20.201 Bacteria, Antibiotics, and Antibiotic Therapy

October 30, 2013

History of Microbiolgy

- **Spontaneous Generation**
 - Aristotle 384-322 B.C.
- Example of maggots arising from spoiled meat
 - Francisco Redi 1626-1697
- Air carried spores that led to microbia growth
 - Louis Pasteur 1822-1895
 - **Pasteurization**
 - Vaccines for anthrax and rabies

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Prescott, Lansing, John Harley, and Donald Klein. *Microbiology*. 4th ed. McGraw-Hill, 1999.

Microbiology, 4th Ed., Prescott

Microbes: In Perspective

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Prescott, Lansing, John Harley, and Donald Klein. *Microbiology*. 4th ed. McGraw-Hill, 1999.

Microbiology, 4th Ed., Prescott

Bacteria

- Single cell organisms
- Gram-positive and gram-negative
- Ubiquitous in the environment
- Microbiome
- Very rapid growth rates
- Exotoxins and endotoxins

Gram-Staining

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Prescott, Lansing, John Harley, and Donald Klein. *Microbiology.* 4th ed. McGraw-Hill, 1999.

Microbiology, 4th Ed., Prescott

Cell Wall

- Provides shape
- Protects against osmotic lysis
- Physical barrier
- Peptidoglycan (Murein)
- NAM-NAG-amino polymer

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Golan, David E., Armen H. Tashjian, and Ehrin J. Armstrong, eds. *Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy*. Lippincott Williams & Wilkins, 2011.

Golan, Fig. 34-1

Cell Wall Gram-positive vs. gram negative

Fig. 1-2. Composition of the cell surfaces of gram-positive and gram-negative bacteria.

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: White, David, James T. Drummond, and Clay Fuqua. *The Physiology and Biochemistry of Prokaryotes.* 3rd ed. Oxford University Press, 2007.

The Physiology and Biochemistry of Prokaryotes, 3rdEd.,White

Cell Wall Gram-positive vs. gram negative

Fig. 1.7 Schematic illustration of a gram-negative and a gram-positive bacterial cell wall. Note the presence of an outer membrane (also called outer envelope) in the gram-negative wall and the much thicker peptidoglycan layer in the gram-positive wall.

© Oxford University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: White, David, James T. Drummond, and Clay Fuqua. *The Physiology and Biochemistry of Prokaryotes.* 3rd ed. Oxford University Press, 2007.

The Physiology and Biochemistry of Prokaryotes, 3rd Ed., White

Gram Positive

- Gram positive bacteria
- Thick peptidoglycan
- Teichoic acids
 - Contain phosphates
 - Impart negative charge

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Prescott, Lansing, John Harley, and Donald Klein. *Microbiology*. 4th ed. McGraw-Hill, 1999.

Microbiology, 4th Ed., Prescott

NAM-NAG-Peptide

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Prescott, Lansing, John Harley, and Donald Klein. *Microbiology*. 4th ed. McGraw-Hill, 1999.

Microbiology, 4th Ed., Prescott ¹⁰

Peptidoglycan

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Prescott, Lansing, John Harley, and Donald Klein. *Microbiology*. 4th ed. McGraw-Hill, 1999.

Microbiology, 4th Ed., Prescott¹¹

Gram Negative

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/fag-fair-use/. Source: Prescott, Lansing, John Harley, and Donald Klein. *Microbiology*. 4th ed. McGraw-Hill, 1999.

Lipopolysaccharide

- Highly diverse and changing polysaccharides
 - Avoids host detection
 - Limits host interaction with outer membrane
 - Prevents entry of bile salts, antibiotics, and toxicants
- **Prevents loss of nutrients** from periplasmic space

Transporters and porins

Selectively export and uptake small molecules

Microbiology, 4th Ed., Prescott

Exotoxins and Endotoxins

- Exotoxins
 - Heat-labile, proteins released into surroundings
 - Can migrate to different cells or tissues
 - Diphtheria toxin, anthrax toxin, cholera toxin
- Endotoxins
 - Heat-stable lipopolysaccharide
 - Outer membrane of gram-negative bacteria
 - Released during lysis or cell division/growth
 - Leads to blood clotting, hemorrhaging and organ failure

Exotoxin: Diphtheria Toxin

- Corynebacterium diphtheriae
 - Gram-positive, facultative anaerobe
- Diphtheria toxin:
- 62 kDa Protein
- B: Cell surface receptor binding
- A: Enzymatic region
- Catalyzes addition of ADP-Ribose to EF2
- Inhibits translation

© McGraw-Hill. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Prescott, Lansing, John Harley, and Donald Klein. *Microbiology.* 4th ed. McGraw-Hill, 1999.

Microbiology, 4th Ed., Prescott 14

Antibiotic resistance is and will be a problem

Image is by the Centers for Disease Control and Prevention, and is in the public domain.

Antibiotic Drug Pipeline

Tomorrow's Antibiotics: The Drug Pipeline

Image is by the Centers for Disease Control and Prevention, and is in the public domain.

Antibiotic Resistance Threats in the United States, 2013, CDC⁶

How to Target Bacteria?

- Unique processes/proteins
- Cell Wall
- DNA synthesis
 - Single circular dsDNA chromosome
- Ribosomes
- Can you selectively target pathogenic bacteria?

How to Target Bacteria?

Source: Golan, David E., Armen H. Tashjian, and Ehrin J. Armstrong, eds. *Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy*. Lippincott Williams & Wilkins, 2011.

Golan, Fig. 32-1

Aminoglycosides Macrolides

Reactive Oxygen Species

Folic Acid Metabolism

- Humans require folic acid in diet and use as a cofactor in the synthesis of amino acids and nucleic acids
- Bacteria make their own folic acid
- Bacteriostatic

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Golan, David E., Armen H. Tashjian, and Ehrin J. Armstrong, eds. *Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy*. Lippincott Williams & Wilkins, 2011. Golan, Fig. 32-6,32-7¹⁹

Sulfonamides

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Golan, David E., Armen H. Tashjian, and Ehrin J. Armstrong, eds. *Principles of Pharmacology: The* Golan, Fig. 32-6 *Pathophysiologic Basis of Drug Therapy*. Lippincott Williams & Wilkins, 2011.

β-Lactams

- Inhibit cell wall polymer crosslinking
- Inhibit transpeptidase
- Bactericidal

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Golan, David E., Armen H. Tashjian, and Ehrin J. Armstrong, eds. *Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy*. Lippincott Williams & Wilkins, 2011.

Golan, Fig. 34-3, 34-6

Quinolones/Fluoroquinolones

Type II Topoisomerase

Produce double-strand breaks in DNA

Quinolones inhibit Topoll before second strand can pass

Golan, Fig. 33-4

Bactericidal

© Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Golan, David E., Armen H. Tashjian, and Ehrin J. Armstrong, eds. *Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy*. Lippincott Williams & Wilkins, 2011.

Inhibiting Protein Synthesis

- Multiple Mechanisms
- Not completely understood
- Tetracyclines, Macrolides, Chloramphenicol, Oxazolidinones are bacteriostatic
- Aminoglycosides are only bactericidal class among the protein synthesis inhibitors © wolt

Synthesis inhibitors © Wolters Kluwer Health | Lippincott Williams & Wilkins. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Golan, David E., Armen H. Tashjian, and Ehrin J. Armstrong, eds. Principles of Pharma logy: The Pathophysiologic Basis of Drug Therapy. Lippincott Williams & Wilkins, 2011.

Reactive Oxygen Species

- Observed for bactericidal but not bacteriostatic antibiotics
- NADH depletion
- Dependent on TCA Cycle
- Increased production of superoxide (O₂^{-•})
- Damage to iron-sulfur clusters

Fenton Chemistry

© Elsevier B.V. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Kohanski, Michael A., Daniel J. Dwyer, et al. "A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics." *Cell* 130, no. 5 (2007): 797-810.

Reactive Oxygen Species

This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Foti, James J., Babho Devadoss, et al. "Oxidation of the Guanine Nucleotide Pool Underlies Cell Death by Bactericidal Antibiotics." *Science* 336, no. 6079 (2012): 315-9.

8-oxo-dGTP

🔸 Mut T

8-oxo-dGMP

- Increase in ROS leads to an increase in nucleotide pool damage products ultimately producing DNA damage and cell death
- MutT removes 8-oxo-dGTP from the nucleotide pool
- dnaE911, dinB, & umuDC are DNA polymerases that incorporate 8-oxo-dG

Antibiotics

- Unique processes/proteins
- Cell Wall
- DNA synthesis
- Ribosomes
- ROS
- Innate immunity
 - Phagocytes (neutrophils and macrophages)
- Adaptive immunity

Alexander Fleming

- 1928 Fleming's discovery of "mold juice"
 - Staphylococcus cultures contaminated with a mold from the genus *Penicillium*
 - Penicillin was born

"Mold Juice"

- Why would a mold make a bactericidal compound?
- Why would bacteria make bactericidal compounds?

Common Toxins

18, no. 4 (2001): 380-416.

Nat. Prod. Rep., 2001, 18, 380

Polyketide Biosynthesis

Fig. 23 The biosynthetic pathway for the fungal polyketide 6-methylsalicylic acid (6-MSA) 5.

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Staunton, James, and Kira J. Weissman. "Polyketide Biosynthesis: A Millennium Review." *Natural product reports* 18, no. 4 (2001): 380-416.

Nat. Prod. Rep., 2001, 18, 380

Polyketide Biosynthesis

© Royal Society of Chemistry. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Source: Staunton, James, and Kira J. Weissman. "Polyketide Biosynthesis: A Millennium Review." *Natural Product Reports* 18, no. 4 (2001): 380-416.

Nat. Prod. Rep., 2001, 18, 380

Post-PKB Modifications

Courtesy of Nature Publishing Group. Used with permission. Source: Weissman, Kira J., and Peter F. Leadlay. "Combinatorial Biosynthesis of Reduced Polyketides." *Nature Reviews Microbiology* 3, no. 12 (2005): 925-36.

Nat. Rev., 3, 2005, 925

Post-PKB - Secondary Metabolites

© Elsevier. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Lamb, David C., Michael R. Waterman, et al. "Cytochromes P450 and Drug Discovery." *Current opinion in biotechnology* 18, no. 6 (2007): 504-12.

33

Bacterial Treatment

- Two main initiatives for human infection
 - Eliminate bacteria
 - Avoid emergence of resistance
- Bacteriostatic vs. Bactericidal
- During preclinical (and sometimes clinical) development the compound's efficacy can be measured (not the case for many targets)
- Different drug classes require different dosing (i.e., different measurable endpoints)
- MIC = Minimal Inhibitory Concentration

Clinical Bacterial Pharmacology

Acquire data:

- PK (AUC, Cmax, time > MIC, protein binding)
- MIC for bacteria
- Evaluate dosage levels

Population Variation

© Infectious Diseases Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Drusano, G. L. "Pharmacokinetics and Pharmacodynamics of Antimicrobials." *Clinical Infectious Diseases* 45, no. Supplement 1 (2007): S89-95.

252 Patients with Community Acquired Infections

CID, 2007, 45, S89

Protein Binding

 Staphylococcus aureus mouse model (IP)

- 7 separate structurally similar β-lactams
- All have identical MIC
- Only free drug is pharmacologically active

© Macmillan Publishers Limited. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Drusano, George L. "Antimicrobial Pharmacodynamics: Critical Interactions of 'Bug and Drug'." *Nature Reviews Microbiology* 2, no. 4 (2004): 289-300.

% Free antibiotic

Nat. Rev. Microbiol., 2004, 2, 289

Bacterial Kill Rates

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Drusano, George L. "Antimicrobial Pharmacodynamics: Critical Interactions of 'Bug and Drug'." *Nature Reviews Microbiology* 2, no. 4 (2004): 289-300.

Linking Exposure to Efficacy

© Infectious Diseases Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Drusano, G. L. "Pharmacokinetics and Pharmacodynamics of Antimicrobials." *Clinical Infectious Diseases* 45, no. Supplement 1 (2007): S89-95.

PD-Dependence on Kill Curves

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Drusano, George L. "Antimicrobial Pharmacodynamics: Critical Interactions of 'Bug and Drug'." *Nature Reviews Microbiology* 2, no. 4 (2004): 289-300.

β-lactams: $K_0 \sim K_1 \sim K_2$

Quinolones, Aminoglycosides: $K_0 > K_1 > K_2$

Nat. Rev. Microbiol., 2004, 2, 289

Fluoroquinolones: AUC to MIC Matters

q.d. = A dose 1x/day b.i.d. = A/2 dose, 2x/day q.i.d. = A/4 dose, 4x/day 80 mg/kg daily dose Iomefloxacin (fluoroquinolone) 3 strains of *Pseudomonas aeruginosa* Neutropenic Rats

© Infectious Diseases Society of America. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Drusano, G. L. "Pharmacokinetics and Pharmacodynamics of Antimicrobials." *Clinical Infectious Diseases* 45, no. Supplement 1 (2007): S89-95.

Lomefloxacin (fluoroquinolone) S. pneumoniae Model: Mouse thigh infection

CID, 2007, 45, S89

Emergence of Resistance

- Heterogeneous cell populations
 - Hypermutators and persisters
- High mutation rate
 - Mutations at 10⁻⁸ to 10⁻⁶ genes per generation
- Rapid growth rate
 - Double approximately every 30 minutes
- Readily transfer genetic material
- Improper treatment selects for resistant cultures

Persister Phenotype

Figure 1. Drug Persistence and Recurrent Infection

© Elsevier Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. Source: Cohen, Nadia R., Michael A. Lobritz, et al. "Microbial Persistence and the Road to Drug Resistance." *Cell Host & Microbe* 13, no. 6 (2013): 632-42.

Distinct from resistance

- No expansion in presence of antibiotic
- Population growth upon removal
- Nonhereditary phenotype
- Problematic for "compromised" individuals of the population

Genetic Variation

- Point mutations
 - Vertical transmission (germ line)
- Plasmid born (conjugation)
 - Horizontal gene transfer
- Acquire environmental DNA (transformation)
 - Horizontal transmission
- Virus/bacteriophage (transduction)
 - Horizontal transmission

Conjugation

- Horizontal transfer (horizontal gene transfer)
- Plasmid can contain multiple factors that render resistance
- Can be passed between different species and genus

Courtesy of Michael David Jones on wikipedia. Used with permission.

Common Resistance Mechanisms

- Metabolic enzymes
 - β-Lactamase
 - Esterase
 - Acetyltransferase
- Efflux pumps
 - Reduce concentration of drug
- Mutations in antibiotic targeted proteins
 - Topo II

Vancomycin Resistance

- 9 Genes on a transposon
- All genes can hop in and out
- VanS and VanR are regulatory genes that are only switched on in the presence of Vancomycin

Courtesy of the National Academy of Sciences. Used with permission. Source: Lessard, Ivan AD, and Christopher T. Walsh. "VanX, A Bacterial D-alanyl-D-alanine Dipeptidase: Resistance, Immunity, or Survival Function?" *Proceedings of the National Academy of Sciences* 96, no. 20 (1999): 11028-32.

Hypermutator Phenotype

- In absence of horizontal transfer, the only possible resistance mechanism is mutation
- Mutations in DNA repair mechanisms lead to increased rates of germ line mutations
- Accelerated evolution via promiscuous repair/recombination and rapid duplication

Selective Pressure

Courtesy of Macmillan Publishers Limited. Used with permission. Source: Drusano, George L. "Antimicrobial Pharmacodynamics: Critical Interactions of 'Bug and Drug'." *Nature Reviews Microbiology* 2, no. 4 (2004): 289-300.

Amplification of Resistance

Source: Mouton, Johan W., Paul G. Ambrose, et al. "Conserving Antibiotics for the Future: New Ways to use Old and New Drugs from a Pharmacokinetic and Pharmacodynamic Perspective." Drug Resistance Updates 14, no. 2 (2011): 107-17. Drug Resistance Updates, 2011, 14, 107

Dosing Impacts Emergence of Resistance

- Size matters
 - Larger the bacterial load, the more likely that resistant populations exist
- Rapid and more intense the treatment the better (in general)
 - Minimize time for bacteria to mutate or transfer resistance
- Granulocytes (innate immune system) clear bacteria at appreciable rates
 - Co-dependence on antibiotics to limit growth and impact population size
- Evaluation of PK/PD antimicrobial parameters are on a case-bycase basis. More work needs to be done in vivo
- Predictive tools for infection type and virulence are needed

MIT OpenCourseWare http://ocw.mit.edu

20.201 Mechanisms of Drug Actions Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.