
Gödel’s Theorem (Part 2)

1 The Theorem

Let L be a (rich enough) arithmetical language:

Gödel’s Incompleteness Theorem (V1) No Turing Machine can do the
following: when given a sentence of L as input, it outputs “1” if the
sentence is true and “0” if the sentence is false.

Gödel’s Incompleteness Theorem (V2) No Turing Machine can:

1. run forever, outputting sentences of L;
2. eventually output each true sentence of L; and

3. never output a false sentence of L.

Gödel’s Incompleteness Theorem (V3) No axiomatization of L is both
consistent and complete.

2 The Crucial Lemma

L counts as “rich enough” if one can prove:

Lemma L contains a formula (abbreviated “Halt(k)”), which is true if and
only if the kth Turing Machine halts on input k.

Today we’ll verify that our simple language L satisfies this condition.

3 The Language, L

Arithmetical Symbol Denotes
0 the number zero

1 the number one

+ addition

× multiplication

∧ exponentiation

1

Logical Symbol Read
= . . . is identical to . . .

¬ it is not the case that . . .

& it is both the case that . . . and . . .

∀ every number is such that . . .

xn (for n ∈ N) it

Auxiliary Symbol Meaning
([left parenthesis]

) [right parenthesis]

4 Abbreviations
Abbreviation Read Official Notation

2

3

4
. . .

two

three

four
. . .

(1 + 1)

((1 + 1) + 1)

(((1 + 1) + 1) + 1)
. . .

Abbreviation Read Official Notation
A ∨ B

A ⊃ B

∃xiφ

∃!xiφ

A or B

if A, then B

some number is such that φ

there is exactly one number such that φ

¬(¬A & ¬B)

¬A ∨ B

¬∀xi ¬φ

∃xi(φ(xi) & ∀xj (φ(xj) ⊃ xj = xi))

Abbreviation Read Official Notation
xi < xj

xi|xj

Prime(xi)

xi is smaller than xj

xi divides xj

xi is prime

∃xk((xj = xi + xk) & ¬(xk = 0))

∃xk(xk × xi = xj)

(1 < xi) & ∀xj ∀xk((xi = xj × xk) ⊃ (xi = xj ∨ xi = xk))

2

5 The key idea

• The key is to be able to express claims about sequences in L.

• We need a formula—abbreviated “Seq(c, n, a, i)”— which is true if and
only if c encodes a sequence of length n of which a is the ith member.

• With that in place, proving the lemma is totally straightforward.

6 Warm Up: Pairs

6.1 Coding System

• To the pair hn, mi (n, m ∈ N) assign the number 2n · 3m .

6.2 Implementation in L

• Pair(xi, xj , xk) ↔df xi = (2xj × 3xk)

7 Coding Finite Sequiences

7.1 Coding System

Part 1:

• Let c’s unique decomposition into primes be

e0 e1 e2 ekp · p · p · . . . p0 1 2 k

where pi =6 pj whenever i =6 j and ei =6 0.

• We say that c’s non-trivial exponents are e0, e1, . . . , ek.

• Each number can be thought of a code for the set of its non-trivial
exponents.

[This is only half the job, because sets are unordered.]

3

Part 2:

• Suppose c’s non-trivial exponents code ordered pairs, and that each
such pair has a different natural number as its first component.

• Then the first components of the pairs can be used to define an ordering
of the pairs’ second components.

Example:

·317 ·3117 • c = 22
2 · 521·37 · 723

• c’s non-trivial exponents: {22 · 317 , 21 · 37 , 23 · 3117}.

• Such a set is code for: {h2, 17i, h1, 7i, h3, 117i}.

• The first components induce the following ordering of the second com-
ponents: h7, 17, 117i.

• c codes the finite sequence h7, 17, 117i.

7.2 Implementation in L

We’ll divide the problem into two components:

1. Define “Seq(c, n)” [read: c codes an n-sequence].

Seq(c, n) ↔df ∀xi((1 ≤ xi & xi ≤ n) ⊃
xj +1∃!xj (∃xk(xj = 2xi × 3xk) & ∃xk(Prime(xk)& x xj | c & ¬(x | c)))k k

[Read: For each i (1 ≤ i ≤ n), c’s non-trivial exponents include the
code for exactly one pair of the form hi, bi.]

2. Define “Seq(c, n, a, i)” [read: c encodes an n-sequence of which the ith
member is a].

Seq(c, n, a, i) ↔df Seq(c, n) &
(1 ≤ i & i ≤ n) &: (2i×3a) (2i×3a)+1 �
∃xj Prime(xj) & (x | c) & ¬(x | c)j j

[Read: Seq(c, n) and (1 ≤ i & i ≤ n) and c’s non-trivial exponents
include a code for hi, ai.]

4

8 Gödel’s Theorem (v3)

8.1 Axiomatization

• An axiom is a sentence that is taken to require no proof.

• A rule of inference is a rule for inferring some sentences from others.

• An axiomatization for L is a (Turing Computable) list of axioms and
rules of inference for L.

8.2 Provability, completeness and consistency

For A an axiomatization of L:

• A sentence S of L is provable in A if there is a finite sequence of
sentences of L such that:

– Every member of the sequence is either an axiom of A, or re-
sults from previous members of the sequence by applying a rule
of inference of A.

– The last member of the sequence is S.

• A is complete if every true sentence of L is provable in A.

• A consistent if it is never the case that both a sentence of L and its
negation are provable in A.

8.3 Proving the Theorem

• For reductio: A is a consistent and complete axiomatization of L.

• Since L can talk about finite sequences, it can talk about sentences
(i.e. finite sequences of symbols) and proof (which are finite sequences
of sentences).

• One can program a Turing Machine M to output all and only the
sentences of L that are provable in A.

• If A is consistent and complete, M outputs all and only the true sen-
tences of L, which contradicts Gödel’s Theorem (v2).

5

MIT OpenCourseWare
https://ocw.mit.edu/

24.118 Paradox and Infinity
Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/
https://ocw.mit.edu/terms

