
5.19 Spark ignited spherical combustion—Solution

Part (a)  See also Problem 3.7 Solution for fuller discussion of part (a)

The density distribution is known:

(r,t) = 2 (r < Vft)

(1)
= 1 (r > Vft)

The velocity field is related to the density via the mass conservation law. Form A of the
integral mass conservation equation is
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where   
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v c  is the local velocity of the control surface. We choose a spherical control

surface with a fixed radius r from the origin (that is,   
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v c = 0 ), and apply (2) at an instant

of time t.
Consider first the case r<Vft (see Fig. 1) where r is inside the region filled by the

combustion products of density 2. In this case (2) reduces to

d

dt 2

4 r3

3

 
 
  

 
+ 2v4 r 2 = 0 (r<Vft) (3)

where v is the radial component of velocity. This gives (recall that r is the radius of the
control volume and has a fixed value)

v = 0 (r < Vft) (4)

For r>Vft, the control volume contains two regions of constant density, one inside the
flame front and the other one outside it (see Fig. 1), as expressed by (1). In this case (2)
reduces to
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which, after differentiation with respect to time, gives
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Based on (4) and (6), the velocity field in the gas can be expressed in dimensionless form
as follows:
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Fig. 3 shows this dimensionless solution with the density ratio as a parameter. Note that
the solution has the form

v

Vf

= f 2

1

,
r

V f t

 

 
  

 
 (8)

which expresses the ratio of the local velocity and the flame speed in terms of only two
independent variables (those in the brackets), while v in the actual problem is determined
by three independent quantities.  The similarity law (or scaling law) (8) can also be
derived directly by dimensional analysis.

Fig. 3: Fluid velocity distribution in dimensionless coordinates.



5.19 Part (b)

The flame speed Uf relative to the gas just ahead of the flame front is by definition the
difference between the flame speed in fixed reference frame and the gas velocity just
ahead of the flame front (also measured in the fixed reference frame), that is,

U f ≡ V f − (v) r=V f t + (9)

From our solution (7), we see that
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From (9) and (10), we get
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5.19 Part (c)

In the region r>Vft, the pressure gradient is given by Euler’s equation,
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Substituting for v from (6), (12) becomes
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Integrating this equation from some point at r>Vft, where the pressure is p(r,t), to infinity,
where the pressure is p∞, we find that
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are dimensionless variables.

5.19 Part (d)

The pressure in the static gas at r<Vft must be uniform. There is no reason to think that
this pressure is continuous across the flame front, however, since the velocity is
discontinuous, and so is the momentum flux.  The pressure in the product gas can be
determined by applying the momentum theorem to a small "pill-box" of a control volume
that straddles the frame front, with one side being in the region (1) just ahead the flame
and the other in the region (2) just behind it and the flame halfway between (see Fig. 2 in
the problem statement, reproduced below). Let the pillbox have a small area A in the
plane of the flame front with a small thickness h that approaches zero. Furthermore, let
the pillbox move with the flame front.

Now apply Form A of the momentum theorem,
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Choosing an inertial reference frame fixed in the origin (relative to which our CV is
moving at speed Vf ), this becomes

d
dt

1v1 + 2v2

2
 
 

 
 hA

 
  

 
  + 1v1(v1 −V f )A − 2v2(v2 − V f )A = (p2 − p1)A (17)

From part (a) we have that
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Substituting these into (17) and taking the limit h→0, we obtain
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or, in dimensionless terms [see (15)],

P2 = P1 − (1 − ) , (20)

which indicates, surprisingly, that the pressure is lower in the products region just behind
the flame front than it is just ahead of it, γ being less than unity. This begs the question,

how can this be, given that the gas outside is being pushed outward?
The answer is found by thinking of what happens to a fluid particle when the flame

front overtakes it. A millisecond before the flame front arrives, the particle is moving
outward at the speed v1 given by (18). Two milliseconds later, it is standing still (and its
density has dropped from 1 to 2).  What force decelerated it as it traversed the flame

front? Clearly, the radial pressure gradient must be negative inside the flame front; that is,
the pressure ahead if it must be higher than behind it, consistent with our result.

What, then, pushes the fluid outside away from the product gases? It is the
momentum flux, not the pressure. Relative to the inertial frame fixed in the center, the
combustion process inside the flame front generates a net radial momentum flux from the
flame toward the outside. This gives raises the pressure just ahead of it and drives the
fluid outward.

Part (e)

See next page.



5.19, Part (e)


