20.201
Bacteria, Antibiotics, and Antibiotic Therapy

October 30, 2013
History of Microbiology

- Spontaneous Generation
 - Aristotle 384-322 B.C.
- Example of maggots arising from spoiled meat
 - Francisco Redi 1626-1697
- Air carried spores that led to microbial growth
 - Louis Pasteur 1822-1895
- Pasteurization
- Vaccines for anthrax and rabies
Bacteria

- Single cell organisms
- Gram-positive and gram-negative
- Ubiquitous in the environment
- Microbiome
- Very rapid growth rates
- Exotoxins and endotoxins
Gram-Staining

Crystal violet for 30 seconds
Water rinse for 2 seconds

Gram's iodine for 1 minute
Water rinse

Wash with 95% ethanol or acetone for 10–30 seconds
Water rinse

Safranin for 30–60 seconds
Water rinse and blot

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Prescott, Lansing, John Harley, and Donald Klein. Microbiology. 4th ed. McGraw-Hill, 1999.

Microbiology, 4th Ed., Prescott
Cell Wall

- Provides shape
- Protects against osmotic lysis
- Physical barrier
- Peptidoglycan (Murein)
- NAM-NAG-amino polymer

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Cell Wall
Gram-positive vs. gram negative

Fig. 1-2. Composition of the cell surfaces of gram-positive and gram-negative bacteria.

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Cell Wall
Gram-positive vs. gram negative

Fig. 1.7 Schematic illustration of a gram-negative and a gram-positive bacterial cell wall. Note the presence of an outer membrane (also called outer envelope) in the gram-negative wall and the much thicker peptidoglycan layer in the gram-positive wall.
Gram Positive

- Gram positive bacteria
- Thick peptidoglycan
- Teichoic acids
 - Contain phosphates
 - Impart negative charge

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
NAM-NAG-Peptide

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Peptidoglycan

N-Acetylmuramic acid

N-Acetylg glucosamine

Pentaglycine interbridge

Peptide chain

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Gram Negative

- **Lipopolysaccharide**
 - Highly diverse and changing polysaccharides
 - Avoids host detection
 - Limits host interaction with outer membrane
 - Prevents entry of bile salts, antibiotics, and toxicants
 - Prevents loss of nutrients from periplasmic space

- **Transporters and porins**
 - Selectively export and uptake small molecules

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Microbiology, 4th Ed., Prescott
Exotoxins and Endotoxins

- Exotoxins
 - Heat-labile, proteins released into surroundings
 - Can migrate to different cells or tissues
 - Diphtheria toxin, anthrax toxin, cholera toxin

- Endotoxins
 - Heat-stable lipopolysaccharide
 - Outer membrane of gram-negative bacteria
 - Released during lysis or cell division/growth
 - Leads to blood clotting, hemorrhaging and organ failure
Exotoxin: Diphtheria Toxin

- **Corynebacterium diphtheriae**
- **Gram-positive, facultative anaerobe**
- **Diphtheria toxin:**
 - 62 kDa Protein
 - B: Cell surface receptor binding
 - A: Enzymatic region
 - Catalyzes addition of ADP-Ribose to EF2
 - Inhibits translation

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Antibiotic resistance is and will be a problem.
Antibiotic Drug Pipeline

Tomorrow’s Antibiotics: The Drug Pipeline

The number of new antibiotics developed and approved has steadily decreased in the past three decades, leaving fewer options to treat resistant bacteria.

Image is by the [Centers for Disease Control and Prevention](https://www.cdc.gov), and is in the public domain.
How to Target Bacteria?

- Unique processes/proteins
- Cell Wall
- DNA synthesis
 - Single circular dsDNA chromosome
- Ribosomes
- Can you selectively target pathogenic bacteria?
How to Target Bacteria?

Inhibitors of cell wall synthesis:
- Fosfomycin
- Cycloserine
- Vancomycin
- Penicillins
- Cephalosporins
- Monobactams
- Carbapenems
- Ethambutol
- Pyrazinamide
- Isoniazid

Penicillins
Cephalosporins
Carbapenems

Inhibitors of transcription and translation:
- Rifampin
- Aminoglycosides
- Spectinomycin
- Tetracyclines
- Macrolides
- Chloramphenicol
- Lincosamides
- Streptogramins
- Oxazolidinones
- Pleuromutilins

PABA

Peptidoglycan cell wall

Pteridine

THF

DHF

Purines

Pyrimidines

Ribosome

Protein

mRNA

DNA

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Folic Acid Metabolism

- Humans require folic acid in diet and use as a cofactor in the synthesis of amino acids and nucleic acids
- Bacteria make their own folic acid
- Bacteriostatic
Sulfonamides

A Folic acid

B PABA analogues

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

β-Lactams

- Inhibit cell wall polymer crosslinking
- Inhibit transpeptidase
- Bactericidal

Normal transpeptidation

- Two peptidoglycan chains
 - L-Ala
 - D-Ala
 - (L-Gly)$_2$-L-Lys
 - (L-Gly)$_2$-L-Lys
 - D-Ala
 - D-Ala

Activation step

- Enzyme-peptidoglycan intermediate
 - L-Ala
 - D-Ala
 - (L-Gly)$_2$-L-Lys
 - (L-Gly)$_2$-L-Lys

Coupling step

- Crosslinked peptidoglycan chains
 - L-Ala
 - D-Ala
 - (L-Gly)$_2$-L-Lys

Penicillin action

- "Dead-end" enzyme penicillin complex
- β-lactamases cleave this bond

Golan, Fig. 34-3, 34-6

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Quinolones/Fluoroquinolones

- **Type II Topoisomerase**
- Produce double-strand breaks in DNA
- Quinolones inhibit TopoII before second strand can pass
- Bactericidal

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Inhibiting Protein Synthesis

- Multiple Mechanisms
- Not completely understood
- Tetracyclines, Macrolides, Chloramphenicol, Oxazolidinones are bacteriostatic
- Aminoglycosides are only bactericidal class among the protein synthesis inhibitors
Reactive Oxygen Species

- Observed for bactericidal but not bacteriostatic antibiotics
- NADH depletion
- Dependent on TCA Cycle
- Increased production of superoxide (O$_2^{-}$)
- Damage to iron-sulfur clusters
- Fenton Chemistry

© Elsevier B.V. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Reactive Oxygen Species

- Increase in ROS leads to an increase in nucleotide pool damage products ultimately producing DNA damage and cell death
- MutT removes 8-oxo-dGTP from the nucleotide pool
- dnaE911, dinB, & umuDC are DNA polymerases that incorporate 8-oxo-dG

8-oxo-dGTP
\[\uparrow \text{Mut T} \]
8-oxo-dGMP

Science, 2012, 336, 315-319
Antibiotics

• Unique processes/proteins
• Cell Wall
• DNA synthesis
• Ribosomes
• ROS
• Innate immunity
 • Phagocyes (neutrophils and macrophages)
• Adaptive immunity
Alexander Fleming

- 1928 - Fleming’s discovery of “mold juice”
 - Staphylococcus cultures contaminated with a mold from the genus Penicillium
 - Penicillin was born
“Mold Juice”

- Why would a mold make a bactericidal compound?
- Why would bacteria make bactericidal compounds?
Polyketide Biosynthesis

Fig. 23 The biosynthetic pathway for the fungal polyketide 6-methylsalicylic acid (6-MSA).

- Acetate
- Propionate
- Malonate

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Polyketide Biosynthesis

AT = Acyltransferase
ACP = Acyl carrier protein
KS = Ketosynthase
KR = Ketoreductase
ER = Enoyl reductase
DH = Dehydratase
TE = Thioesterase

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Post-PKB Modifications

P450 Hydroxylation

6-Deoxyerythronolide B

Glycosyl transfer

Methylation

Erythromycin A

Glycosyl transfer Hydroxylation

Courtesy of Nature Publishing Group. Used with permission.

Nat. Rev., 3, 2005, 925
Post-PKB - Secondary Metabolites

P450 Reactions

© Elsevier. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Bacterial Treatment

- Two main initiatives for human infection
 - Eliminate bacteria
 - Avoid emergence of resistance
- Bacteriostatic vs. Bactericidal
- During preclinical (and sometimes clinical) development the compound’s efficacy can be measured (not the case for many targets)
- Different drug classes require different dosing (i.e., different measurable endpoints)
- MIC = Minimal Inhibitory Concentration
Clinical Bacterial Pharmacology

Acquire data:

• PK (AUC, Cmax, time > MIC, protein binding)
• MIC for bacteria
• Evaluate dosage levels
Population Variation

252 Patients with Community Acquired Infections

CID, 2007, 45, S89
Protein Binding

- *Staphylococcus aureus* mouse model (IP)
- 7 separate structurally similar β-lactams
- All have identical MIC
- Only free drug is pharmacologically active

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Bacterial Kill Rates

Aminoglycoside

Quinolone

β-lactam

Tobramycin

Ciprofloxacin

Ticarcillin

Log10 CFU ml⁻¹

0 2 4 6 8 10

Time (h)

24 MIC

16 MIC

4 MIC

1 MIC

1/4 MIC

Control

Courtesy of Macmillan Publishers Limited. Used with permission.

Linking Exposure to Efficacy

Cefotaxime β-lactam
Neutropenic Animals

© Infectious Diseases Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Drusano, G. L. "Pharmacokinetics and Pharmacodynamics of Antimicrobials." Clinical Infectious Diseases 45, no. Supplement 1 (2007): S89-95.
PD-Dependence on Kill Curves

\[K_0 \sim K_1 \sim K_2 \]

\[K_0 > K_1 > K_2 \]

\(\beta\)-lactams: \(K_0 \sim K_1 \sim K_2 \)

Quinolones, Aminoglycosides: \(K_0 > K_1 > K_2 \)

Courtesy of Macmillan Publishers Limited. Used with permission.
Fluoroquinolones: AUC to MIC Matters

q.d. = A dose 1x/day
80 mg/kg daily dose
lomefloxacin (fluoroquinolone)
3 strains of *Pseudomonas aeruginosa*
Neutropenic Rats

b.i.d. = A/2 dose, 2x/day
3 strains of *Pseudomonas aeruginosa*
Neutropenic Rats

q.i.d. = A/4 dose, 4x/day

© Infectious Diseases Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Lomefloxacin (fluoroquinolone)

S. pneumoniae
Model: Mouse thigh infection

CID, 2007, 45, S89
Emergence of Resistance

- Heterogeneous cell populations
- Hypermutators and persisters
- High mutation rate
- Mutations at 10^{-8} to 10^{-6} genes per generation
- Rapid growth rate
- Double approximately every 30 minutes
- Readily transfer genetic material
- Improper treatment selects for resistant cultures
Persister Phenotype

- Distinct from resistance
- No expansion in presence of antibiotic
- Population growth upon removal
- Nonhereditary phenotype
- Problematic for “compromised” individuals of the population

Figure 1. Drug Persistence and Recurrent Infection

© Elsevier Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Genetic Variation

- Point mutations
 - Vertical transmission (germ line)
- Plasmid born (conjugation)
 - Horizontal gene transfer
- Acquire environmental DNA (transformation)
 - Horizontal transmission
- Virus/bacteriophage (transduction)
 - Horizontal transmission
Conjugation

- Horizontal transfer (horizontal gene transfer)
- Plasmid can contain multiple factors that render resistance
- Can be passed between different species and genus

1. Donor
2. F Plasmid
3. Relaxasome
4. F Plasmid

Chromosomal DNA
Pili
DNA Polymerase
Relaxasome Transferasome
F Plasmid
Pili
F Plasmid

1. Donor
2. Recipient

1. Old Donor
2. New Donor

Courtesy of Michael David Jones on wikipedia. Used with permission.
Common Resistance Mechanisms

• Metabolic enzymes
 • β-Lactamase
 • Esterase
 • Acetyltransferase

• Efflux pumps

• Reduce concentration of drug

• Mutations in antibiotic targeted proteins

• Topo II
Vancomycin Resistance

- 9 Genes on a transposon
- All genes can hop in and out
- VanS and VanR are regulatory genes that are only switched on in the presence of Vancomycin

Courtesy of the National Academy of Sciences. Used with permission.

PNAS, 1999, 96, 289
Hypermutator Phenotype

- In absence of horizontal transfer, the only possible resistance mechanism is mutation
- Mutations in DNA repair mechanisms lead to increased rates of germ line mutations
- Accelerated evolution via promiscuous repair/recombination and rapid duplication
Selective Pressure

Amplification of Resistance

© Elsevier B.V. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Dosing Impacts Emergence of Resistance

• Size matters

• Larger the bacterial load, the more likely that resistant populations exist

• Rapid and more intense the treatment the better (in general)

• Minimize time for bacteria to mutate or transfer resistance

• Granulocytes (innate immune system) clear bacteria at appreciable rates

• Co-dependence on antibiotics to limit growth and impact population size

• Evaluation of PK/PD antimicrobial parameters are on a case-by-case basis. More work needs to be done in vivo

• Predictive tools for infection type and virulence are needed