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Problem 1: ”This Ion Cannon goes to 11...” [20 pts]

A Separatist vessel is attempting to escape from a Republic cruiser (sorry, this is
somewhat regular dinner conversation ...) in hot pursuit. The separatist ship is
traveling at a velocity 2c

3
while the cruiser is traveling at a velocity of c

5
(both with

respect to some ”stationary” observer located on a nearby ship).

(a) The cruiser launches a blasting rocket which travels at c
5

with respect to the
cruiser ship. What speed does the rocket achieve and can it catch up to the
vessel?

(b) But wait! The blaster rocket itself fires another ballistic missile, also at a speed
of c

5
with respect to the rocket. Does that missile hit its target?

(c) Analyze the above situation, but this time from the point of view of the cruiser.
Does the rebel ship still manage to escape?

•

(a) For all these problems, we make use of Einstein’s velocity addition rule. In part
(a), we have a bullet which launches at speed c

5
with respect to the Republic

cruiser, also traveling at speed c
5

(with respect to some observer). To that ob-
server, he sees the bullet fly off at a speed...
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vnew =
v1 + v2
1 + v1v2

c2

vnew =
c
5

+ c
5

1 + c2

25c2

=
5c

13
<

2c

3

No luck, the ship escapes.

(b) Now the bullet launches another bullet traveling with a relative speed of c
5

relative
to the first bullet. So we do the exercise again...

vsuper =
v2 + v3
1 + v2v3

c2

vsuper =
5c
13

+ c
5

1 + 5c2

65c2

=
19c

35
<

2c

3

(c) If we analyze the situation from the point of view of the Republic cruiser, the
cruiser is at rest and the first bullet travels away at a speed c

5
. The second bullet

has a speed of 5c
13

(from part (a)). The Separatist ship speed is given by...

vship =
2c
3
− c

5

1− 2c2

15c2

=
7c

13
>

5c

13

So, the Separatists get away. Bastards!

Problem 2: The Ladder Paradox [20 pts]

Suppose a farmer living in Mr. Thompson’s Wonderland1 using his unicycle (see
figure) wishes to store his ladder in his barn (which is much shorter than the ladder).
Having studied relativity (but only for the 1st week) he reasons once the ladder is at
high enough speed, it should Lorentz contract and easily fit within the door. Once
the back of the ladder has cleared the door, he will shut the door, stop the ladder and
lock it inside. A neighbor politely points out that from the ladder’s vantage point, it
is the barn that will shrink. Who is right?

1Mr. Thompson’s Wonderland refers to a 1959 paper by Terrell whereby the speed of light is
much smaller and hence the effects of special relativity are readily apparent.
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• They are both right. That is because there are really two events taking place.
Event A is that the back of the ladder passes the door while event B is the front of
the ladder reaches the end of the barn. In the frame of the barn, event A precedes B,
while from the ladder’s perspective, B precedes A. Since events are not simultaneous,
there is no problem.

But what about when the door is slammed shut and the ladder is brought to rest?
Which frame wins? In this case, the farmer halts the ladder, but it takes time for
the signal to reach the front of the ladder! Remember, there are no rigid objects in
special relativity... it takes time for the signal to stop to propagate to the front. So
the front of the ladder just keeps going and will punch through the wall when all is
done (or send the farmer flying backwards).

Problem 3: The Paradox of the Fast Walker [20 pts]

This is a slight twist from the ladder paradox problem, offered by Wolfgang Rindler
(Am. J. Phys. 29, 365 (1961)). A fast walker is walking over a metal grid whose’s
spacing is exact the length of his foot. From his point of view, the crate spacing is
Lorentz contracted, so he should easily be able to walk over the grid. But from the
grid’s frame of reference, it is the foot which is Lorentz contracted, and he will surely
fall in. Explain what happens.
• For a good explanation of the effect, see Section 6.4 from Leo Sartori’s Understanding
relativity : a simplified approach to Einstein’s theories. The book can be viewed online
from MIT library. Go to https://lib.mit.edu/search/bento?q=understanding+

relativity and click on ”view online” for the first entry under ”Books and media”.
The main takeaway here is that there is no rigid body in special relativity.

© Source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/fairuse. 

3

https://lib.mit.edu/search/bento?q=understanding+relativity
https://lib.mit.edu/search/bento?q=understanding+relativity


Problem 4: Velocity Addition in Matrix Form [20 pts]

The Lorentz transformations allow one to correctly transform from one inertial frame
to the next. In Lorentz transformations, spatial and time coordinates are intertwined,
where one is no longer independent of another. As a reminder, the Lorentz transfor-
mation to a frame moving with velocity v along the x-axis is given as the following:

ct′ = γ(ct− βx)

x′ = γ(x− βct)
y′ = y

z′ = z

where β = v/c and γ = 1√
1−(v/c)2

. These transformations can be represented more

compactly in matrix notation.

(a) Begin by writing down the Galilean transformation from a frame S to a frame
S ′, where S ′ is moving with a constant velocity v along the x-axis, in matrix
notation. Use ct for the time component.

(b) Now write down the Lorentz transformation for the same situation as above.

(c) Use the property γ2 − γ2β2 = 1 to re-write the above matrix in terms of coshφ
and sinhφ, where tanhφ = β.

(d) Allow Λ(φ(β)) to represent the matrix that you have written above. Show that
Λ(φ(β1))Λ(φ(β2)) = Λ(φ(β1)+φ(β2)). Is this consistent with the velocity addition
rule?

(e) From the above, show that the inverse of Λ(φ(β)) is given by Λ(φ(−β)).

•

(a) Let us recall what Galilean transformations are like...

ct′ = ct

x′ = x− vt
y′ = y

z′ = z

In matrix form, this becomes...
ct′

x′

y′

z′

 =


1 0 0 0
−β 1 0 0
0 0 1 0
0 0 0 1




ct
x
y
z
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(b) For Lorentz transforms, the situation is much more symmetric...


ct′

x′

y′

z′

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z


(c) Here we use the property that cosh2 φ− sinh2 φ = 1. Let γ = coshφ and sinhφ =

γβ. The previous condition is fulfilled. Note also that sinhφ/ coshφ = tanhφ =
β. So we have...


ct′

x′

y′

z′

 =


coshφ − sinhφ 0 0
− sinhφ coshφ 0 0

0 0 1 0
0 0 0 1




ct
x
y
z


With φ = tanh−1 β

(d) Let us perform two boost in a row, each with velocity β1 and β2 with angles φ1

and φ2, respectively.


ct′′

x′′

y′′

z′′

 =


coshφ2 − sinhφ2 0 0
− sinhφ2 coshφ2 0 0

0 0 1 0
0 0 0 1




coshφ1 − sinhφ1 0 0
− sinhφ1 coshφ1 0 0

0 0 1 0
0 0 0 1




ct
x
y
z




(coshφ2 coshφ1 + sinhφ2 sinhφ1) −(coshφ2 sinhφ1 + coshφ1 sinhφ2) 0 0
−(coshφ1 sinhφ2 + coshφ2 sinhφ1) (coshφ2 coshφ1 + sinhφ2 sinhφ1) 0 0

0 0 1 0
0 0 0 1


Now we can use the properties of cosh and sinh to simplify the above expression.

cosh (A+B) = coshA coshB + sinhA sinhB

sinh (A+B) = coshA sinhB + sinhA coshB


ct′

x′

y′

z′

 =


cosh (φ2 + φ1) − sinh (φ2 + φ1) 0 0
− sinh (φ2 + φ1) cosh (φ2 + φ1) 0 0

0 0 1 0
0 0 0 1




ct
x
y
z
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Hence, Λ(φ(β1))Λ(φ(β2)) = Λ(φ(β1) + φ(β2)). Is this consistent with the velocity
addition rule? Recall that tanhφ = β. We can use the angle addition rules for
tanh to help us.

tanh (A+B) =
tanhA+ tanhB

1 + tanhA tanhB

Therefore, we have...

tanh (φ2 + φ1) =
tanhφ2 + tanhφ1

1 + tanhφ2 tanhφ1

=
β2 + β1
1 + β2β1

This is indeed consistent the Einstein velocity addition rule.

(e) Since Λ(φ(β1))Λ(φ(β2)) = Λ(φ(β1) + φ(β2)). If β2 = −β1, then φ(β2) = −φ(β1).
Therefore, Λ becomes unitary. Hence Λ(φ(−β)) = Λ−1, or, in matrix form...

Λ(φ(−β)) = Λ−1 =


coshφ sinhφ 0 0
sinhφ coshφ 0 0

0 0 1 0
0 0 0 1



Problem 5: Rotating Cube [20 pts]

l

l

l

l

D>>l

βc

Suppose a cube whose sides are length l (in the cube’s proper frame) travels to
the right at velocity βc with respect to the lab frame. An observer is located in the
lab frame and watches the cube pass by. We say the ”left” and ”right” faces of the
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cube are perpendicular to the direction of motion, while the ”front” and ”back” faces
are parallel. The cube’s distance of closest approach is much, much greater than the
length of the cube.

Because the light-path from corners of the ”back” and ”front” faces of the cube to
the observer differ, the cube will appear to be rotating. What is the angle by which
the cube appears to be rotated?

[ Hint : Everything we perceive are merely projections of three-dimensional objects
on the two-dimensional plane of our retina. With this in mind, how would we perceive
a rotated cube to be different from one that is not? How would the finite speed of light
and other relativistic effects contribute to trick us to perceive the cube as rotated? ]
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•

l=ct

l=c
t

l√1-β2

l√1-β2

lβ

lβ

Because D � l, we can assume lights from all points on the cube to the observer
are parallel.

The time it takes for the light to travel from the back left corners to the front
left edge is determined by the speed of light, l = ct. In that time, the object will
move to the right by an amount βct, and the delayed light will make the observer
think that he or she sees a left face with that length. On the other hand, the front
face is Lorentz contracted. Combining these two visual effects, it would appear to the
observer that the cube has been rotated. The angles form as illustrated in the figure
from a top-down view. The angle of rotation is given by

tan θ =
lβ

l
√

1− β2

...or...

tan θ = γβ
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