
Non-Computable Functions

1 The Main Result

• We’ll focus on functions f : N → N.

• For a computer program to compute f is for it to yield f(n) as output
whenever it is given n as input (n ∈ N).

• Theorem: not every function is computable.

(And I can give you examples!)

2 The Overall Plan

• Turing Machines are computers of an especially simple sort.

• We’ll see that some functions are not Turing-computable.

• But: any function that can be computed using an ordinary computer
is also computed by some Turing Machine.

3 Computing functions on a Turing Machine

• Simplifying Assumptions:

– We’ll focus on one symbol Turing Machines (where the only ad-
missible symbols are ones and blanks).

– We’ll assume that the tape is only unbounded on the right.

• Turing Computabiity:

– M computes a function f(x) if and only if it delivers f(n) as
output whenever it is given n as input.

– M takes n (n ∈ N) as input if it starts out with a tape that
contains only a sequence of n ones (with the reader positioned at
the left-most one, if n > 0).

1

– M delivers f(n) as output if it halts with a tape that contains
only a sequence of f(n) ones (with the reader positioned at the
left-most one, if n > 0).

4 Coding Turing Machines as Numbers

The Plan

Turing Machine → Sequence of symbols → Sequence of numbers → Unique number

Sequence of symbols → Sequence of numbers

State Symbols: Tape Symbols: Movement Symbols:

“0” → 0 “ ” → 0 “r” → 0
“1” → 1 “1” → 1 “∗” → 1

. . . “l” → 2

Sequence of numbers → Unique number

Codes the sequence hn1, n2, . . . , nki as the number:
n1+1 n2+1 nk+1 p · p · . . . · p1 2 k

where pi is the ith prime number.

(Treat any number that doesn’t code a valid sequence of command lines as
a code for the “empty” Turing Machine.)

4.1 An example

2310 = 2 · 3 · 5 · 7 · 11

↓
20+1 · 30+1 · 50+1 · 70+1 · 110+1

↓
0 0 0 0 0

↓
0 r 0

2

5 The Halting Function (
1 if the nth Turning Machine halts when given input m;

• H(n, m) =
0 otherwise.

For instance: H(2310, 0) = 0 and H(2310, 2310) = 1.

• H(n) = H(n, n)

For instance: H(2310) = 1.

6 H(n) is not Turing-computable

• Assume for reductio: Turing Machine MH computes H(n).

• Construct Turing Machine M I , which behaves as follows on input k:

Step 1: Check whether H(k) (using MH).(
If H(k) = 1, go right forever.

Step 2:
If H(k) = 0, halt.

• Informally: What happens when you run M I on input M I ? It figures
out whether it itself would halt on input M I . If the answer is yes, it
goes off on an infinite task; if the answer is no, it immediately halts.

• Formally: H(M I) 1 or 0?

– Suppose H(M I) = 1. Then (by Step 2) M I goes right forever on
input M I . So H(M I) = 0.

– Suppose H(M I) = 0. Then (by Step 2) M I halts on input M I .
So H(M I) = 1.

• So M I is impossible. So MH isn’t computable after all.

3

7 The Busy Beaver Function (
k, if M yields output k on an empty input

• Productivity(M) =
0, otherwise

the productivity of the most productive (one-symbol) • BB(n) =
Turing Machine with n states or fewer.

8 BB(n) is not Turing-computable

• Assume for reductio: Turing Machine MBB computes BB(n).

• Construct Turing Machine M I , which behaves as follows on an empty
input:

Step 1: Print a sequence of k ones, for a certain k (specified below).

Result: k.

Step 2: Duplicate your string of ones.

Result: 2k.

Step 3 Apply BB to your string of ones (using MBB).

Result: BB(2k).

Step 4 Add one to your string of ones.

Result: BB(2k) + 1.

• Let k = b + c + d

b = the number of states used in Step 2 (to duplicate)

c = the number of states used in Step 3 (to apply BB)

d = the number of states used in Step 4 (to add one)

Note: since a Turing Machine can output k using k states,

M I = k + b + c + d = 2k

• MBB is impossible:

4

– At Stage 3, it produces as long a sequence of ones as a machine
with 2k states could possibly produce.

– But (as noted above) M I = 2k.

– So at Stage 3, it produces as long a sequence of ones as it itself
could possibly produce.

– So at Stage 4, it produces a longer string of ones than it itself
could possibly produce.

• So MH isn’t computable after all.

5

MIT OpenCourseWare
https://ocw.mit.edu/

24.118 Paradox and Infinity
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

