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Chapter 26 

Balanced Realization
 

26.1 Introduction 

One popular approach for obtaining a minimal realization is known as Balanced Realization. In this 

approach, a new state-space description is obtained so that the reachability and observability gramians 

are diagonalized. This de�nes a new set of invariant parameters known as Hankel singular values. This 

approach plays a major role in model reduction which will be highlighted in this chapter. 

26.2 Balanced Realization 

Let us start with a system G with minimal realization � � 

A B 

G � : 

C D 

As we have seen in an earlier lecture, the controllability gramian P , and the observability gramian Q 

are obtained as solutions to the following Lyapunov equations 

AP + PA0 + BB 

0 � 0 

A0Q + QA + C 0C � 0: 

P and Q are symmetric and since the realization is minimal they are also positive de�nite. The 

eigenvalues of the product of the controllability and observability gramians play an important role 

in system theory and control. We de�ne the Hankel singular values, �i, as the square roots of the 

eigenvalues of PQ 

4 

�i 

� (�i(PQ)) 

We would like to obtain coordinate transformation, T , that results in a realization for which the con
trollability and observability gramians are equal and diagonal. The diagonal entries of the transformed 

controllability and observability gramians will be the Hankel singular values. With the coordinate 

transformation T the new system realization is given by � � � � 

T 

;1AT T 

;1B Â  B̂ 

G � � � 

CT D Ĉ  D 

1 

2 : 



and the Lyapunov equations in the new coordinates are given by 

Â(T;1PT 0
;1
) + (T;1PT 0

;1
)Â0 + B̂B̂0 � 0 

Â0	 (T 0QT ) + (T 0QT )Â+ Ĉ 0Ĉ � 0: 

Therefore the controllability and observability gramian in the new coordinate system are given by 

P̂ � T;1PT 0
;1 

Q̂ � T 0QT: 

We are looking for a transformation T such that 10 

�1 

�2
^ ^P � Q � � � 

BBB@


CCCA


:
. . 


 . 


 

�n 

We have the relation 

(T;1PT;1
0 

)(T 0QT ) � �2� 

T;1PQT � �2: (26.1) 

Since Q � Q0 and is positive de�nite, we can factor it as Q � R0R, where R is an invertible matrix. 

;1P 2We can write equation 26.1 as T R0RT  � � , which is equivalent to 	

(RT );1RPR0(RT ) � � 

2: (26.2) 

Equation 26.2 means that RPR0 is similar to �2 and is positive de�nite. Therefore, there exists an 

orthogonal transformation U , U 0U � I , such that 

RPR0 � U�2U 0: (26.3)	 

1 

By setting (RT );1U� 

2 � I , we arrive at a de�nition for T and T;1 as 

2T � R;1U� 

1 

;1 �; 

1 

T � 

2 U 0R:  

With this transformation it follows that 

^ 2 U 0R 0U�; 

1 

P � (�; 

1 

)P (R 2 ) 

2 U 0 �2U 0 

2 )� (�; 

1 

)(U )(U�; 

1 

� �� 

and 

1 1 

Q̂ � (R;1U� 

2 )0R0R(R;1U� 

2 ) 

1 1 

� (� 

2 U 0)(R0
;1
R0RR;1)(U� 

2 ) 

� �: 



26.3 Model Reduction by Balanced Truncation 

Suppose we start with a system � � 

A B 

G � � 

C D 

where A is asymptotically stable. Suppose T is the transformation that converts the above realization 

to a balanced realization, with � �
^ ^A B 

G � ^ � 

C D 

^ ^and P � Q � � � diag(�1� �2� : : : � �n). In many applications it may be bene�cial to only consider 

the subsystem of G that corresponds to the Hankel singular values that are larger than a certain small 

constant. For that reason, suppose we partition � as � � 

�1 

0 

� � 

0 �2 

where �2 

contains the small Hankel singular values. We can partition the realization of G accordingly 

as 2 

Â11 

Â12 

^G � 

4 A21 

Â22 

Ĉ1 

Ĉ2 

Recall that the following Lyapunov equations hold 

3
B̂1 

B̂2 

5 : 

D 

Â� + �Â0 + B̂B̂0 � 0 

Â0�+�Â+ Ĉ 0Ĉ � 0� 

which can be expanded as � � � � � � 

Â  

11�1 

Â  

12�2 

�1Â
0 �1Â

0 B̂ 

1B̂
0 B̂ 

1B̂
0 

+ 

11 21 + 

1 2 � 0� 

Â  

21�1 

Â  

22�2 

�2Â
0 

12 

�2Â
0 

22 

B̂ 

2B̂ 

1 

0 B̂ 

2B̂ 

2 

0 

� � � � � � 

Â0 Â0 ^ ^ Ĉ 0 Ĉ  Ĉ 0 ^ 

11�1 21�2 

�1A11 

�1A12 1 1 1C2+ + � 0: 

Â0 

12�1 

Â0 

22�2 

�2Â  

21 

�2Â  

22 

Ĉ  

2 

0 Ĉ  

1 

Ĉ2
0 Ĉ  

2 

From the above two matrix equations we get the following set of equations 

Â  

11�1 

+�1Â
0 ^ ^ � 0 (26.4)11 

+ B1B1 

0 

^ ^ 

21 

+ B̂ 

1B̂ 

2 

0A12�2 

+�1A
0 � 0 (26.5) 

Â  

22�2 

+�2Â
0 ^ ^ � 0 (26.6)22 

+ B2B2 

0 

Â11
0 �1 

+�1Â  

11 

+ Ĉ  

1 

0 Ĉ  

1 

� 0 (26.7) 



Â0 

21�2 

+�1Â12 

+ Ĉ1 

0 Ĉ2 

� 0 (26.8) 

Â0 

22�2 

+�2Â22 

+ Ĉ2 

0 Ĉ2 

� 0: (26.9)

 

From this decomposition we can extract two subsystems � 

^
G1 

� 

A 

^
11 


 

C1 

� � �


^ ^ ^

 
B1 

A22 

B2� G2 

� ^ : 

D C2 

D
 

Theorem 26.1 G is an asymptotically stable system. If �1 

and �2 

do not have any common diagonal 

elements then G1 

and G2 

are asymptotically stable. 

Proof: Let us show that the subsystem � �


^ ^

A11 

B1G1 

� ^
 

C1 

D
 

^is asymptotically stable. Since A11 

satis�es the Lyapunov equation 

Â11�1 

+�1Â
0 

11 

+ B̂1B̂1 

0 � 0 
 
 

^then it immediately follows that all the eigenvalues of A11 

must be in the closed left half of the complex 

plane� that is, Re�i(Â11) � 0. In order to show asymptotic stability we must show that Â11 

has no 
 

purely imaginary eigenvalues. 

^ ^Suppose j! is an eigenvalue of A11, and let v be an eigenvector associated with j!� (
 11 

;j!I)vA � 

^0. Assume that the Kernel of ( A11 

; j!I) is one-dimensional. The general case where there may b e 

several independent eigenvectors associated with j! can be handled by a slight modi�cation of the 

present argument.
 

Equation 26.7 can be written as
 

(Â  

11 

; j!I)0�1 

+�1(A11 

; j!I)
 + Ĉ1 

0 Ĉ1 

� 0 
 
 

By multiplying the above equation by v on the right and v0 on the left we get 

v 

0(Â  

11 

; j!I)0�1v + v 

0�1(A11 

; j!I)v + v 

0Ĉ1 

0 Ĉ1v � 0 

which implies that (Ĉ  

1v)
0(Ĉ1v) � 0, and this in turn implies that 

Ĉ1v � 0 : (26.10)
 

Again from equation 26.7 we get 

(Â  

11 

; j!I)0�1v +�1(A11 

; j!I)v + Ĉ1 

0 Ĉ  

1v � 0
�
 

which implies that 

(Â  

11 

; j!I)0�1v � 0
: (26.11)
 

Now we multiply equation 26.4 from the right by �1v and from the left by v0�1 

to get 

v 

0�1(Â11 

; j!I)�2
1v + v 

0�2
1(A11 

; j!I)0�1v + v 

0�1B1B1
0 �1v � 0:
 



This implies that v0�1B1)(B1
0 �1v) � 0, and B1

0 �1v � 0. By multiplying equation 26.4 on the right by 

�1v we get 

(Â  

11 

; j!I)�1
2 v +�1(A11 

; j!I)0�1v + B̂ 

1B̂ 

1
0 �1v � 0 

and hence 

(Â  

11 

; j!I)�2
1v � 0: (26.12) 

Since that the kernel of (Â  

11 

; j!I) is one dimensional, and both v and �2
1v are eigenvectors, it follows 

that �2
1v � �̂2v, where ^ � is one of the diagonal elements in �1

2 . 

Now multiply equation 26.5 on the left by v0�1 

and equation 26.8 by v0 on the left we get 

v 

0�1Â  

12�2 

+ v 

0�2
1Â

0 

21 

� 0 (26.13) 

and 

0 ^ ^v A0 0�1A12 

� 0: (26.14)21�2 

+ v 

�From equations 26.13 and 26.14 we get that 

0 ^ 

0 ^ ;v A0 + �̂2v A0 � 0�21�
2
2 21 

which can be written as � � 

(v 

0Â0 ;�2 + ^ �2I � 0:21) 2 

Since by assumption �2
2 

and �2
1 

have no common eigenvalues, then �̂2I and �2 

have no common 

eignevalues, and hence A21v � 0. We have 

(Â  

11 

; j!I)v � 0 

Â21v � 0� 

which can be written as � � � � � �
^ ^A11 

A12 

v v 

^ ^ 

� j! : 

A21 

A22 

0 0 

^This statement implies that j! is an eigenvalue of A, which contradicts the assumption of the theorem 

stating that G is asymptotically stable. 
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