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Bone-Implant Adhesion in Implants

Image removed due to copyright restrictions.

Cementless & Cemented
Stems (Smith & Nephew)

* Bonding via:
a) bone cement (durability often poor)

b) rough/porous surface, into which bone tissue
grows (post-operative period critical)

L_oosening at bone-implant interface

Caused by:
e poor interfacial adhesion
e stress shielding
(inhibits straining of the bone)



Strain Regulated Bone Modelling (Formation) and

Remodelling (Resorption) (H.M. Frost 1987)
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Healthy bone growth 1is stimulated by mechanical strain.
Physiologically benefits start at ~ 1 millistrain.



Use of Porous Metals for Prosthesis

 Porous metals have often been proposed
for prostheses

e Pores ~ 100-300 um & biocompatible
surface - bone tissue in-growth does occur

Image removed due to copyright restrictions. e Fibre Network Materials
Good Potential for Control over:

(a) Material (fibre diameter, section shape)
(b) Architecture (porosity, fibre orientation
distribution, inter-joint spacing)

Canine femur after incorporation
of a Ti mesh (Oka et al, J. Bone
& Joint Surgery, 1997;79:1003-1007)

Image removed due to copyright restrictions.



Magneto-Mechanical Actuation of Bonded Fibre
Networks: A New Approach to Bone Growth Stimulation

Region of high
compressive strain
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Moment acting on a Single Ferromagnetic Fibre in an
Applied Magnetic Field
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Measured and Predicted Deflections of a Single
Ferromagnetic Fibre

Relative deflection transverse to field, Ar / r (%)
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Magnetically-induced Deflection of a Welded
Parallelogram
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Measured and Predicted Deflections of a Welded

Relative deflection transverse to field, Ar / r (%)
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Magneto-Mechanical Induction of an Isotropic Fibre
Network Material
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Magneto-Mechanical Induction of a Transversely Isotropic
Fibre Network Material using X-ray Tomography

3-D tomographic reconstruction
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Effect of the presence of an Environment (Compliant
Matrix) on Network Straining

Region of high
compressive strain
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Predicted Peak Strains in a Surrounding Environment, as
a function of its Stiffness
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 Beneficial strains (>1 millistrain) at L/D > 10
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Measured and Predicted Magnetic Straining with
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Predicted and Measured Stiffness for an Isotropic
Fibre Network
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Concept of an Integrated Prosthetic Design

Porous Magneto-Active Layer
(Ferritic Stainless Steel)
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Treatment by Exposure to Applied Field during Post-operative Period
Only Magneto-Active Layer will respond to Applied Field
Magneto-Active Layer could be Graded, Anisotropic etc

All Materials could be Biocompatible
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Fibre Biocompatibility and Topography

chondrocytes
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Critically point dried
Cartilage Cells (chondrocytes) cultured on a 446 (ferritic) stainless steel
fibre network



Summary

* Network of Ferromagnetic Fibres Deforms Elastically in
Magnetic Field, inducing Strain in any Matrix present

* An Analytical Model has been Developed describing this Process
and has been Experimentally Validated for Simple Fibre
Configurations

* Model Predictions suggest that Physiologically Beneficial Strains
could be induced in In-Growing Bone Tissue using Magnetic
Fields already employed for Diagnostic Purposes

 In Vitro Experimentation is needed to explore the Viability of
the Concept





