
Non-Computable Functions 

1 The Main Result 

• We’ll focus on functions f : N → N. 

• For a computer program to compute f is for it to yield f(n) as output 
whenever it is given n as input (n ∈ N). 

• Theorem: not every function is computable. 

(And I can give you examples!) 

2 The Overall Plan 

• Turing Machines are computers of an especially simple sort. 

• We’ll see that some functions are not Turing-computable. 

• But: any function that can be computed using an ordinary computer 
is also computed by some Turing Machine. 

3 Computing functions on a Turing Machine 

• Simplifying Assumptions: 

– We’ll focus on one symbol Turing Machines (where the only ad-
missible symbols are ones and blanks). 

– We’ll assume that the tape is only unbounded on the right. 

• Turing Computabiity: 

– M computes a function f(x) if and only if it delivers f(n) as 
output whenever it is given n as input. 

– M takes n (n ∈ N) as input if it starts out with a tape that 
contains only a sequence of n ones (with the reader positioned at 
the left-most one, if n > 0). 
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– M delivers f(n) as output if it halts with a tape that contains 
only a sequence of f(n) ones (with the reader positioned at the 
left-most one, if n > 0). 

4 Coding Turing Machines as Numbers 

The Plan 

Turing Machine → Sequence of symbols → Sequence of numbers → Unique number 

Sequence of symbols → Sequence of numbers 

State Symbols: Tape Symbols: Movement Symbols: 

“0” → 0 “ ” → 0 “r” → 0 
“1” → 1 “1” → 1 “∗” → 1 

. . . “l” → 2 

Sequence of numbers → Unique number 

Codes the sequence hn1, n2, . . . , nki as the number: 
n1+1 n2+1 nk+1 p · p · . . . · p1 2 k 

where pi is the ith prime number. 

(Treat any number that doesn’t code a valid sequence of command lines as 
a code for the “empty” Turing Machine.) 

4.1 An example 

2310 = 2 · 3 · 5 · 7 · 11 

↓ 
20+1 · 30+1 · 50+1 · 70+1 · 110+1 

↓ 
0 0 0 0 0 

↓ 
0 r 0 

2



5 The Halting Function ( 
1 if the nth Turning Machine halts when given input m;

• H(n, m) = 
0 otherwise. 

For instance: H(2310, 0) = 0 and H(2310, 2310) = 1. 

• H(n) = H(n, n) 

For instance: H(2310) = 1. 

6 H(n) is not Turing-computable 

• Assume for reductio: Turing Machine MH computes H(n). 

• Construct Turing Machine M I , which behaves as follows on input k: 

Step 1: Check whether H(k) (using MH ).( 
If H(k) = 1, go right forever. 

Step 2: 
If H(k) = 0, halt. 

• Informally: What happens when you run M I on input M I ? It figures 
out whether it itself would halt on input M I . If the answer is yes, it 
goes off on an infinite task; if the answer is no, it immediately halts. 

• Formally: H(M I ) 1 or 0? 

– Suppose H(M I ) = 1. Then (by Step 2) M I goes right forever on 
input M I . So H(M I ) = 0. 

– Suppose H(M I ) = 0. Then (by Step 2) M I halts on input M I . 
So H(M I ) = 1. 

• So M I is impossible. So MH isn’t computable after all. 
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7 The Busy Beaver Function ( 
k, if M yields output k on an empty input

• Productivity(M) = 
0, otherwise 

the productivity of the most productive (one-symbol) • BB(n) = 
Turing Machine with n states or fewer. 

8 BB(n) is not Turing-computable 

• Assume for reductio: Turing Machine MBB computes BB(n). 

• Construct Turing Machine M I , which behaves as follows on an empty 
input: 

Step 1: Print a sequence of k ones, for a certain k (specified below). 

Result: k. 

Step 2: Duplicate your string of ones. 

Result: 2k. 

Step 3 Apply BB to your string of ones (using MBB). 

Result: BB(2k). 

Step 4 Add one to your string of ones. 

Result: BB(2k) + 1. 

• Let k = b + c + d 

b = the number of states used in Step 2 (to duplicate) 

c = the number of states used in Step 3 (to apply BB) 

d = the number of states used in Step 4 (to add one) 

Note: since a Turing Machine can output k using k states, 

M I = k + b + c + d = 2k 

• MBB is impossible: 
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– At Stage 3, it produces as long a sequence of ones as a machine 
with 2k states could possibly produce. 

– But (as noted above) M I = 2k. 

– So at Stage 3, it produces as long a sequence of ones as it itself 
could possibly produce. 

– So at Stage 4, it produces a longer string of ones than it itself 
could possibly produce. 

• So MH isn’t computable after all. 
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