that is qualitatively the same as the one above: it exhibits a Gaussian
tail e="t"/(22*) and an exponential tail e="*/(2%)_ See for example Theorem 2.10
in [BLM13].

1.4 MAXIMAL INEQUALITIES

The exponential inequalities of the previous section are valid for linear com-
binations of independent random variables, and in particular, for the average
X. In many instances, we will be interested in controlling the mazimum over
the parameters of such linear combinations (this is because of empirical risk
minimization). The purpose of this section is to present such results.

Maximum over a finite set

We begin by the simplest case possible: the maximum over a finite set.

Theorem 1.14. Let X1,..., Xx be N random variables such that X; ~ subG(c?).
Then

E[ max X;] <ov/2log(N), and  IE[ max |X;|] < ov/2log(2N)

1<i<N 1<i<N

Moreover, for any t > 0,

2 2
IP( max Xi>t)§N672'ta_2, and IP( max |Xi|>t)§2N672ta_2
1<i<N 1<i<N

Note that the random variables in this theorem need not be independent.
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Proof. For any s > 0,

X - SmaXISlSN i
]E[lrgnlzgv Xi] = S]E[loge ]

IN

1
= logE[e® max1<isn Xi] (by Jensen)
s

_ 1 sX;
= glogE[lrgnizzve ]

IA A
| = |
<} )
o g

| |

\'M I'M
mq ﬁ
R

¥ w
=

1<i<N
_logN o?s
s 2

Taking s = \/2(log N)/o? yields the first inequality in expectation.
The first inequality in probability is obtained by a simple union bound:

]P(11<nl_z?§VXi>t):]P( U {Xi>t})
== 1<i<N

< ) P(Xi>t)

1<i<N
t2
< Ne ™37,

where we used Lemma 1.3 in the last inequality.
The remaining two inequalities follow trivially by noting that

max |X;| = max X,
1<i<N 1<i<2N
where Xy, = —X; fori=1,..., N. O

Extending these results to a maximum over an infinite set may be impossi-
ble. For example, if one is given an infinite sequence of i.i.d A'(0,?) random
variables X1, X5, ...,, then for any N > 1, we have for any ¢t > 0,

P(max X; <t)=[P(X;<t)]¥ -0, N - .
1<i<N

On the opposite side of the picture, if all the X;s are equal to the same random
variable X, we have for any ¢ > 0,

P(max X; <t)=P(X;<t)>0 VN>1.
1<i<N

In the Gaussian case, lower bounds are also available. They illustrate the effect
of the correlation between the X;s
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Examples from statistics have structure and we encounter many examples
where a maximum of random variables over an infinite set is in fact finite.
This is due to the fact that the random variable that we are considering are
not independent from each other. In the rest of this section, we review some
of these examples.

Maximum over a convex polytope

We use the definition of a polytope from [Gru03]: a convex polytope P is a
compact set with a finite number of vertices V(P) called extreme points. It
satisfies P = conv(V(P)), where conv(V(P)) denotes the convex hull of the
vertices of P.

Let X € IR? be a random vector and consider the (infinite) family of random
variables

F={0"X:0¢cP},

where P C IR? is a polytope with N vertices. While the family F is infinite, the
maximum over F can be reduced to the a finite maximum using the following
useful lemma.

Lemma 1.15. Consider a linear form x — c'x, x,c € R Then for any
convex polytope P C IRY,

ma.XCTfE = max CTCE
zeP zeV(P)

where V(P) denotes the set of vertices of P.

Proof. Assume that V(P) = {v1,...,un}. For any x € P = conv(V(P)), there
exist nonnegative numbers Ai,... Ay that sum up to 1 and such that x =
Av1 + -+ Ayvy. Thus

N N N
clr= CT( g /\ivi) = g NicTv; < A max ¢z = max ¢ z.
i=1 i=1 i=

z€V(P) z€V(P)
It yields

maxec' < max ez < maxc'

zeP z€V(P) zeP
so the two quantities are equal. O

It immediately yields the following theorem

Theorem 1.16. Let P be a polytope with N vertices vV ... o) € R and let
X € R? be a random vector such that, [v(i)]TX,i =1,...,N are sub-Gaussian
random variables with variance prozy o?. Then

E[max ' X] < 0v/2log(N), and ]E[r(glagc 07 X|] < oy/2l0g(2N).
€

oeP

Moreover, for anyt > 0,

+2

42
]P(rnaXHTX > t) < Ne 277 and ]P(rnax|9TX| > t) < 2Ne 207
0eP 9eP
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Of particular interests are polytopes that have a small number of vertices.
A primary example is the ¢; ball of IR? defined for any radius R > 0, by

d
B, :{xe]Rd 2> gl <13
i=1
Indeed, it has exactly 2d vertices.

Maximum over the /5 ball

Recall that the unit £5 ball of IR? is defined by the set of vectors u that have
Euclidean norm |u|z at most 1. Formally, it is defined by

Bgz{xE]Rd : ixfgl}.
i=1

Clearly, this ball is not a polytope and yet, we can control the maximum of
random variables indexed by Bs. This is due to the fact that there exists a
finite subset of By such that the maximum over this finite set is of the same
order as the maximum over the entire ball.

Definition 1.17. Fix K ¢ IR¢ and € > 0. A set A is called an e-net of K
with respect to a distance d(-,-) on R¢, if ' C K and for any z € K, there
exists x € N such that d(z,z) <e.

Therefore, if A is an e-net of K with respect to norm || - ||, then every point
of K is at distance at most € from a point in A. Clearly, every compact set
admits a finite e-net. The following lemma gives an upper bound on the size
of the smallest e-net of Bs.

Lemma 1.18. Fize € (0,1). Then the unit Fuclidean ball By has an e-net N
with respect to the Buclidean distance of cardinality |N'| < (3/¢)?

Proof. Consider the following iterative construction if the e-net. Choose z; =
0. For any ¢ > 2, take any z; to be any = € B such that |z — xj]o > ¢ for
all j < i. If no such z exists, stop the procedure. Clearly, this will create an
e-net. We now control its size.

Observe that since |z —y|s > ¢ for all z,y € N, the Euclidean balls centered
at x € N and with radius £/2 are disjoint. Moreover,

U {Z + %BQ} C (1 + %)BQ
zEN

where {z +eB2} = {z + ex,x € Bz}. Thus, measuring volumes, we get

vol (1 + %)82) > Vol( U=+ ng}) =3 vol ({z + ng})

zeN zEN
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This is equivalent to

(142" = WI5)".

Therefore, we get the following bound

Wi (10 2)' < (2

g

O

Theorem 1.19. Let X € RY be a sub-Gaussian random vector with variance

prozy o2. Then

E[max 0’ X] = E[max [0 X|] < 40V4d.
6B, 0B,

Moreover, for any 6 > 0, with probability 1 — §, it holds

max f' X = max |0 X| < 40Vd + 201/210g(1/6).

0eB2 0eB2

Proof. Let N be a 1/2-net of By with respect to the Euclidean norm that
satisfies || < 6¢. Next, observe that for every § € B, there exists z € A" and
x such that |z]s <1/2 and 6 = z 4+ 2. Therefore,

maxf' X <maxz' X + max z' X

0eB2 zeN €3 B,
But
max z' X = —maxz ' X
TEL B 2 z€Bs

Therefore, using Theorem 1.14, we get

E[maxf' X] < 2]E[mz}\>/<zTX] < 20+/210g(|N]) < 20+/2(log6)d < 4oV d.

0eB;y z€
The bound with high probability, follows because

2 2
]P(max@TX >t) < lP(2maszX >t) < |N|675;j < 6le 507 .
0By zeN

To conclude the proof, we find ¢ such that
+2
e 5z td80) < 5 o 12 > 8log(6)0d + 852 log(1/6) .
Therefore, it is sufficient to take t = /8log(6)ov/d + 201/21og(1/6) . O
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1.5 PROBLEM SET

Problem 1.1. Let Xj,...,X, be independent random variables such that
E(X;) = 0 and X; ~ subE()\). For any vector a = (a1, ...,a,)" € IR", define
the weighted sum

S(a) = Z aiXi 5
i=1
Show that for any ¢ > 0 we have

t? t

P(|S(a)] >t) <2exp [C(W A m) .

for some positive constant C.

Problem 1.2. A random variable X has x2 (chi-squared with n degrees of
freedom) if it has the same distribution as Z7 +...+ Z2, where Z1, ..., Z, are

iid N(0,1).

(a) Let Z ~ N(0,1). Show that the moment generating function of ¥ =
Z?% — 1 satisfies

675

¢(s):=E[e?] =¢ VT—2s

00 otherwise

if s <1/2

(b) Show that for all 0 < s < 1/2,
2

1—25)'

o(s) < exp (
(¢) Conclude that
P(Y >2t+2Vt)<e’

[Hint: you can use the convexity inequality v/1-+u < 1+4u/2].

(d) Show that if X ~ x?2, then, with probability at least 1 — d, it holds

X <n+2y/nlog(1/6) + 2log(1/4).

Problem 1.3. Let X3, X5... be an infinite sequence of sub-Gaussian random
variables with variance proxy o? = C(log i)~1/2. Show that for C large enough,
we get
lE[max Xi} < 00.
i>2
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Problem 1.4. Let A = {4, ,} 1<i<n be a random matrix such that its entries
1<j<m
are iid sub-Gaussian random variables with variance proxy o2.
(a) Show that the matrix A is sub-Gaussian. What is its variance proxy?

(b) Let ||A|| denote the operator norm of A defined by

|AIE|2
max .
zeR™ |$|2

Show that there exits a constant C' > 0 such that

E|| A < C(/m + V7).

Problem 1.5. Recall that for any ¢ > 1, the £, norm of a vector x € R" is

defined by
n 1
aly = (X lail?) "
i=1

Let X = (X3,...,X,) be a vector with independent entries such that X; is
sub-Gaussian with variance proxy o2 and IE(X;) = 0.

(a) Show that for any ¢ > 2, and any = € R,

2|y < |z]n®7T,

and prove that the above inequality cannot be improved
(b) Show that for for any ¢ > 1,

E|X|, < dons Va

(¢) Recover from this bound that

E max |X;| < 4ec+/logn.

1<i<n

Problem 1.6. Let K be a compact subset of the unit sphere of IR?P that
admits an e-net N with respect to the Euclidean distance of IR? that satisfies
INZ| < (C/e)? for all € € (0,1). Here C' > 1 and d < p are positive constants.
Let X ~ subG,(c?) be a centered random vector.

Show that there exists positive constants ¢; and cs to be made explicit such
that for any d € (0, 1), it holds

{onai)((@TX < ciov/dlog(2p/d) + ca0+/log(1/9)
€

with probability at least 1—¢§. Comment on the result in light of Theorem 1.19.
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Problem 1.7. For any K C R?, distance d on IR? and & > 0, the e-covering
number C(g) of K is the cardinality of the smallest e-net of K. The e-packing
number P(e) of K is the cardinality of the largest set P C K such that
d(z,2") > e forall 2,2 € P, z # 2. Show that

C(2e) < P(2e) < C(e).

Problem 1.8. Let X;,...,X, be n independent and random variables such
that IE[X;] = p and var(X;) < o?. Fix § € (0,1) and assume without loss of
generality that n can be factored into n = K - G where G = 8log(1/¢) is a
positive integers.

Forg=1,...,G,let X ¢ denote the average over the gth group of k variables.
Formally

1 &
=% >oox.
i=(g—1)k+1
1. Show that for any g =1,...,G,
- 2 1

Vi

2. Let fi be defined as the median of {X1,..., Xg}. Show that

P[ﬂ—u>%} <P[B>

where B ~ Bin(G, 1/4).
3. Conclude that

P[p—p>do 21%(1/5)]95

4. Compare this result with 1.7 and Lemma 1.3. Can you conclude that
ft — p ~ subG(52/n) for some 527 Conclude.



CHAPTER

Linear Regression Model

In this chapter, we consider the following regression model:
Y;:f(Xi)-i-Ei, i1=1,...,n, (21)

where € = (g1,...,6,) " is sub-Gaussian with variance proxy ¢? and such that
[E[e] = 0. Our goal is to estimate the function f under a linear assumption.
Namely, we assume that * € R and f(x) = 2" 6* for some unknown 6* € IR%.

2.1 FIXED DESIGN LINEAR REGRESSION

Depending on the nature of the design points X, ..., X, we will favor a
different measure of risk. In particular, we will focus either on fized or random
design.

Random design

The case of random design corresponds to the statistical learning setup. Let
(X1, Y1), ..., (Xn+1, Yoy1) be nt+11iid. random couples. Given (X1,Y7),..., (Xn, Yn)
the goal is construct a function fn such that fn(Xn_H) is a good predictor of
Y,+1. Note that when fn is constructed, X, 41 is still unknown and we have
to account for what value it is likely to take.
Consider the following example from [HTF01, Section 3.2]. The response
variable Y is the log-volume of a cancerous tumor, and the goal is to predict
it based on X € RS, a collection of variables that are easier to measure (age
of patient, log-weight of prostate, ...). Here the goal is clearly to construct f
for prediction purposes. Indeed, we want to find an automatic mechanism that

33
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outputs a good prediction of the log-weight of the tumor given certain inputs
for a new (unseen) patient.

A natural measure of performance here is the Lo-risk employed in the in-
troduction:

R(fn) = [ n+l — fn( n+1)] —E[ n+1l — f(XnJrl)]Q"' an_f||2L2(PX)a

where Px denotes the marginal distribution of X,,;+1. It measures how good
the prediction of Y, 11 is in average over realizations of X, ;. In particular,
it does not put much emphasis on values of X, that are not very likely to
occur.

Note that if the €; are random variables with variance o2 then, one simply
has R(fn) = 02+ || fn — fH%Q(PX). Therefore, for random design, we will focus

on the squared Ly norm || f, — f H%Q( py) 8 a measure of accuracy. It measures

how close f, is to the unknown f in average over realizations of X, 1.

Fixed design

In fixed design, the points (or vectors) Xi,..., X, are deterministic. To em-
phasize this fact, we use lowercase letters x1, ..., x, to denote fixed design. Of
course, we can always think of them as realizations of a random variable but
the distinction between fixed and random design is deeper and significantly
affects our measure of performance. Indeed, recall that for random design, we
look at the performance in average over realizations of X,,;1. Here, there is no
such thing as a marginal distribution of X,,;1. Rather, since the design points

Z1,...,T, are considered deterministic, our goal is estimate f only at these
points. This problem is sometimes called denoising since our goal is to recover
f(z1),..., f(z,) given noisy observations of these values.

In many instances, fixed design can be recognized from their structured
form. A typical example is the regular design on [0, 1], given by z; = i/n,i =
1,...,n. Interpolation between these points is possible under smoothness as-
sumptions.

Note that in fixed design, we observe p*+¢, where p* = (f(21), ..., f(:zcn))—r
IR" and e = (¢1,...,¢)" € IR is sub-Gaussian with variance proxy o2. Instead
of a functional estimation problem, it is often simpler to view this problem as a
vector problem in IR™. This point of view will allow us to leverage the Euclidean
geometry of IR™.

In the case of fixed design, we will focus on the Mean Squared Error (MSE)
as a measure of performance. It is defined by

n

Z n(24) xl))2.

i=1

MSE(f,) =

3|}—‘

Equivalently, if we view our problem as a vector problem, it is defined by

n 1 R i}
MSE(/i Z ZEW—N@-

i:l

m
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Often, the design vectors z1,...,z, € IR? are stored in a n x d design matrix
X, whose jth row is given by x;r With this notation, the linear regression
model can be written '

Y =X0" +¢, (2.2)

where Y = (Y1,...,Y,)" and € = (¢1,...,e,) . Moreover,

TXT_X(@-@*). (2.3)

MSE(X6) — %pg(é — 02 = (6—07)

A natural example of fixed design regression is image denoising. Assume

that pf,% € 1,...,n is the grayscale value of pixel ¢ of an image. We do not

get to observe the image p* but rather a noisy version of it Y = p* +¢. Given

a library of d images {x1,...,24},x; € R", our goal is to recover the original

image p* using linear combinations of the images x1, ..., x4. This can be done
fairly accurately (see Figure 2.1).

Figure 2.1. Reconstruction of the digit “6”: Original (left), Noisy (middle) and Recon-
struction (right). Here n = 16 x 16 = 256 pixels. Source [RT11].

As we will see in Remark 2.3, choosing fixed design properly also ensures
that if MSE(f) is small for some linear estimator f(z) = "0, then |0 — 6*|2 is
also small.

In this chapter we only consider the fixed design case.

2.2 LEAST SQUARES ESTIMATORS

Throughout this section, we consider the regression model (2.2) with fixed
design.

Unconstrained least squares estimator

Define the (unconstrained) least squares estimator 0" to be any vector such
that R
0 € argmin [V — X0)3.
feRd
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Note that we are interested in estimating X6* and not * itself, so by exten-
sion, we also call i = X0 least squares estimator. Observe that i is the
projection of Y onto the column span of X.

It is not hard to see that least squares estimators of 6* and p* = X6* are
maximum likelihood estimators when & ~ N (0, 0%1,,).

Proposition 2.1. The least squares estimator "5 = X0 € IR™ satisfies
XTps =XTy.

Moreover, 6" can be chosen to be

0" = (X'X)IXTY,

where (XTX) denotes the Moore-Penrose pseudoinverse of X X.

Proof. The function 6 — |Y — X3 is convex so any of its minima satisfies
VoY —X02=0

Where Vy is the gradient operator. Using matrix calculus, we find

VolY —X03 = Vo{|Y]5+-2YTX0+0"X'X0} = -2(Y ' X—0'XTX)".

Therefore, solving Vy|Y — X6|3 = 0 yields

XTX0=X"Y.

It concludes the proof of the first statement. The second statement follows
from the definition of the Moore-Penrose pseudoinverse. O

We are now going to prove our first result on the finite sample performance
of the least squares estimator for fixed design.

Theorem 2.2. Assume that the linear model (2.2) holds where & ~ subG,,(c?).
Then the least squares estimator 6™ satisfies

A 1 .
E[MSE(X6")] = ~E[X6" — X6%|2 < 02—,
n n
where r = rank(X " X). Moreover, for any § > 0, with probability 1—§, it holds

MSE(X) < ,2r +log(1/9)

n

Proof. Note that by definition
Y = X053 < |Y — X673 = |ef3 - (2.4)
Moreover,

[V — X652 = [XO* + & — X0™|2 = [X6S — X0*|2 — 2 "X (0" — 0*) + |e|2.
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Therefore, we get
ETX(éLS —6%)

|X0" — X0*|2 < 2e TX (6" — %) = 2|X6" — XO*|y——
X (0" — 0%)]2

(2.5)

Note that it is difficult to control
ETX(éLs _ 9*)
X (6 — 6%)|

as 6 depends on ¢ and the dependence structure of this term may be com-
plicated. To remove this dependency, a traditional technique is “sup-out” 6.
This is typically where maximal inequalities are needed. Here we have to be a
bit careful.
Let ® = [¢1,...,¢.] € R™ " be an orthonormal basis of the column span
of X. In particular, there exists v € IR” such that X(§*5 — 6*) = ®v. It yields
eTX(0S —0*) Tdy e dv 7

- = = =¢ — < sup élu
IX(0s —6%)),  [Prlz2 V2 Ve T ues,

where Bs is the unit ball of R” and & = & Te. Thus

X0 — X0 |2 < 4 sup (6" u)?,
u€By
Next, note that for any u € S"1, it holds |Pul3 = u'®"®u = u'u = 1 so
that for any s € IR, we have

320'2

]E[eséTu] — ]E[essT':bu] S e 2

Therefore, & ~ subG,.(c2).
To conclude the bound in expectation, observe that Lemma 1.4 yields

AE[ sup (£'u)?] =4 Z E[£?] < 160°%r.
u€EBy i=1

Moreover, with probability 1 — J, it follows from the last step in the prooft of
Theorem 1.19 that

sup (£"u)? < 8log(6)o?r + 802 log(1/6) .
u€ B

Remark 2.3. If d <n and B := XX has rank d, then we have

n

MSE(X6)

éLS _ 9* 2 <
| |2 — )\min(B) )

and we can use Theorem 2.2 to bound |§S — 6*|2 directly.

Iwe could use Theorem 1.19 directly here but at the cost of a factor 2 in the constant.
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Constrained least squares estimator

Let K ¢ IR? be a symmetric convex set. If we know a priori that 6* € K, we
may prefer a constrained least squares estimator 0% defined by

0% € argmin|Y — X063 .
0K

Indeed, the fundamental inequality (2.4) would still hold and the bounds on
the MSE may be smaller. Indeed, (2.5) can be replaced by

IX0% — X0 |2 < 2 TX(0% —0") <2 sup (¢'X0),
9eK—K
where K — K = {z —y : 2,y € K}. It is easy to see that if K is symmetric
(x € K & —z € K) and convex, then K — K = 2K so that

2 sup (¢'X6) =4 sup (¢'v)
9eK—K veXK

where XK = {X6 : § € K} ¢ R". This is a measure of the size (width) of
XK. If e ~ N(0,1,), the expected value of the above supremum is actually
called Gaussian width of XK. Here, € is not Gaussian but sub-Gaussian and
similar properties will hold.

{1 constrained least squares

Assume here that K = B is the unit ¢, ball of IR?. Recall that it is defined by

d
Blz{:vEIRd : Z|Ii|§1}a
i=1

and it has exactly 2d vertices V = {e1, —e1,...,eq, —€q}, where e; is the j-th
vector of the canonical basis of IR? and is defined by

ej=(0,...,0, 1 ,0,...,0)".

jth position

It implies that the set XK = {X0,0 € K} C IR" is also a polytope with at
most 2d vertices that are in the set XV = {X;, —X;, ..., Xy, — X4} where X is
the j-th column of X. Indeed, XK is a obtained by rescaling and embedding
(resp. projecting) the polytope K when d < n (resp., d > n). Note that some
columns of X might not be vertices of XK so that XV might be a strict superset
of the set of vertices of XK.

Theorem 2.4. Let K = By be the unit {1 ball of R*, d > 2 and assume that
0* € By. Moreover, assume the conditions of Theorem 2.2 and that the columns
of X are normalized in such a way that max; |X;|o < \/n. Then the constrained

least squares estimator é%sl satisfies
Al 1 Al logd
E[MSE(X05,)] = —~BIX0%, — X0} S 0y —=—,

n n
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Moreover, for any 6 > 0, with probability 1 — 9§, it holds

- log(d/é
MSE(X05 ) < o log(d/9)
n
Proof. From the considerations preceding the theorem, we got that
|Xé;;sl — X602 <4 sup (¢"v)
veEXK

Observe now that since ¢ ~ subG,(c?),then for any column X; such that
IX;]2 < v/n, the random variable £"X; ~ subG(no?). Therefore, applying
Theorem 1.16, we get the bound on E[MSE(X@?)} and for any t > 0,
A 2
IP[MSE(X0}) > t] <P sup (e'v) > nt/4] < 2de” 3202
veXK

To conclude the proof, we find ¢ such that

nt2 1 2d 1 1 5
e B <5 o 2> 3002108C24) | 5y olog(1/0)

n n

O

Note that the proof of Theorem 2.2 also applies to élésl (exercise!) so that
9}331 benefits from the best of both rates.

E[MSE(X03,)] < min (~, M) .

n n

This is called an elbow effect. The elbow takes place around r ~ /n (up to
logarithmic terms).

ly constrained least squares

We abusively call £y norm of a vector # € IR? it number of non-zero coefficient.
It is denoted by

d
6l = S 1(6; #0).
j=1
We call a vector 6§ with “small” ¢y norm a sparse vector. More precisely, if
|0lo < k, we say that 6 is a k-sparse vector. We also call support of 6 the set

supp(9) = {j € {1,...,d} : 6; #0}
so that |6]op = card(supp(d)) =: | supp(6)| .

Remark 2.5. The /y terminology and notation comes from the fact that

d
lim " 16;|7 =0
Jim > 1051 = 16lo
J=1

Therefore it is really lim,_,o+ |#]2 but the notation |§|) suggests too much that
it is always equal to 1.
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By extension, denote by By(k) the £y ball of IR?, i.e., the set of k-sparse
vectors, defined by
Bo(k) ={0 € R : |0]o < k}.
In this section, our goal is to control the MSE of éf when K = By(k). Note that
computing ég’o(k) essentially requires computing (Z) least squares estimators,

which is an exponential number in k. In practice this will be hard (or even
impossible) but it is interesting to understand the statistical properties of this
estimator and to use them as a benchmark.

Theorem 2.6. Fiz a positive integer k < d/2. Let K = By(k) be set of
k-sparse vectors of RY and assume that 0% € By(k). Moreover, assume the
conditions of Theorem 2.2. Then, for any § > 0, with probability 1 — 9, it holds

A o? d o’k o2
MSE(X0z, 1)) < . log (2k> + — + g log(1/9).

Proof. We begin as in the proof of Theorem 2.2 to get (2.5):
eTX(6% — 0%)

X% — X0%|2 < 2e TX(0% — 0%) = 2|X6% — X0* - :
IX0% l> < (0% ) X0k E IX(0L — 6%)]

We know that both 85 and 6* are in By(k) so that 6% — 0* € By(2k). For
any S C {1,...,d}, let Xg denote the n x |S| submatrix of X that is obtained
from the columns of X;,j € S of X. Denote by rg < |S| the rank of Xg and
let g = [¢1,...,0r4] € R™ S be an orthonormal basis of the column span
of Xg. Moreover, for any § € R, define 6(S) € R!5! to be the vector with
coordinates 6;,j € S. If we denote by S = supp(d% — 6*), we have |S| < 2k
and there exists ¥ € IR"s such that

X(0 - 07) = Xg(0R(5) = 07(5)) = 4v.
Therefore,

TxC(fLs _ g+ T

X(6% -0 Qs
¢ A(‘K ) _ £ Pgv < max sup [¢' ®slu
IX(607 — 6|2 [vl2 IS1=2k yepys

where B5° is the unit ball of IR™S. It yields

|X0% — X0*|2 <4 max sup (£4u)?,
‘S‘:2ku6625

Es = ®Le ~ subG,4(c?).

Using a union bound, we get for any ¢ > 0,

IP( max sup (£'u)?>t) < Z P( sup (€7 u)? >t)

S|=2k S -
ISI1=2k uepys |S|=2k  u€B5®

It follows from the proof of Theorem 1.19 that for any |S| < 2k,

]P( sup (Tu)? > t) < 615le= 502 < 62k~ 507 |
u€ByS
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Together, the above three displays yield
ALS *(2 .
P(IX0% — X0*|5 > 4t) < o 6-"e 82 . (2.6)

To ensure that the right-hand side of the above inequality is bounded by §, we

need J
t> 002{ log (

2k) + klog(6) + 10g(1/6)} .

How large is log (2‘2)? It turns out that it is not much larger than k.

Lemma 2.7. For any integers 1 < k <mn, it holds
n en\k
<(%)
()= (5
Proof. Observe first that if £ =1, since n > 1, it holds,
") = n<en= (ﬂ) '
1) -\
Next, we proceed by induction and assume that it holds for some k < n — 1.
n en\k
< (%)
()=
Observe that
n\ (n n—k<(@)kn—k_ ekfnktl (1+1)k
k+1) \k)k+1 = \k/) k+1 (k+1)k! k)’

where we used the induction hypothesis in the first inequality. To conclude, it
suffices to observe that Ink
1+ —) <e
(1+7) <

It immediately leads to the following corollary:

Corollary 2.8. Under the assumptions of Theorem 2.6, for any § > 0, with
probability 1 — &, it holds

o2k

A 2k ed o?
s <0
MSE (X035, (1)) < = log (_2k) + = log(6) + g log(1/4) .
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Note that for any fixed 4, there exits a constant Cs > 0 such that for any
n > 2k,
. o2k ed
S
MSE(X@%O(,C)) < C(;— log (2k)

Comparing this result with Theorem 2.2 with » = k, we see that the price to
pay for not knowing the support of 8* but only its size, is a logarithmic factor
in the dimension d.

This result immediately leads the following bound in expectation.

Corollary 2.9. Under the assumptions of Theorem 2.6,
ok ed
E[MSE(X05, )] S = log ().
Proof. Tt follows from (2.6) that for any H > 0,
[MSE(X@%S k) / P |Xt9LS X0* |3 > nu)du

<H +/ P(|X60% — X0%|2 > n(u+ H))du

<H+Z< )62’“/ e e

In particular, it yields

which completes the proof. [l
2.3 THE GAUSSIAN SEQUENCE MODEL

The Gaussian Sequence Model is a toy model that has received a lot of
attention, mostly in the eighties. The main reason for its popularity is that
it carries already most of the insight of nonparametric estimation. While the
model looks very simple it allows to carry deep ideas that extend beyond its
framework and in particular to the linear regression model that we are inter-
ested in. Unfortunately we will only cover a small part of these ideas and
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the interested reader should definitely look at the excellent books by A. Tsy-
bakov [Tsy09, Chapter 3] and I. Johnstone [Johll]. The model is as follows:

Yi=0+¢g, i=1,....d (2.7)

where €1, ...,e4 are i.i.d N(0, 0?) random variables. Note that often, d is taken
equal to co in this sequence model and we will also discuss this case. Its links
to nonparametric estimation will become clearer in Chapter 3. The goal here
is to estimate the unknown vector 6*.

The sub-Gaussian Sequence Model

Note first that the model (2.7) is a special case of the linear model with fixed
design (2.1) with n = d, f(z) = 2"6*, x1,..., 7, form the canonical basis of
IR™ and ¢ has a Gaussian distribution. Therefore, n = d is both the dimension
of the parameter § and the number of observation and it looks like we have
chosen to index this problem by d rather than n somewhat arbitrarily. We
can bring n back into the picture, by observing that this model encompasses
slightly more general choices for the design matrix X as long as it satisfies the
following assumption.

Assumption ORT The design matrix satisfies

XX
= =

Idv

where I; denotes the identity matrix of IR?.

Assumption ORT allows for cases where d < n but not d > n (high dimensional
case) because of obvious rank constraints. In particular, it means that the d
columns of X are orthogonal in IR and all have norm +/n.

Under this assumption, it follows from the linear regression model (2.2)
that

1 XTX 1
y:=-X'Y = 0" + —X'e
n n
=0"+¢,

where € = (&1, ..,&) ~ subGg(0?/n). As aresult, under the assumption ORT,
the linear regression model (2.2) is equivalent to the sub-Gaussian Sequence
Model (2.7) up to a transformation of the data Y and a change of variable

for the variance. Moreover, for any estimator 6 e IR?, under ORT, it follows
from (2.3) that

+XTX
n

MSE(X6) = (§ — 6*) 0 —6%)=10—6%2.
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Furthermore, for any 6 € IR?, the assumption ORT yields,
1
ly =03 = |-XTY —0[3
n

2 1
=103 -20"X"Y + Y XXV
n n?

1 2 1
= 2[X0|2 - (XY + =|Y|?

nl I3 n( ) +n| I +@Q

1

:E|Y—X9|§+Q, (2.8)

where @ is a constant that does not depend on 6 and is defined by
L o™ L2
Q==Y XX'Y--[Y[;
n n
This implies in particular that the least squares estimator 0's is equal to y.

We introduce a sightly more general model called sub-Gaussian sequence
model:

y=0"+¢ e€R¢ (2.9)

where & ~ subGy(a?/n).

In this section, we can actually completely “forget” about our original
model (2.2). In particular we can define this model independently of Assump-
tion ORT and thus for any values of n and d.

The sub-Gaussian sequence model, like the Gaussian sequence model are
called direct (observation) problems as opposed to inverse problems where the
goal is to estimate the parameter #* only from noisy observations of its image
through an operator. The linear regression model one such inverse problem
where the matrix X plays the role of a linear operator. However, in these notes,
we never try to invert the operator. See [Cavll] for an interesting survey on
the statistical theory of inverse problems.

Sparsity adaptive thresholding estimators

If we knew a priori that 6 was k sparse, we could employ directly Corollary 2.8
to obtain that with probability 1 — §, we have

- o’k ed

MSE(X0f5, 1)) < Cs7— log (ﬁ) .

As we will see, the assumption ORT gives us the luxury to not know & and yet

adapt to its value. Adaptation means that we can construct an estimator that

does not require the knowledge of k (the smallest such that [8*|y < k) and yet,
perform as well as é%so(k), up to a multiplicative constant.

Let us begin with some heuristic considerations to gain some intuition.

Assume the sub-Gaussian sequence model (2.9). If nothing is known about 6*
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it is natural to estimate it using the least squares estimator g = y. In this
case,

ALS *|2 2 a’d
MSE(X6") = |y -0 |2 = |§|2 < 0577

where the last inequality holds with probability at least 1 — . This is actually
what we are looking for if ¥ = Cd for some positive constant C' < 1. The
problem with this approach is that it does not use the fact that £ may be much
smaller than d, which happens when 6* has many zero coordinate.

It 67 = 0, then, y; = &;, which is a sub-Gaussian random variable with vari-
ance proxy o2 /n. In particular, we know from Lemma 1.3 that with probability
at least 1 — 4,

Sl <o 2hos(2/) _ . (2.10)

n

The consequences of this inequality are interesting. One the one hand, if we
observe |y;| > 7 , then it must correspond to 07 # 0. On the other hand, if
ly;] < 7 is smaller, then, 8% cannot be very large. In particular, by the triangle
inequality, |07 < [y;| + [§;] < 27. Therefore, we loose at most 27 by choosing

éj = 0. It leads us to consider the following estimator.

Definition 2.10. The hard thresholding estimator with threshold 27 > 0
is denoted by """ and has coordinates

GHRD _ Yj if |yJ| > 27,
J 0 if |y,;| <27,

for j =1,...,d. In short, we can write é?RD = y; M(|y;| > 27).

From our above consideration, we are tempted to choose 7 as in (2.10).
Yet, this threshold is not large enough. Indeed, we need to choose 7 such that
|€;] < T simultaneously for all j. This can be done using a maximal inequality.
Namely, Theorem 1.14 ensures that with probability at least 1 — ¢,

2log(2d
max |¢;| < o 2log(2d/4)
1<j<d n

It yields the following theorem.

Theorem 2.11. Consider the linear regression model (2.2) under the assump-
tion ORT or, equivalenty, the sub-Gaussian sequence model (2.9). Then the
hard thresholding estimator 6" with threshold

o = 201/%, (2.11)

enjoys the following two properties on the same event A such that IP(A) > 1—0:
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(i) 1f10"]o =k,

MSE(XéHR,D) _ |éHRD _ 9*@ ,S o2 klog(2d/5) )
n

(i) if minjequpp(o+) 105 > 37, then

supp(6"™*”) = supp(6*).

Proof. Define the event
A= {max|g| <7},
J

and recall that Theorem 1.14 yields IP(4) > 1 — §. On the event A, the
following holds for any j =1,...,d.
First, observe that

lyjl >2r = |07 > |y;| = || > 7 (2.12)

and
lyjl <2t = |07 <|y;| +1&] < 37 (2.13)

It yields

105 — 651 = ly; — 6;1L(ly;| > 27) + |6 L(ly;| < 27)
< 7H(|y;| > 27) + |07 U(Jy;| < 27)
< F1(6:] > ) + 163106 < 37) by (2.12) and (2.13)
< 4min(|07],7)

It yields
d d
6" — 675 = > |67 — 657 < 16 Y min(|6;|*, 7%) < 16]6%|o7> .
j=1 j=1
This completes the proof of (i).
To prove (ii), note that if 65 # 0, then [0%] > 37 so that
ly;| = |05 +&| > 37 —7=27.

Therefore, é;“” # 0 so that supp(6*) C supp(é‘““)),
Next, if é;‘um # 0, then |9A?RD| = |y;| > 27. It yields

071> lyjl =7 >

Therefore, 07| # 0 and supp(6"*°)  supp(6*). O
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Hard Soft

-2
-2

-2 -1 0 1 2 -2 -1 0 1 2

Figure 2.2. Transformation applied to y; with 2 = 1 to obtain the hard (left) and soft
(right) thresholding estimators

Similar results can be obtained for the soft thresholding estimator gsrr

defined by
yj—27' ifyj>27',

0 =0y 421 ify; < -2,
0 if |y;| < 27,

In short, we can write
2T

A (A
! lysl/ -+

2.4 HIGH-DIMENSIONAL LINEAR REGRESSION

The BIC and Lasso estimators
It can be shown (see Problem 2.5) that the hard and soft thresholding es-
timators are solutions of the following penalized empirical risk minimization
problems:
G — argmin{|y — 03+ 472|9|0}
feR?

GSFT argmin{|y — 9|§ + 4T|9|1}
6eR
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In view of (2.8), under the assumption ORT, the above variational definitions
can be written as

. 1
OMRD — argmin{—|Y — X602 + 4T2|9|0}
pcRd T

N 1
g — argmin{—|Y X6 + 47’|9|1}
geRra T

When the assumption ORT is not satisfied, they no longer correspond to thresh-
olding estimators but can still be defined as above. We change the constant in
the threshold parameters for future convenience.

Definition 2.12. Fix 7 > 0 and assume the linear regression model (2.2). The
BIC? estimator of §* in is defined by any 6 such that

. 1
6™ € argmin {—|Y — X3 + 72|9|0}
pcRd T

Moreover the Lasso estimator of 8* in is defined by any 6 such that

0% € argmin {1|Y — X3 + 2T|9|1}
gerd T

Remark 2.13. NUMERICAL CONSIDERATIONS. Computing the BIC estimator

can be proved to be NP-hard in the worst case. In particular, no computational

method is known to be significantly faster than the brute force search among

all 2¢ sparsity patterns. Indeed, we can rewrite:

1 1
min {—|Y—X9|§+T2|9|0} = min { min —|Y—X9|§+7’2k}
feR? \n 0<k<d L 0:|0lo=k N

To compute ming.|g|,— %|Y — X0|%, we need to compute (Z) least squares

estimators on a space of size k. Each costs O(k3) (matrix inversion). Therefore
the total cost of the brute force search is

d
d 3 _ 3ad
Ckz_o(k>k = COd®2¢.

Instead the the Lasso estimator is convex problem and there exists many
efficient algorithms to compute it. We will not describe this optimization prob-
lem in details but only highlight a few of the best known algorithms:

1. Probably the most popular method among statisticians relies on coor-
dinate gradient descent. It is implemented in the glmnet package in R

[FHT10],

2Note that it minimizes the Bayes Information Criterion (BIC) employed in the tradi-
tional literature of asymptotic statistics if 7 = /log(d)/n. We will use the same value below,
up to multiplicative constants (it’s the price to pay to get non asymptotic results).
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2. An interesting method called LARS [EHJT04] computes the entire reg-
ularization path, i.e., the solution of the convex problem for all values
of 7. It relies on the fact that, as a function of 7, the solution 0% is a
piecewise linear function (with values in IR?). Yet this method proved
to be too slow for very large problems and has been replaced by glmnet
which computes solutions for values of 7 on a grid much faster.

3. The optimization community has made interesting contribution to this
field by using proximal methods to solve this problem. It exploits the
structure of the form: smooth (sum of squares) + simple (¢; norm).
A good entry point to this literature is perhaps the FISTA algorithm
[BT09].

4. There has been recently a lot of interest around this objective for very
large d and very large n. In this case, even computing |Y — X6|3 may
be computationally expensive and solutions based on stochastic gradient
descent are flourishing.

Note that by Lagrange duality computing 6~ is equivalent to solving an
{1 constrained least squares. Nevertheless, the radius of the /1 constraint is
unknown. In general it is hard to relate Lagrange multipliers to the size con-
straints. The name “Lasso” was given to the constrained version this estimator
in the original paper of Robert Tibshirani [Tib96].

Analysis of the BIC estimator

While computationally hard to implement, the BIC estimator gives us a good
benchmark for sparse estimation. Its performance is similar to that of #"*" but
without assumption ORT.

Theorem 2.14. Assume that the linear model (2.2) holds where & ~ subG,,(o?).
Then, the BIC estimator O®'° with reqularization parameter

2 21 d
2 — 1610g(6) L + 322 18(ed) (2.14)
n n

satisfies

~

j L h log(ed
MSE(XA"°) = LIxdm — X0 2 < [0 ]o02 28L¢%/0)
n n
with probability at least 1 — 0.

Proof. We begin as usual by noting that
1 BIC|2 2| pBIC 1 *|2 2| p*

It implies

IXO%C — XO*[2 < n72]0% o + 26 TX (67 — %) — 072|075 .
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First, note that

. XéBlC — Xp* R
2 TX(6MC — %) = 2T (—) IX6%C — X0%,
|XAmC — X0%,
XOPC —X0* \12 1~
< 2[5T (—)} + o |X0PC — X072,
|X9310 _ X9*|2 2

where we use the inequality 2ab < 2a? + %bQ. Together with the previous
display, it yields
X0MC — X0% |2 < 2n72|0%|o + 4 TUG"C — 67)]7 — 2n72(6°) 2.15
2
where R
u(éBIC _ 9*) — Xge — X0~
|XOB1C — X0*|4

Next, we need to “sup out” %°. To that end, we decompose the sup into a
max over cardinalities as follows:

Sup = max max sup .
fcR? 1Sk§d|5|:ksupp(9)25

Applied to the above inequality, it yields
A[eTUG™° - 6%))7 — 2072107

2
< max {max sup 4[e'UO —0")] —2n7%k
1<k<d " |S|=Fk supp(0)=S [ ( )} }

2
< max {max sup 4[5T<I>s,*u] —2n72k},
1<k<d " |S|=k TS
u€B,”

where ®5, = [¢1,...,¢r5.] is an orthonormal basis of the set {X;,j € SU
supp(6*)} of columns of X and rg. < [S| + |#*]o is the dimension of this
column span.

Using union bounds, we get for any ¢t > 0,

]P( max { max sup 4[e'®g.u ’_ onrkl >t
1§k§d{ \s\:kueB%* [ 5 ] } - )
2

d
< Z Z P sup [5T<I>57*u}2 >

1
+ —m'zk)
k=1|S|=k ueBy*

2

KNI

Moreover, using the e-net argument from Theorem 1.19, we get for |S| = k,

t 1 Lt Int?k
]P( sup [ETq)s,*uf > -+ —TLT2]€) < 2-6"%* exp ( — i)

ueB;s‘* 4 2 802
t nt2k N
< 2exp ( ~ 3957 T 1652 + (k+160"]0) log(G))
t
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where, in the last inequality, we used the definition (2.14) of 7.
Putting everything together, we get

]P(|Xé‘3IC — X6*|2 > 2n72|0% | + t) <

M=

¢ .
exp ( ~ 3957 2klog(ed) + 6|0 10g(12))
=k

=

:1‘

@0

M= I I

d t «
(k:) exp ( ~ 3997 2klog(ed) + 0" |o 10g(12))

t *
exp ( ~ 3997 klog(ed) + 6% |o 10g(12)) by Lemma 2.7
_ 4 X
=3 (ed) kexI>(-3202-+|e hlog(12))

b
I
—

t
< S A :
< exp ( 3952 +10 |010g(12))
To conclude the proof, choose t = 3252|0* | log(12)+ 3202 log(1/5) and observe
that combined with (2.15), it yields with probability 1 — 4,

|X0™'C — X0* |2 < 2n72(0% |0 + ¢
= 6402 log(ed)|0*|o + 64 1og(12)a?|0*|o + 3202 log(1/4)
< 224(0%|p0? log(ed) + 320% log(1/6) .

O

It follows from Theorem 2.14 that gric adapts to the unknown sparsity of
0*, just like 8"%P. Moreover, this holds under no assumption on the design
matrix X.

Analysis of the Lasso estimator
Slow rate for the Lasso estimator

The properties of the BIC estimator are quite impressive. It shows that under
no assumption on X, one can mimic two oracles: (i) the oracle that knows the
support of 6* (and computes least squares on this support), up to a log(ed)
term and (ii) the oracle that knows the sparsity |6*|op of 6%, up to a smaller
logarithmic term log(ed/|6*|o) is replaced by log(ed). Actually the latter can
even be removed by using a modified BIC estimator (see Problem 2.6).

The Lasso estimator is a bit more difficult because, by construction, it
should more naturally adapt to the unknown ¢;-norm of #*. This can be easily
shown as in the next theorem, analogous to Theorem 2.4.
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Theorem 2.15. Assume that the linear model (2.2) holds where e ~ subG,,(c2).
Moreover, assume that the columns of X are normalized in such a way that
max; [X;|o < v/n. Then, the Lasso estimator 0% with regularization parameter

n n
satisfies
MSE(K6%) = L[x0% — x0°[3 < 6" 1| LB i), [ 2108U010)
n n "

with probability at least 1 — §. Moreover, there exists a numerical constant
C > 0 such that

E[MSE(X0)] < C16* |10/ 282D
n

Proof. From the definition of 6%, it holds
1 AL 12 AL 1 %2 x
~[Y = X0 + 27(0%1 < —|Y = X67[3 +27(6"|1.

Using Hélder’s inequality, it implies

IXOF — X073 < 26 "X(0F — 0%) + 2n7 (|07 |1 — |0°]1)
< 21X Te| o051 — 2n7]0% |1 + 21X €| o]0 |1 + 2n7]0% |1
=2(|X"¢|oo — n7)|é£|1 +2(1X " ¢|oo + n7) 0% 1

Observe now that for any ¢ > 0,

+2
P(|X"¢|o > t) = P( max |X]Ta| > 1) < 2de” o2
1<j<d

Therefore, taking t = ov/2nlog(2d) + o+/2nlog(1/5) = nr, we get that with
probability 1 — 6, R
X0 — X6*|2 < 4n1|67]; .

The bound in expectation follows using the same argument as in the proof of
Corollary 2.9. O

Notice that the regularization parameter (2.16) depends on the confidence
level §. This not the case for the BIC estimator (see (2.14)).

The rate in Theorem 2.15 if of order /(logd)/n (slow rate), which is
much slower than the rate of order (logd)/n (fast rate) for the BIC estimator.
Hereafter, we show that fast rates can be achieved by the computationally
efficient Lasso estimator but at the cost of a much stronger condition on the
design matrix X.
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Incoherence

Assumption INC(k) We say that the design matrix X has incoherence k for
some integer k > 0 if

XX TR
| d|oo - 14k

where the |A|o, denotes the largest element of A in absolute value. Equivalently,

1. Forall j =1,...,d,
12
n 14k

2. For all 1 <4,5 <d, i # j, we have

- 1
_
XI%] < o

Note that Assumption ORT arises as the limiting case of INC(k) as k — oc.
However, while Assumption ORT requires d < n, here we may have d > n as
illustrated in Proposition 2.16 below. To that end, we simply have to show
that there exists a matrix that satisfies INC(k) even for d > n. We resort
to the probabilistic method [ASO8]. The idea of this method is that if we
can find a probability measure that puts a positive probability of objects that
satistify a certain property, then there must exist objects that satisfy said
property. In our case, we consider the following probability distribution on
random matrices with entries in {#1}. Let the design matrix X have entries
that are i.i.d Rademacher (£1) random variables. We are going to show that
most realizations of this random matrix satisfy Assumption INC(k) for large
enough n.

Proposition 2.16. Let X € IR"*¢ be a random matrix with entries Xij,i =
1,...,n,5 =1,...,d that are i.i.d Rademacher (+1) random variables. Then,
X has incoherence k with probability 1 — ¢ as soon as

n > 392k?log(1/8) + 784k*log(d) .
It implies that there exists matrices that satisfy Assumption INC(k) for
n 2 K log(d),
for some numerical constant C.

Proof. Let €;; € {—1,1} denote the Rademacher random variable that is on
the ¢th row and jth column of X.
Note first that the jth diagonal entries of X' X/n is given by
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Moreover, for j # k, the (j, k)th entry of the d x d matrix X;—X is given by

I~ . 15~
E;alﬂsz,k—n;@] )

where for each pair, (j, k), §§‘j’k) = €, j€i,k 50 that the random variables 55‘7"]6), e ,@Sj’k)
are iid Rademacher random variables.

Therefore, we get that for any t > 0,

IP(\&TLX —la| > t) = ]P(max’liéi(j’k)’ > 1)

j#k In :
1~ (i
< ZIP(‘— Z{Z(]’k)‘ > t) (Union bound)
£k nia
nt2
< 226_ 2 (Hoeffding: Theorem 1.9)
J#k
nt2
< dPe T

Taking now ¢t = 1/(14k) yields

XTX _

Lo > L) < d’e mET <6

P 14k

for
n > 392k%log(1/8) + 784k*log(d) .
O

For any # € R?, S C {1,...,d} define 65 to be the vector with coordinates

e — 0; ifjes,
9771 0 otherwise.

In particular |0]; = |0s|1 + [0se<]1-
The following lemma holds

Lemma 2.17. Fiz a positive integer k < d and assume that X satisfies as-
sumption INC(k). Then, for any S € {1,...,d} such that |S| < k and any
6 € R that satisfies the cone condition

|0sc]1 < 3|0s]1, (2.17)

it holds
X603

0o)2 < 2712
0s]5 < -
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Proof. We have

XX

X602 1 X0g|2
X0l _ —|X0s + XOs-|3 > X052 + 2604 Oge
n n n

n

If follows now from the incoherence condition that

X053 TXTX XTX 1053
n

= 05 =05 = 0[5 + 03 (= — L)0s = 0s 3 — 7,

and
XTX
‘N bse| <

Os|1|0se 0

14kl slilfse[r < 14]€| sl

Observe now that it follows from the Cauchy-Schwarz inequality that
0s[3 < 5116513

Thus for |S| < k,

|X0|3 75| 2
>
( 14k)|95|2 = |95|2

n

Fast rate for the Lasso

Theorem 2.18. Fizn > 2. Assume that the linear model (2.2) holds where e ~
subG,,(02). Moreover, assume that |0*|g < k and that X satisfies assumption

INC(k). Then the Lasso estimator 0% with regularization parameter defined by

o7 = 80y 2824 g, [108(1/9)
n n
satisfies
MSE(XA5) = %|Xé£ — X0 < kazw
and
105 = 0%] S ko w,
with probability at least 1 — §. Moreover,

Proof. From the definition of 6%, it holds
1 A 1 A
—|Y — XO2 < —|Y — X632 + 2716%|, — 27|01 .
n n

Adding 7|6% — 6*|; on each side and multiplying by n, we get

|XOF —X0*|24n7|0F —0%|) < 26 TX(GF —0*)+n7|6F —0* | +2n7|0* |1 —2n7|0%]; .
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Applying Holder’s inequality and using the same steps as in the proof of The-
orem 2.15, we get that with probability 1 — §, we get

e TX(0F — 0%) < |e"X|o0|0F — 67|

< 20165 — g7,

where we used the fact that |X;|3 < n + 1/(14k) < 2n. Therefore, taking
S = supp(#*) to be the support of 8%, we get

XG5 — X0% |2 + nr|0° — 0*|1 < 2n7]6F — 6% |, + 2n7|0%|, — 2n7|0% |,
= 27|05 — 0|1 + 2n7]0% |, — 207|051

< dn|05 — 0%, (2.18)
In particular, it implies that
185, — 0] < 3105 — 031

so that § = § — 0* satisfies the cone condition (2.17). Using now the Cauchy-
Schwarz inequality and Lemma 2.17 respectively, we get since |S| < k,

. - 2k
105 — 0711 < V/IS[105 = 0%]2 < |/ — X0 — X0"|>.
n
Combining this result with (2.18), we find

IX0F — X0%|3 < 32nk7r?.

165 — 07|, < 4y) 2 %% — %67
n

2k
<44/ W\/32nk72 < 32kt

Moreover, it yields

The bound in expectation follows using the same argument as in the proof of
Corollary 2.9. O

Note that all we required for the proof was not really incoherence but the
conclusion of Lemma 2.17:

X603
inf i | |22 >k (2.19)
|S|<koeCs n|Os|3

where kK = 1/2 and Cg is the cone defined by

Cs = {105l < 3051} -
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Condition (2.19) is sometimes called restricted eigenvalue (RE) condition. Its
name comes from the following observation. Note that all k-sparse vectors 6
are in a cone Cg with |S| < k so that the RE condition implies that the smallest
eigenvalue of Xg satisfies A\pin(Xs) > nk for all S such that |S| < k. Clearly,
the RE condition is weaker than incoherence and it can actually be shown
that a design matrix X of i.i.d Rademacher random variables satisfies the RE
conditions as soon as n > Cklog(d) with positive probability.
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2.5 PROBLEM SET

Problem 2.1. Consider the linear regression model with fixed design with
d < n. The ridge regression estimator is employed when the rank(X'X) < d

but we are interested in estimating 6*. It is defined for a given parameter 7 > 0
by

- 1
gridee — argmin {—|Y — X603 + T|9|§} .
peRrd T

(a) Show that for any 7, 592 is uniquely defined and give its closed form
expression.

(b) Compute the bias of 6592° and show that it is bounded in absolute value
by 1672

Problem 2.2. Let X = (1,7,..., Zd_l)T € IR? be a random vector where Z
is a random variable. Show that the matrix IE(X X ") is positive definite if Z
admits a probability density with respect to the Lebesgue measure on RR.

Problem 2.3. In the proof of Theorem 2.11, show that 4min(|05],7) can be
replaced by 3min(|¢7],7), i.e., that on the event A, it holds

647> — 9%| < 3min(|07], 7).

Problem 2.4. For any ¢ > 0, a vector § € IR? is said to be in a weak £q ball
of radius R if the decreasing rearrangement [0[y)| > [0j3)| > ... satisfies

|6‘[j]| < Rjil/q .
Moreover, we define the weak ¢, norm of 6 by

. -1
0] we, = gjagdj /"|0m|

(a) Give examples of 0,6" € IR? such that
10+ 0'Jwe, > 10we, + 10 we,
What do you conclude?
(b) Show that |0].e, < |0]q-
(c) Show that if limg ;oo |0]we, < 00, then limg ;o |0]4 < 0o for all ¢’ > q.

(d) Show that, for any ¢ € (0,2) if limg_c |0|we, = C, there exists a con-
stant Cy > 0 that depends on ¢ but not on d and such that under the
assumptions of Theorem 2.11, it holds

R 2 1—4
|6HRD_9*|§ < CQ(M) 2

n

with probability .99.
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Problem 2.5. Show that
MR — argmin{|y — 05+ 47'2|9|0}
0cR?

65" = argmin{|y — 03+ 4T|9|1}
R4

Problem 2.6. Assume that the linear model (2.2) with € ~ subG, (c?) and
0* # 0. Show that the modified BIC estimator 6 defined by

0 e argmin{%ﬁf — X6)2 + A|6]o log (_)}

ed
0cR? |9|0

satisfies,

. log (7
MSE(X6) < |9*|002M.
n
with probability .99, for appropriately chosen \. What do you conclude?

Problem 2.7. Assume that the linear model (2.2) holds where & ~ subG,,(c?).
Moreover, assume the conditions of Theorem 2.2 and that the columns of X
are normalized in such a way that max; |X;|2 < 4/n. Then the Lasso estimator

6 with regularization parameter

2log(2d
27 = 8o 70g( ),
n
satisfies .
6% < Cl6%|4

with probability 1 — (2d)~! for some constant C to be specified.



CHAPTER

Misspecified Linear Models

Arguably, the strongest assumption that we made in Chapter 2 is that the
regression function f(x) is of the form f(x) = x"#*. What if this assumption
is violated? In reality, we do not really believe in the linear model and we hope
that good statistical methods should be robust to deviations from this model.
This is the problem of model misspecified linear models.

Throughout this chapter, we assume the following model:

K:f(Xl)—FE“ Z:L,TL, (31)

wheree = (eq,... ,En)T is sub-Gaussian with variance proxy 2. Here X; € R,
When dealing with fixed design, it will be convenient to consider the vector
g € IR™ defined for any function g : R* = IR by g = (¢(X1),...,9(X,))". In

this case, we can write for any estimator f € R" of f,

MSE(f) = ~1f — /2.

n
Even though the model may not be linear, we are interested in studying the
statistical properties of various linear estimators introduced in the previous
chapters: o, 9}?, 53?, geic oL, Clearly, even with an infinite number of obser-
vations, we have no chance of finding a consistent estimator of f if we don’t
know the correct model. Nevertheless, as we will see in this chapter something
can still be said about these estimators using oracle inequalities.

60
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3.1 ORACLE INEQUALITIES

Oracle inequalities

As mentioned in the introduction, an oracle is a quantity that cannot be con-
structed without the knowledge of the quantity of interest, here: the regression
function. Unlike the regression function itself, an oracle is constrained to take
a specific form. For all matter of purposes, an oracle can be viewed as an
estimator (in a given family) that can be constructed with an infinite amount
of data. This is exactly what we should aim for in misspecified models.

When employing the least squares estimator é“s, we constrain ourselves to
estimating functions that are of the form x — "6, even though f itself may
not be of this form. Therefore, the oracle f is the linear function that is the
closest to f.

Rather than trying to approximate f by a linear function f(z) ~ 6"z, we
make the model a bit more general and consider a dictionary H = {¢1,...,¢n}
of functions where ¢; : IR? — IR. In the case, we can actually remove the
assumption that X € IRY. Indeed, the goal is now to estimate f using a linear
combination of the functions in the dictionary:

M
Freo=) 0.
i=1

Remark 3.1. If M = d and ¢;(X) = X returns the jth coordinate of
X € R? then the goal is to approximate f(x) by @ x. Nevertheless, the use of
a dictionary allows for a much more general framework.

Note that the use of a dictionary does not affect the methods that we have
been using so far, namely penalized/constrained least squares. We use the
same notation as before and define

1. The least squares estimator:

n

A 1 2
0" € argmin — Y; — po(X; 3.2
canin 57 0 ) 32

2. The least squares estimator constrained to K C IRM:
n

A 1 2
0ss in — E Y, — X;
K € aregen;m o - ( 909( ))

3. The BIC estimator:

ABIC : l - o )2 2
0 Ea;fﬁ%n&n{nE(K o(Xi)) +7 |9|0} (3.3)

=
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4. The Lasso estimator:

je 0L LS (v~ o (X))
0 Ea;génﬂbn{HE(lﬁ ©o(X5)) +27‘|6‘|1} (3.4)

Definition 3.2. Let R(-) be a risk function and let H = {¢1,...,on} be a
dictionary of functions from IR? to R. Let K be a subset of RM. The oracle
on K with respect to R is defined by g, where 6 € K is such that

R(¢z) < R(po) Voe K.

Moreover, Rx = R(ypg) is called oracle risk on K. An estimator f is said
to satisfy an oracle inequality (over K') with remainder term ¢ in expectation
(resp. with high probability) if there exists a constant C' > 1 such that

ER(f) < Ceigf( R(pg) + dnr(K),

or

P{R(f) < C inf R(¢o) + ¢nara(K)} 210, V5>0
respectively. If C' =1, the oracle inequality is sometimes called ezact.

Our goal will be to mimic oracles. The finite sample performance of an
estimator at this task is captured by an oracle inequality.

Oracle inequality for the least squares estimator

While our ultimate goal is to prove sparse oracle inequalities for the BIC and
Lasso estimator in the case of misspecified model, the difficulty of the exten-
sion to this case for linear models, is essentially already captured for the least
squares estimator. In this simple case, can even obtain an exact oracle inequal-
ity.

Theorem 3.3. Assume the general regression model (3.1) with & ~ subGy,(a?).

Then, the least squares estimator g satisfies for some mumerical constant
C >0,

oM

MSE(p4.) < inf MSE C=—log(1/5
(pgu) < inf MSE(pp) + og(1/0)

n
with probability at least 1 — 0.
Proof. Note that by definition

Y — a3 <Y — p5l3

where ¢ denotes the orthogonal projection of f onto the linear spam of
©1,...,pn. Since Y = f + ¢, we get
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Moreover, by Pythagoras’s theorem, we have
|f = pauls = 1f = val3 = lpas — wal3-

It yields

|<PéLs - </7§|§ < 25T(@éhs - 909)'
Using the same steps as the ones following equation (2.5) for the well specified
case, we get

oM
P4 — als S ——log(1/9)
with probability 1 — . The result of the lemma follows. O

Sparse oracle inequality for the BIC estimator

The techniques that we have developed for the linear model above also allows
to derive oracle inequalities.

Theorem 3.4. Assume the general regression model (3.1) with & ~ subGy,(c?).
Then, the BIC estimator 0®'° with reqularization parameter

2 _ 1602

an

T log(6eM),a € (0,1) (3.5)

satisfies for some numerical constant C > 0,

2

. e Co
o) < I -
MSE(pguc) < ,inf {7 MSE(po) 7~ 16l og(eM) |
Co?
— log(1
+ iy o1/)

with probability at least 1 — 9.

Proof. Recall the the proof of Theorem 2.14 for the BIC estimator begins as
follows:

1 A 1
—[¥ = @gucl3 + 710"l <~V = ol3 + 72160
This is true for any # € RM. It implies
| = guel3 +n7216%0 < [ f = @ol3 + 26T (9gue — 0) + 7[00 -

Note that if 6%1¢ = 0, the result is trivial. Otherwise,

Posic — 909
2ET geic — ¥0) = 2ET(07) geic — 012
(Pguec — ©a) o — ol |[@gue — wl
<2|:ET( spémc_goe ):|2+g|90A _<P9|2
= o |gﬂémc — 509|2 2 gBic 2
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where we use Young’s inequality 2ab < %aQ + %bQ valif for a,b > 0, a > 0.
Next, since

«
§|90éw - 909|§ < a'@émc - f|§ + O‘|909 - f|§7

we get for a < 1,

(1 - O‘)|80§mc - f|% S (1 + |909 - f|% + ’I’LT2|9|0

«
2. 7 2 2| ABIC
+ E 8 u(spém(‘ - SOQ)] —nT |9 |0
< (L4 a)|ps — fI5 + 2n72|0]o
2 A
+ = ETU(Pgue_g)] = 7267 — 0]

We conclude as in the proof of Theorem 2.14. O

A similar oracle can be obtained in expectation (exercise).

The interpretation of this theorem is enlightening. It implies that the
BIC estimator will mimic the best tradeoff between the approximation error
MSE(pp) and the complexity of 6 as measured by its sparsity. In particu-
lar this result, sometimes called sparse oracle inequality implies the following
oracle inequality. Define the oracle § to be such that

MSE(pp) = min MSE(po)

then, with probability at least 1 — ¢,
1+« Co? ~
V< L ~ -
MSE(p) < T MSE(s) + o 1810 1og(e11) +og(1/6)] }

If the linear model happens to be correct, then, simply, MSE(ypg) = 0.

Sparse oracle inequality for the Lasso

To prove an oracle inequality for the Lasso, we need incoherence on the design.
Here the design matrix is given by the n x M matrix ® with elements ®; ; =

©;(Xi).

Theorem 3.5. Assume the general regression model (3.1) with & ~ subG,,(c?).
Moreover, assume that there exists an integer k such that the matrix ® satisfies
assumption INC(k) holds. Then, the Lasso estimator 0% with regularization
parameter given by

o7 — 80y 22082M) logr(fM) 1 8oy 2108U/0) logil/ %) (3.6)
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satisfies for some numerical constant C,

) 1+« Co?
o) < .
MSE(pze) < inf, {0 MSE(po) + 3= v lflo log(eM) |
[0]o<K
Co?
oo e 0s01/9)

with probability at least 1 — 0.

Proof. From the definition of 6%, it holds for any # € RM
1 2 1 2 jL
E|Y —gela < E|Y — ol3 + 27101 — 27(0%]; .

Adding 7|6% — 6], on each side and multiplying by n, we get

[oge—F13—lpo—fI3+n7|0% =0l < 26T (9ge —p0)+nT]6°—6]1+2n7|6]1—2n7|0]; .

(3.7)
Next, note that INC(k) for any k£ > 1 implies that |p,]a < 24/n for all j =
1,..., M. Applying Holder’s inequality using the same steps as in the proof of
Theorem 2.15, we get that with probability 1 — 4, it holds

nT A
2 (pge — o) < 7|9£ -0

Therefore, taking S = supp(d) to be the support of 8, we get that the right-
hand side of (3.7) is bounded by

< 2n7|0% — 01 + 2076, — 2n7]0|,
= 27|05 — 0]; + 2n7)0]; — 2n7]05)

< dnt|05 — 6|, (3.8)

with probability 1 — 4.
It implies that either MSE(yp,.) < MSE(pg) or that

|é§c - 93c|1 < 3|é§ — 95|1 .

so that 6 = % — @ satisfies the cone condition (2.17). Using now the Cauchy-
Schwarz inequality and Lemma 2.17 respectively, assume that [8o < k, we

get, . .
Ant|0§ — 0|1 < 4nT+/[S]105 — 02 < 47/2n|0)0]pse — o2 -
Using now the inequality 2ab < 2a? + £b?, we get

- 167%n|6
4m’|9§ -0 LHO

IN

o 2
+ §|<Péa — vol3

16T27’L|9|0
< =0t alpge — f13 +alpo - £13
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Combining this result with (3.7) and (3.8), we find

1672|6
(1 - a)MSE(g5e) < (1+ 0)MSE(gy) + -0

To conclude the proof of the bound with high probability, it only remains to
divide by 1—a on both sides of the above inequality. The bound in expectation
follows using the same argument as in the proof of Corollary 2.9. O

Maurey’s argument

From the above section, it seems that the Lasso estimator is strictly better
than the BIC estimator as long as incoherence holds. Indeed, if there is no
sparse 6 such that MSE(pg) is small, Theorem 3.4 is useless. In reality, no
one really believes in the existence of sparse vectors but rater of approximately
sparse vectors. Zipf’s law would instead favor the existence of vectors 6 with
absolute coefficients that decay polynomially when ordered from largest to
smallest in absolute value. This is the case for example if # has a small ¢;
norm but is not sparse. For such 6, the Lasso estimator still enjoys slow rates
as in Theorem 2.15, which can be easily extended to the misspecified case (see
Problem 3.2). Fortunately, such vectors can be well approximated by sparse
vectors in the following sense: for any vector § € RM such that |0]; < 1, there
exists a vector ' that is sparse and for which MSE(yy/) is not much larger
than MSE(gg). The following theorem quantifies exactly the tradeoff between
sparsity and MSE. Tt is often attributed to B. Maurey and was published by
Pisier [Pis81]. This is why it is referred to as Maurey’s argument.

Theorem 3.6. Let {¢1,...,om} be a dictionary normalized in such a way
that

1g;aijlcpgla < Dyn

Then for any integer k such that 1 < k < M and any positive R, we have

D2R?
min MSE(pg) < min MSE(pg) +
gcRM geRM k
[0lo<2k [0]1<R

Proof. Define -
6 € argmin |pg — f|3

fecRM
[0]1<R

and assume without loss of generality that 01 > |02 > ... > O]
Now decompose f = ) +6®) where supp(#V)) c {1 ..., k} and supp(f?)
{k+1,...,M}. In particular it holds

Yg = Py T Yo -
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Moreover, observe that

0@ = Z ;| < R

j=k+1

Let now U € IR™ be a random vector with values in {0, +Rep1,...,+=Ron}
defined by
7
T j=k+1,....M
B |9(2)|1
=

Note that IE[U] = ¢y and |Ulz < RD+/n. Let now Uy, ..., Uy be k indepen-
dent copies of U define
k

Note that U = ¢ for some § € IRM such that [f]o < k. Therefore, |01 +6|y <
2k and

PU = R51gn(6‘§2))<pj) =

P(U =0) =

wl}—‘

E|f — pp0) — U3 = E|f — 9ga) — g + g — Ul3
=E|f — o) — 0o |3 + 0o — U3

E|U — E[U]|?
= If ~ paly + PP

RD+/n)?
§|f—<ﬂé|§+%

To conclude the proof, note that
E|f — g — U3 = E|f — pga) 1 4l5 2 nin, |f = ol
[0]o<2k

and to divide by n. [l
Maurey’s argument implies the following corollary.

Corollary 3.7. Assume that the assumptions of Theorem 3.4 hold and that
the dictionary {¢1,...,om} is normalized in such a way that

<
B, el < V.

Then there exists a constant C > 0 such that the BIC estimator satisfies

) 2|00 log(eM) log(eM)
Opime) < - o/ =
MSE(@guc) < 9énfM {2MSE(309) + C[ - Aol - } }

o2 log(1/6)

n

+C

with probability at least 1 — 0.
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Proof. Choosing o = 1/3 in Theorem 3.4 yields

) 02|00 log(eM) o2 log(1/6)
e ) <
MSE(pgu) <2 inf, {MSE(gpg) rC n } +07 =%

For any 6’ € RM | it follows from Maurey’s argument that there exist § € RM
such that |0]¢p < 2]0'|o and

210" |3

It implies that

216"|2
16lo

+002|9|010g(€M)

002|9|010g(€M)
n

MSE (g) + < MSE(ypg/) +

Taking infimum on both sides, we get

0[6]y log(eM)
inf {MSE _—
L AMSE (o) + O

: arak o%klog(eM)
< ’ —_— - .
< g/g}éM{MSE(W )—l—C’mkm( ’ +C - )}

To control the minimum over &, we need to consider three cases for the quantity

i 10" [log M

g n

1. IflglégM, then we get

0'|2 2k1 M 1 M
min (| |1 4 CU Og(e )) S OO’|0/|1 Og(e )
2 k n n

2. If k < 1, then
03 < o 1B

which yields
o%klog(eM)

n

a2 log(eM)
n

9/ 2
mkin (% +C ) <C
3. If k> M, then
o2 M log(eM) < Cw.
n - M
0]

o+/log(eM)/n’ we get

alak o%klog(eM) |6/ |3 . [log(eM)
- — =2 )< — < _—
rnkln( k +C )_C < Colb') - .

n

Therefore, on the one hand, if M >
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On the other hand, if M < %, then for any © € IRM, we have
ov/log(e n
21601 M M1 M 1 M
o"10]o Zg(e ) @ f;g(e ) < Colt']s Og(s )

O

Note that this last result holds for any estimator that satisfies an oracle
inequality with respect to the ¢y norm such as the result of Theorem 3.4. In
particular, this estimator need not be the BIC estimator. An example is the
Exponential Screening estimator of [RT11].

Maurey’s argument allows us to enjoy the best of both the £y and the
{1 world. The rate adapts to the sparsity of the problem and can be even
generalized to {4-sparsity (see Problem 3.3). However, it is clear from the proof
that this argument is limited to squared /s norms such as the one appearing
in MSE and extension to other risk measures is non trivial. Some work has
been done for non Hilbert spaces [Ris81, DDGS97] using more sophisticated
arguments.

3.2 NONPARAMETRIC REGRESSION

So far, the oracle inequalities that we have derived do not deal with the
approximation error MSE(gpg). We kept it arbitrary and simply hoped that
it was small. Note also that in the case of linear models, we simply assumed
that the approximation error was zero. As we will see in this section, this
error can be quantified under natural smoothness conditions if the dictionary
of functions H = {p1,...,op} is chosen appropriately. In what follows, we
assume for simplicity that d =1 so that f : IR =+ IR and ¢; : R = RR.

Fourier decomposition

Historically, nonparametric estimation was developed before high-dimensional
statistics and most results hold for the case where the dictionary H = {¢1,...,om}
forms an orthonormal system of Ls([0,1]):

1 1
/ o} (z)dz =1, / wj(@)pr(z)de =0, Vj#k.
0 0

We will also deal with the case where M = oco.
When H is an orthonormal system, the coefficients 67 € IR defined by

1
o: = /O @)y (@)dz,

are called Fourier coefficients of f.
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Assume now that the regression function f admits the following decompo-

sition
oo
F= 60;.
j=1
There exists many choices for the orthonormal system and we give only two

as examples.

Example 3.8. Trigonometric basis. This is an orthonormal basis of Ly ([0, 1]).
It is defined by

p1 = 1
wor(z) = V2 cos(2mkzx) ,
pori1(z) = V2sin(27ka),

for k=1,2,... and z € [0,1]. The fact that it is indeed an orthonormal system
can be easily check using trigonometric identities.

The next example has received a lot of attention in the signal (sound, image,
...) processing community.

Example 3.9. Wavelets. Let vv : IR — IR be a sufficiently smooth and
compactly supported function, called “mother wavelet”. Define the system of
functions

Yin(x) = 2% — k), jkeZ.

It can be shown that for a suitable v, the dictionary {¢; 1,7, k € Z} forms an
orthonormal system of Ly([0, 1]) and sometimes a basis. In the latter case, for
any function g € Ly([0, 1]), it holds

oo o) 1
g= Z Z Okt 5 ojk:A 9(@)jn(x)dz .

j=—00 k=—00

The coefficients 6, are called wavelet coefficients of g.

The simplest example is given by the Haar system obtained by taking v to
be the following piecewise constant function (see Figure 3.1). We will not give
more details about wavelets here but refer simply point the interested reader
to [Mal09].

1 0<z<1/2
YE)y=< -1 1/2<z2<1
0  otherwise

Sobolev classes and ellipsoids

We begin by describing a class of smooth functions where smoothness is under-
stood in terms of its number of derivatives. Recall that f(*) denotes the k-th
derivative of f.
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Figure 3.1. The Haar mother wavelet

Definition 3.10. Fix parameters 8 € {1,2,...} and L > 0. The Sobolev class
of functions W (g8, L) is defined by

W(s,L) = {f 0,1] = R : f e Ly([0,1]), fPY is absolutely continuous and
1
[ up <22 90 = ;9.5 =0....5-1}
0

Any function f € W (3, L) can represented! as its Fourier expansion along
the trigonometric basis:

o0

f(x) =07e1(x) + ) (05.021(2) + O34y 12041 (), YV e(0,1],
k=1

where 6* = {07 };>1 is in the space of squared summable sequence £5(IN) defined

by
05(IN) = {9 Y 62 < oo}.
j=1
For any 8 > 0, define the coefficients

.ﬂ f .
o J or j even
4= { (j —1)% for j odd (3.9)

Thanks to these coefficients, we can define the Sobolev class of functions in
terms of Fourier coefficients.

n the sense that

k—oo

1 k
tim [ 150 -3 tseytoPar=o
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Theorem 3.11. Fiz 3 > 1 and L > 0 and let {¢;};>1 denote the trigonometric
basis of L2([0,1]). Moreover, let {a;};>1 be defined as in (3.9). A function
feW(B,L) can be represented as

F=> 09,
j=1
where the sequence {07 };>1 belongs to Sobolev ellipsoid of £2(IN) defined by

0(3,Q) = {0 € &2(I) : ia?@?— <Q}

j=1
for Q = L? /7?5,

Proof. Let us first recall the definition of the Fourier coefficients {sx(j)}x>1 of
the jth derivative fU) of f for j=1,...,0:

() = / FO ()t = fID (1) — FID(0) =0,
0
1
sax(j) = \/5/0 U (t) cos(2nkt)dt

1
sopt1(j) = V2 / O (t) sin(2rkt)dt
0

The Fourier coeflicients of f are given by 6 = s(0).
Using integration by parts, we find that

sok(8) = V2f P~ (t) cos(27kt) ; + (27k)V?2 / 1 FE=V(t) sin(2rkt)dt
0
=V2[fB1 1) — FE=D(0)] + (27rk)\/§/1 OV () sin(2rkt)dt
0
= (27T]€)82k+1(6 — 1) .
Moreover,
1
sops1(B) = V2FP V(1) sin(27rk:t)‘(l) — (2mk)V2 / FEI(t) cos(2mkt)dt
0
= —(27k)sak (B —1).
In particular, it yields

s2k(B8)? + s2k41(8)? = (2mk)? [s21(8 — 1)% + sox11(8 — 1)°]

By induction, we find that for any k& > 1,

s2k(B)? + sart1(B)? = (27k)*P (03, + 03441)
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Next, it follows for the definition (3.9) of a; that

Z (27k) 26 92k + 92k+1 S Za W03 + 2 Zangrle%kJrl
k=1 k=1

— 28 Z a292

Together with the Parseval identity, it yields

/ (f(ﬂ) Z so1(8)* + s2+1(8)* = 7 Z G%JQ’ :
0 i=1

To conclude, observe that since f € W (8, L), we have

/1 (f(ﬁ)(t))zdt <12,
0

so that 0 € ©(3, L?/=%7). O

It can actually be shown that the reciprocal is true, that is any function
with Fourier coefficients in ©(3, Q) belongs to if W (8, L) but we will not be
needing this.

In what follows, we will define smooth functions as functions with Fourier
coefficients (with respect to the trigonometric basis) in a Sobolev ellipsoid. By
extension, we write f € ©(8, Q) in this case and consider any real value for £.

Proposition 3.12. The Sobolev ellipsoids enjoy the following properties
(i) For any @ > 0,

0<f <p = 6(3,0)Cco@, Q)

(ii) For any @ > 0,

8> % = f is continuous

The proof is left as an exercise (Problem 3.5)

It turns out that the first functions in the trigonometric basis are orthonor-
mal with respect to the inner product of Ly but also to the inner predictor
associated to fixed design (f,g) := L f(X;)g(X;) when the design is chosen to
be regular, ie., X, = (i—1)/n,i=1,...,n

Lemma 3.13. Assume that {X1,...,X,} is the regular design, i.e., X; =
(¢ —1)/n. Then, for any M < n — 1, the design matriz ® = {¢;(X )} 1<i<n

1<j<M
satisfies the ORT condition.
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Proof. Note first that for any 7,5 € {1,...,n — 1}, j # j’ the inner product
go;rcpj/ is of the form

n—1

] ey =2 uy(2mk;s/n)vy (2wkys/n)
s=0

where k; = [j/2] is the integer part of j/2 for any = € R, u;(x),v;/(z) €
{Re(e?), Tm(e®)}.
Next, observe that if k; # k;/, we have

n—1

27k ;s |27rk./s i2m(kj—k.s)s
Z e n nJ = Z e% = O .
s=0
Moreover, if we define the vectors a,b,a’,b’ € IR™ with coordinates such that
i2nwk.,;s 27k _.ss
e =as+ibsand e n = dl, +ib,, we get
i2mk i2mwk s
Z e~ e =(a+ib) (a —it)=a"d +b"V +i[bTd —a"V]

and consequently that

1
2%Tgpj/ =a'd +b"V + i[bTa/ - aTb’]

with |al2]b|2 = |a’|2]d']2 = 0, i.e., either @ = 0 or b = 0 and either a’ = 0 or
b" = 0. Therefore, in the case where k; # k;, we have

a'ad ==b"H =0, bla =a"t =0

which implies gpjT%—/ = 0. To conclude the proof, it remains to deal with the
case where k; = kj. This can happen in two cases: |j' —j|=1orj =j. In
the first case, we have that {u;(z),v;(z)} = {Re(e!*),Tm(e!*)}, i.e., one is a
sin(-) and the other is a cos(-). Therefore,

1
2% i =a'd+b'V+ib'ad —a't] =0

The final case is 7 = j' for which, on the one hand,

n—1 —

i2rk;js i2mkjs idrk;s
Z € Z

s=0 s=0

and on the other hand

27k 27k,

Ze g = la+ib3 = lal3 — |bf3
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so that |a|? = |b|2. Moreover, by definition,

- 2lal? if j is even
Pi127 22 if jis odd

so that
|<p_|272|a’|2+|b|2 Z| 'Qﬂks
J12 —

Therefore, the design matrix ® is such that
'O =nly.

Integrated squared error

As mentioned in the introduction of this chapter, the smoothness assumption
allows us to control the approximation error. Before going into the details, let
us gain some insight. Note first that if 6 € ©(3,Q), then a365 — 0 as j — oo
so that |0 = o(j~?). Therefore, the 6;s decay polynomially to zero and it
makes sense to approximate f by its truncated Fourier series

26‘]% =: pp!

for any fixed M. This truncation leads to a systematic error that vanishes as
M — oco. We are interested in understanding the rate at which this happens.

The Sobolev assumption to control precisely this error as a function of the
tunable parameter M and the smoothness .

Lemma 3.14. For any integer M > 1, and f € ©(8,Q), 8 > 1/2, it holds
lod? = flIZ, = D 1651 < QM. (3.10)
§>M
and for M =n — 1, we have
2
pt = fE <o ( o 151) S Qe (3.11)
jzn

Proof. Note that for any 0 € ©(5,Q), if § > 1/2, then

o0 oo 1

D165l => a6, —
. . a/J
Jj=2 Jj=2

o0 oo 1
< Z Z s by Cauchy-Schwarz
§=2 =%
=1
<@ 5 <
=17
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Since {p;}; forms an orthonormal system in Ls([0,1]), we have

. 2 2 *|2
min oo = J112, = lleo- = fIF, = Y 16517
i>M
When 6* € ©(8,Q), we have
1 1 Q
*12 210%12
Z|9j| —Z%Wﬂgﬁ 2 QSMM'

a
j>M j>M J M+1

To prove the second part of the lemma, observe that
it = Fle =2 05eil, < 2v20 3 1031,
jzn jzn

where in the last inequality, we used the fact that for the trigonometric basis
lpjla < V2n,j > 1 regardless of the choice of the design X,...,X,. When
0* € ©(5,Q), we have

1 1
dI651=>aslo5l— < > a?l6;? — <Qni B,
jzn jzn % i>n i=n Y

Note the truncated Fourier series (g« is an oracle: this is what we see when
we view f through the lens of functions with only low frequency harmonics.
To 