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Note: In most problems, I will work with the convention that a 3-vector is denoted
by an arrow (~p), while a 4-vector would just be denoted as p (I have dropped the
subscript term, pµ, as this is the convention). In particle physics, we often set the
speed of light to the unit-less value of 1 (c = 1). Masses are often referred to in terms
of energy (i.e. 511 keV, 938 MeV, etc...)

Problem 1: Acceleration in Special Relativity [25 pts]

In class we determined that the momentum of a particle traveling at velocity ~u with
respect to an observer is given by ~p = m~u√

1−u2/c2
.

(a) Find the force ~F by taking the derivative with respect to ordinary time.

(b) It is possible to also define a 4-vector for acceleration, just like we did for 4-
velocity, by taking again the time derivative with respect to proper time

αµ =
dηµ

dτ
=
d2xµ

dτ 2

Find the components of αµ.

(c) Express those components in terms of the force term you found in part (a).

•
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(a) Remembering ~F = d~p
dt

, where t is ordinary time, we can carry out this operation
with our SR-compatible momentum.

~p =
m~u√

1− u2/c2

~F =
d~p

dt
= m

d

dt
(

~u√
1− u2/c2

)

~F =
d~p

dt
=

m√
1− u2/c2

d~u

dt
+
m~u(− 1

2c2
(−2~u · d~u

dt
))

(1− u2/c2)3/2

Let ~a = d~u
dt

denote the (ordinary) acceleration of the particle.

~F =
m√

1− u2/c2
(~a+

~u(~u · ~a)

c2 − u2
)

This expression reduces to the familiar ~F = m~a if ~u = 0.

(b) Using the same procedure as we did for the proper velocity, we take the derivative
of the proper velocity with respect to proper time.

ηµ =
dxµ

dτ
dηµ

dτ
=
dτ

dt

dηµ

dt
dηµ

dτ
=
dτ

dt
(
d

dt
γc,

d(γ~u)

dt
)

dηµ

dτ
=
dτ

dt
(c
dγ

dt
, ~u
dγ

dt
+ γ

d~u

dt
)

dηµ

dτ
= γ(c

dγ

dt
, ~u
dγ

dt
+ γ

d~u

dt
)

Since dγ
dt

= γ ~u·~a
c2−u2 , the expression expands to

dηµ

dτ
= γ2(c

~u · ~a
c2 − u2

,~a+
~u(~u · ~a)

c2 − u2
)

(c) Not the prettiest expression. We can clean it up a bit by making use of the force
expression we previously derived.

dηµ

dτ
= γ(cγ

~u · ~a
c2 − u2

,
~F

m
)

dηµ

dτ
= γ(

~u · ~F
mc

,
~F

m
)
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Problem 2: π0 Decay [25 pts]

The π0 is a heavy meson with a mass of 135 MeV/c2 that decays almost immediately
to two back-to-back photons (with a lifetime of τ = 8.4× 10−17 s).

(a) What are the energies of the two photons emitted in the center-of-mass frame of
the π0 when it decays?

(b) Suppose one of the two photons makes an angle θ with respect to the x-axis in
the center of mass frame. What is the minimum energy the π0 must have in order
for both photons to be boosted in the forward direction (i.e. make an angle less
than 90◦ from the positive x-axis)? This is convenient if your detector doesn’t
fully encompass the region surrounding your pion.

(c) Suppose with your detector (read as, lab frame) you measure both photons and
each makes a ±45◦ angle with respect to the beam axis. From this information,
tell me how far the π0 moved from when it was created to when it decayed.

•

(a) Photons have zero rest mass, hence their energies are given by E = pc. Since in
the rest mass their momenta must be equal and opposite, so must their energies.
With zero rest mass, that means each photon carries away exactly mπc

2/2 of
energy.

(b) We use the Lorentz transform to boost from one frame (center-of-mass) to the
other (lab). We don’t know what the boost factors are yet, but we have a means
to calculate them. Let me refer to the lab frame as S’ and the center-of-mass
frame as S. I will also label my photons as E1 and E2.

p′1,x = γ(p1,x + βE1)

p′2,x = γ(p2,x + βE2)

But recall that E1 = E2 = E. Furthermore, the momenta are equal and opposite
to one another (and equal to the energy).

p′1,x = Eγ(cos θ + β)

p′2,x = Eγ(− cos θ + β)
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Suppose the quantity (cos θ + β) is positive so that p1,x is positive (i.e. pointed
along the beam direction). For the second photon to also be boosted forward,

(− cos θ + β) must be greater than zero, which means β > cos θ . Since we ask

for the energy of the parent π0 in the lab frame, we can use the following

Elab
π = γmπ

Elab
π =

mπ√
1− β2

Elab
π ≥

mπ√
1− cos θ2

Elab
π ≥

mπ

| sin θ|

(c) In this scenario, the two photons make the same opening angle with the beam
axis. This can only happen when, in the rest frame, the two photons are emitted
at angles of π/2, 3π/2. To see this explicitly, set p1,x = p2,x

p′1,x = Eγ(cos θ + β)

p′2,x = Eγ(− cos θ + β)

p′1,x = p′2,x → Eγ(cos θ + β) = Eγ(− cos θ + β)

cos θ = − cos θ = 0

This implies a constraint on β

p′1,x = p′2,x = Eγβ =
1

2
mπγβ

p′1,x = p′1 cos θ′ =
1

2
mπγβ

E ′1 cos θ′ =
1

2
mπγβ

What is E ′1? That’s given by the other boost formula

E ′1 = γ(E + β cos θ)

E ′1 = γE =
1

2
γmπ

Since θ′ is measured to be 45◦, we now find what β is

E ′1 cos θ′ =
1

2
mπγβ

1

2
γmπ cos θ′ =

1

2
mπγβ

β = cos θ′ =
1√
2
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By the same token, γ =
√

2. But what are we really after? We want to know
how far the π0 traveled before it decayed. The lifetime of the pion in the lab
frame is given by γτ (because of time dilation), while it’s speed is given by βc.
So the total length (on average) traveled by the pion before it decayed is given

by d = γβcτ or 25 nm .

Problem 3: Review: Mendelstam Variables [25 pts]

High energy physicists try as best they can to express various quantities (energy,
momentum, cross-sections, etc.) in terms of invariant quantities. This is not mere
aesthetics; it is far easier to make calculations if those calculations are independent
of what frame one is working in. One such tool are Mendelstam variables, which
describe the energy-momentum exchange when 2 particles collide with one another.

Consider the (inelastic) collision of two particles (1 and 2) to yield two different
particles (3 and 4), each with a different mass mi=1,2,3,4. The Mendelstam variables
are defined as follows:

s ≡ (p1 + p2)
2/c2

t ≡ (p1 − p3)2/c2

u ≡ (p1 − p4)2/c2

(a) Calculate the quantity s+ t+ u.

(b) Find the lab-frame energy of particle 1 in terms of Mendelstam variables (Suppose
we are working with a fixed-target experiment, where lab frame implies particle
2 is at rest.)

(c) Finally, find the total center-of-mass energy (E1 + E2) in terms of Mendelstam
variables.

•

(a) Expanding s, t and u in terms of their 4-vector components, we have

(s+ t+ u)c2 = (p1 + p2)
2 + (p1 − p3)2 + (p1 − p4)2

(s+ t+ u)c2 = p21 + p22 + 2p1 · p2 + p21 + p23 − 2p1 · p3 + p21 + p24 − 2p1 · p4

(s+ t+ u)c2 = 3p21 + p22 + p23 + p24 + 2p1 · p2 − 2p1 · p3 − 2p1 · p4

(s+ t+ u)c2 = 3p21 + p22 + p23 + p24 + 2p1 · (p2 − p3 − p4)
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Since p1 = p3 + p4 − p2, we find

(s+ t+ u)c2 = 3p21 + p22 + p23 + p24 + 2p1 · (−p1)

(s+ t+ u)c2 = 3p21 + p22 + p23 + p24 + 2p1 · (−p1)

(s+ t+ u)c2 = 3p21 + p22 + p23 + p24 − 2p21

(s+ t+ u)c2 = p21 + p22 + p23 + p24

(s+ t+ u) = m2
1 +m2

2 +m2
3 +m2

4

(b) You found this in Problem #1 already. The technique is certainly the same

s = (p1 + p2)
2/c2

sc2 = m2
1c

2 +m2
2c

2 + 2p1 · p2
sc2 = m2

1c
2 +m2

2c
2 + 2(E2E1/c

2 − ~p1 · ~p2)
sc2 = m2

1c
2 +m2

2c
2 + 2E1m2

E1 =
(s−m2

1 −m2
2)c

2

2m2

(c) And, as shown earlier (this time without setting c=1)

s = (p1 + p2)
2/c2

sc2 = (E1/c+ E2/c)
2

sc4 = (E1 + E2)
2

ECM
total =

√
sc2

Problem 4: Collider versus Linac [25 pts]

Suppose you were determined to discover a new particle (say, the Higgs) that required
a very high energy center-of-mass energy,

√
s to create1. You decide you will create

this elusive particle by slamming two identical particles of mass m (say, two protons)
against each other. You have two choices on how to build your machine. You can
build either (a) a collider, which slams the two particles in a head-to-head collision
or (b) a linac (linear accelerator) which slams one particle against a fixed stationary
target of material.

1If you are confused as to what
√
s is, look at Task 3 in this problem set.
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(a) For a given kinetic energy K (which is either given solely to the proton in the
linac or split evenly among the two protons in the collider) which option is the
better choice to reach your targeted center-of-mass energy?

(b) For what other reasons might you chose the other, less energetic, option?

Figure 1: Photograph of the Fermi National Accelerator Facility. One can see both
fixed target beamlines (linacs) and the main proton-anti-proton collider.

•

(a) A collider is essentially a center-of-mass frame. Let s = (p1 + p2)
2 represent the

addition of two 4-vectors. In the center-of-mass frame, we find...

scm = (p1 + p2)
2

scm = ((E1 + E2, ~p1 + ~p2)
2)

s = (E1 + E2)
2

√
scm = E1 + E2

Image courtesy of DOE.
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Let E1,2 = K/2 +m where K is the kinetic energy imparted on each particle and
m is the mass.

√
scm = K + 2m = 2m(1 +

K

2m
)

In the lab frame, we expand out the multiplication of the 4-vectors to obtain a
simpler expression.

s = (p1 + p2)
2

s = p21 + p22 + 2p1 · p2
s = m2 +m2 + 2mElab

s = 2m2 + 2mElab

Now let Elab = K +m, since it gets all the kinetic energy of the system. We find

slab = 2m2 + 2m(K +m)

slab = 4m2 + 2mK

slab = 4m2(1 +
K

2m
)

√
slab = 2m

√
1 +

K

2m

Since we are told K is fixed, let us take the ratio of the collider experiment versus
the linear accelerator experiment

R =

√
scm√
slab

=
1 + K

2m√
1 + K

2m

R =

√
1 +

K

2m
≥ 1

So, for a collider experiment, you always have more center-of-mass energy than
an equivalent collision where one of the particles is at rest. If the probability
of a reaction happening grows with center-of-mass energy, you are better off
(energetically) to collide your beams.

(b) Well, colliding beams is hard! You have two protons, each only 1 fm across
zipping past each other. The chances of hitting one another is really small, which
is why beams need to be very, very intense (each burst has billions of protons
each). That is the only way one can guarantee that a collision will occasionally
happen.

A fixed target scheme has a dense target to hit (think Avogardo’s number, 1023

targets or so)... The chances of a collision are far greater.
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