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Preface

Feedback control is an important technique that is used in many
modern electronic and electromechanical systems. The successful
inclusion of this technique improves performance, reliability, and
cost effectiveness of many designs.

Many of us have had an introductory feedback control subject
during our student days. In most cases this introduction was a typ-
ically academic one with little emphasis on how theoretical con-
cepts could be applied to actual physical hardware.

In this series of lectures we reintroduce the analytical concepts
that underlie classical feedback system design. The application of
these concepts is illustrated by a variety of experiments and dem-
onstration systems. The diversity of the demonstration systems
reinforces the value of the analytic methods previously introduced
and provides the motivation for future lectures.

The lectures incorporate the material in this area that I have
found to be most important in my own research and consulting
experience. In fact, most of the demonstration systems are closely
related to actual systems that I have designed. The lectures also
reflect the important comments made by many of the students who
have taken a similar subject at MIT.

Each lesson consists of a taped lecture, a reading assignment
in the text, and problems, generally also in the text. The suggested
sequence is to first view the lecture, then read the suggested sec-
tions of the text, and finally solve the problems.

In many cases, the material in the text is more detailed than
that provided in the taped lectures. The material learned from the
lectures should expedite the self-study of the extensions and ampli-
fications of the text.

It is vitally important that participants in this course solve the
problems that are included in the assignments. Simply viewing the
tapes, even when combined with the suggested reading assign-
ments, provides a superficial knowledge of the subject matter at
best. True mastery requires the in-depth exposure that only comes
from wrestling with the concepts through problem solving.
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The problem solutions presented in this manual should be
consulted only after diligent effort has been made by the partici-
pant. We intend the solutions to illustrate what we feel is a good
way to solve the problems, rather than to serve as a crutch. Simi-
larly, discussion of the problems with fellow course participants,
after having solved them individually, will improve your under-
standing of the material.

The text frequently includes problems related to the material
presented in a lecture that are not specifically assigned. In view of
the importance of the first-hand experience gained by problem
solving, participants should also solve these additional problems
as their schedules permit.

I’d like to thank two of my students for their contributions to
the video tapes and the manual. Mike Johnson set up all of the
experiments and demonstrations in the studio. He was responsible
for the real time magic that replaced one demonstration with
another as I lectured away from the demonstration area. Dave
Trumper provided all of the problem solutions presented in this
manual. The explanations and insights he provides reflect his own
excellent understanding of the material.

Most of the viewgraphs used to illustrate the lectures were
copied from figures in the text. John Wiley & Sons kindly allowed
us to use this material.

Finally, I'd like to thank the many staff members of the MIT
Center for Advanced Engineering Study who made the production
of the tapes, the manual, and the promotional material possible.
Their tolerance of my procrastination was also much appreciated!

James K. Roberge
Lexington, Massachusetts
January, 1986
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Introduction and Basic Concepts

Disturbance Viewgraph 1.1

Input + Out
variable Error val:igl;llfa

~—3| Comparator ——] Amplifier

Measuring or <
feedback element

A typical feedback system

This lecture serves to introduce the course material and establish Comments
the notation that we will use. Important properties of feedback sys-

tems are discussed, and the impact of loop transmission on these

properties is described. The examples used for illustration are

familiar operational amplifier connections.

Textbook: Skim Chapter 1 if you have not worked with opera- Reading
tional amplifier circuits recently.

Chapter 2: Sections 2.3.2 and 2.3.3 may be postponed until
Lecture 2, or may be read now for continuity. We will not use the
material in Section 2.4.3 directly. However, you will find that this
method can save you considerable time in the analysis of complex
systems.

1-3
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Problems

Problem numbers followed by numbers in parentheses (see, for
example, P1.6 below) refer to the textbook that accompanies these
lectures: James K. Roberge, Operational Amplifiers: Theory and
Practice (New York: John Wiley & Sons, 1975). When a problem
number in parentheses is given without any accompanying text,
the problem is to be followed as it appears in the textbook. For
some problems referring to the textbook, we have added com-
ments or modifications, which appear in this manual beneath the
problem it refers to (see, for example, P2.1 below).

Problem 1.1: Design a circuit using a single operational amplifier
that provides an ideal input—-output relationship:

Vo = —=Vy— 2Viz - 3Vis
Keep the value of all resistors between 10 k@ and 100 k.

Draw a block diagram for your amplifier connection, assum-
ing that the operational amplifier has infinite input resistance and
zero output resistance but finite open-loop gain a. Use your block
diagram to determine the loop transmission of your connection.
How large must the open-loop gain of the operational amplifier be
so that errors from finite gain are no more than 0.01%?

Problem 1.2 (P1.6)

Problem 1.3 (P2.1): Solve the problem as stated in the textbook,
and also reduce the block diagram to a form that has one forward
element and one feedback element between input and output and
determine the gains of these elements.

Problem 1.4 (P2.11)

Problem 1.5 (P2.9)

FSPRET———
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Viewgraph 2.2
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Effects Of Feedback on Noise and Nonlinearities

Demonstration Photograph 2.1
Nonlinear amplifier demonstration

Much of our effort in this subject involves the properties of linear Comments
feedback control systems. However, feedback is often used to

either provide controlled nonlinearities or to moderate the effects

of the nonlinearities associated with virtually all physical

components.

The economic impact of improving the performance of a non-
linear power handling element by adding gain at a low signal power
level of the system can be substantial.

Similarly, feedback often provides a convenient and econom-
ical means for reducing the sensitivity of systems to externally
applied disturbances.
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Reading Textbook: The material in this lecture parallels that in Sections
2.3.2 and 2.3.4. Please read this material if you have not done so
in connection with Lecture 1.

Problems

Problem 2.1 (P2.3)

Problem 2.2 (P2.4)

Problem 2.3 (P2.5): For parts (a) and (b) assume that the sinusoidal
disturbance term vy is equal to zero. Then, for part (c) let vy equal
the indicated value of sin 377t.
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T Viewgraph 3.1
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Viewgraph 3.7
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Demonstration Photograph 3.1
Second-order system

Demonstration Photograph 3.2
Operational-amplifier for comparison
with second-order response
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Comments

This lecture serves as an introduction to the dynamics of feedback
systems. Aspects of this topic form the basis for more than half the
material covered here. If the dynamics of systems could be
adjusted at will, it would be possible to achieve arbitrarily high
desensitivities and to modify electrical or mechanical impedances
in any required way.

We will never solve for the exact closed-loop transient
response of a high-order system, preferring instead to estimate
important properties by considering lower-order systems that
accurately approximate the actual behavior. A demonstration indi-
cating a specific example of this type of approximation is included.

Additional Discussion

I mention in the lecture that a factor of 0.707 corresponds to a
—3 dB change on a decibel scale. This reflects the convention usu-
ally used for feedback systems where gains (even dimensioned
ones) are converted to dB as 20 log,, (gain).

Note that in viewgraphs 3.1, 3.3, 3.4, and 3.5, the horizontal
axis is normalized so that the resultant curves can be easily scaled
for any particular bandwidth system. Thus the horizontal axis in

. ) 1 . )
3.1 is presented as a multiple of —, in 3.3 and 3.4 as a multiple of
T

w,, and in 3.5 as a multiple of 1 .
Wy

Reading

Textbook: Sections 3.1, 3.3, 3.4, and 3.5. While we will not use the
material in Section 3.2 directly, you may want to review it if you
have not worked with Laplace transforms recently.




Introduction to Systems

Problems

Problem 3.1 (P3.1)

Problem 3.2 (P3.2)

Problem 3.3 (P3.5)

Problem 3.4 (P3.7)

Problem 3.5 (P3.8)

3-9
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Loci of
closed-loop
poles

1><

-
Location of two
loop-transmission
poles

Root-locus diagram for second-

Arrows indicate
A direction of
increasing ag

1

jw

s plane

order system.

Viewgraph 4.1

This lecture provides our introduction to the stability of feedback
systems. We will see again and again that the effective design of
feedback systems hinges on the successful resolution of the com-
promise between desensitivity and speed of response on one hand

and stability on the other.

Examples of first-, second-, and third-order systems illustrate
how the difficulty of achieving a given degree of stability increases

dramatically as the order of the system increases.

Comments
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Corrections

1 left out df in both of the integrals used in the definition of stability
on Blackboard 4.1. These integrals should read

f|v,(z)|dt<oo and j loe(t)|dt < oo

I also left out a ¢ in the test generator signal on the same black-
board. The relationship should be

Ksin—\/—§t= v,
T

I may have left the wrong impression concerning evaluation
of stability by means of loop-transmission frequency response. If
the loop transmission is exactly +1 at some frequency, there is
certainly a closed-loop pair of poles on the imaginary axis at that
frequency. The point is that closed-loop pole locations (and partic-
ularly the important question concerning the number of closed-
loop poles in the right-half of the s plane) can generally not be
resolved with loop-transmission information at isolated frequen-
cies. This quantity must be known at all frequencies to answer the
stability question.

Reading

Textbook: Chapter 4 through page 120.

Problems

Problem 4.1 (P4.1)

Problem 4.2 (P4.2)
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Comments In Lecture 4 we introduced the concept of a root-locus diagram by
directly factoring the characteristic equation of the two-pole sys-
tem used for illustration. This method is tedious for higher-order
systems.

The material in this lecture shows how the fact that the a(s)/(s)
product must equal —1 at a closed-loop pole location can be
exploited to determine rapidly important features of the root-locus
diagram. We also see that simple numerical methods can provide
certain quantitative results when required.

Corrections Note that there is a mistake in the videotape on blackboard 5-1
where it states root-locus Rule 4. The blackboard says that the
average distance from the real axis is constant. This is identically
satisfied for all physically realizable systems. The corrected black-
board in the Video Course Manual states that the average distance
from the imaginary axis is constant under the conditions of Rule
4. See page 123 of the textbook for clarification.

Reading Textbook: Sections 4.3.1 and 4.3.2.

Problems

Problem 5.1 (P4.5)

Problem 5.2 (P4.7)
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Blackboard 6.3
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Demonstration Photograph 6.1
Frequency-selective amplifier
demonstration
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Demonstration Photograph 6.2
Close-up of frequency-selective
amplifier

#

Comments

This lecture extends our understanding of root-locus techniques.
We see that the addition of a zero to a multiple-pole loop trans-
mission increases the amount of desensitivity that can be achieved
for a given damping ratio. Future material on compensation will
show how this technique can be used to improve system
performance.

We also saw how the root-locus method can be generalized to
determine how system poles are related to the value of a single
parameter other than d-c loop transmission magnitude.

Finally we determined the location of zeros of the closed-loop
transfer function and saw the profound effect they can have on the
performance of certain systems.




More Root Locus

The phase of the signal associated with the rejection amplifier is Correction
wrong in my blackboard drawing. As I mentioned, the initial value

theorem can be used to show that the initial value of the step

response will be unity. The waveform displayed in the demonstra-

tion correctly shows the phase for a small damping ratio as approx-

imately that of —sin wr.

Textbook: Sections 4.3.3 through 4.3.5. Reading

Problems

Problem 6.1 (P4.6)

Problem 6.2 (P4.8)

6-5
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Viewgraph 7.3
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Viewgraph 7.5
=0.999 10°
0.998
| 10572
0.995
/
0.99 - 102
[/
0.98
I/ o
0.95
I/ pe
0.9 — 10
1/
0.8
| 10172

o —— o
- NT—,

1

o

.

N

o

. |
o o |
[} o — o | Iw
™ o o - Q
2ly 8 8 9 RE e Llg =
TRR S Ter
0.01 102
| 10-52
173
T T T T | — 1 T T T 0

60° —330° —300° —270° —240° ~210° —180° —-150° —120° -90° —-60° -30° O°

G —>

Nichols chart.



o SR

7-6 | Electronic Feedback Systems

Viewgraph 7.6
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Demonstration Photograph 7.1

3-dimensional Nichol’s chart

The root-locus method introduced earlier provides a good insight Comments
into the behavior of many feedback systems, but it has its limita-

tions. For example, experimental measurements made on an open-

loop system may be difficult to convert to the required forms. Fur-

thermore, quantitative results can only be obtained via possibly

involved algebraic manipulations.

An alternative that is useful in many cases involves frequency
domain manipulations, where the evaluation of relative stability is
based on the resonant peak of the closed-loop transfer function.
The conversion from open-loop to closed-loop quantities is
achieved via the Nichol’s chart.
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’ Reading Textbook: Section 4.4.

Problems

Problem 7.1 (P4.9)

Problem 7.2 (P4.10)

Problem 7.3 (P4.11)
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Blackboard 8.1

Blackboard 8.2
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Viewgraph 8.1
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Viewgraph 8.2 T 10
Mp =1.35

G
l 1+ Gl =12
—1.3 - M, =13
| 1.4 P
1.5 I
[ 1.7 Mp 1.4

// Mp =15
— //// s
‘—”’/ be
Gain margin

? ~2.2

Gain margin -10.3

o 2.7/

| 0.1
-190° -180° -135° -90°
%G —
M, for several systems with 45°
of phase margin.
Comments In this lecture we define phase margin and show that it is a valu-

able indicator of the relative stability of a feedback system.
Because of the ease with which they are obtained and the accuracy
of estimates based on them, frequency-domain measures are gen-

erally used for the quantitative design of feedback systems.

Our discussion of compensation is initiated in this lecture by
showing how changes in the a,f, product influence stability for typ-

ical systems.
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Textbook: Review material in Sections 4.4.2 and 4.4.3. Chapter 5 Reading
through Section 5.2.1.

Problems

Problem 8.1 (P4.13)

Problem 8.2 (P5.1)

Problem 8.3 (P5.2)
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Blackboard 9.1 More Compensahon
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Blackboard 9.2
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C Viewgraph 9.1
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Lead network characteristics for
Vo(s)/Vi(s) = (1/a) [lars + 1)/(rs + 1)].
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Viewgraph 9.3 70° a=20
60° / a=10
50° //\5
/ a=5] \
T40° / //—‘\\\
ol L/ \\
300 / // \ \
A \
10°
Oo /J
0.01 002 005 0.1 0.2 0.5 1 2 5 10
TW—>
Angle
Lead network characteristics for
Vo) Vils) = (1/e) [oers + 1)/(rs + 1)].
Viewgraph 9.4 i AN~ .
+ &, L +
Vils) R, Vols)

1 : I

= Vo(s)_ s+ 1

V,-(S) - ars + 1

where

_ Rl +R2
R

2

T =R2C

o




More Compensation

1 Viewgraph 9.5
\
0.5
a=5
Foo >
M \a= 10

0.1 \
. \ a=20
0.05 ~—

0.02
0.1 0.2 0.5 1 2 5 10 20 50 100
ATW —>
Magnitude
Lag network characteristics for
Vo (s)/Vils) = (rs + 1)/lars + 1).
0° Viewgraph 9.6
—]
-10° el

N A
NS4

7
' S A/
/

-60° N /

-70° @=20

01 02 05 1 2 5 10 20 50 100
TW —>

Angle
Lag network characteristics for
V,(s)/Vils) = (s + 1)/lars + 1),

9-5



e —

9-6 | Electronic Feedback Systems

Comments In this lecture we indicate the general types of changes that may be
made to the dynamics of the loop transmission in order to improve
performance. The exact way in which these techniques are applied
is strongly dependent on the physical details of the system, and
consequently the discussion is quite general. Specifics will be illus-
trated with examples in future lectures.

Reading Textbook: Sections 5.2.2 and 5.2.3.

Problems

Problem 9.1 (P5.3)

Problem 9.2 (P5.4): Do not do part d.

Problem 9.3 (P5.5)

Problem 9.4 (P5.6)
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Blackboard 10.1

. P
Compensatin Example We Im | G | P
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o s o T
=10
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Viewgraph 10.1
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Gain-of-ten amplifier
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Viewgraph 10.2
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Bode plot for uncompensated

gain-of-ten amplifier
af =5 x 10*/[(s + 1)(10™%s + 1}(10°5s + 1)].

Viewgraph 10.3
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Circuit =
Gain-of-ten amplifier with lead
network in feedback path.
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Viewgraph 10.4
+
Vi a(s) > Y,
(0.1)(9RCs + 1) B
(0.9RCs + 1) D
Block diagram
Gain-of-ten amplifier with lead
network in feedback path.
Vi . o
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3 =
= 3
= o S
3 10} —--180" =
3 xr
1l- ]
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Bode plot for uncompensated

gain-of-ten amplifier
af =5 x 10%/[(s + 1)(10™s + 1)(1075s + 1)].
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Viewgraph 10.6
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Circuit
Gain-of-ten amplifier with lag R
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Viewgraph 10.7
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Block diagram
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Viewgraph 10.8

+
v; —— s+ 1 - als)
ars +1 -
s+l Leto1
ars +1 ’
Block diagram
Gain-of-ten amplifier with lag
compensation.
Viewgraph 10.9
+
V; —rs+1 als)
- ars + 1
0.1 €
Block diagram following
rearrangement.

Gain-of-ten amplifier with lag

compensation.
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w(rad/sec) —~

Bode plot for lag compensated
gain-of-ten amplifier.
a'f" =5X10%(1.5 X 1035 + 1)/

[(s +1)(10s + 1)(107s + 1)(9.3 X 10735 + 1)].

105 i | ‘ ‘ 0° Viewgraph 10.10
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11—
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Bode plot for uncompensated
gain-of-ten amplifier i
af =5x 10*/[(s + 1)(10™s + 1)(10°5s + 1)] ..
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g Angle §
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o
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Viewgraph 10.12
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Viewgraph 10.13 1
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Viewgraph 10.14

jw
s plane
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(b) Lead compensated
T Viewgraph 10.15
jw
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Demonstration Photograph
10.1 Gain-of-ten amplifier
demonstration

Demonstration Photograph
10.2 Close-up of gain-of-ten
amplifier

R T



Compensation Examples

This lecture’s analysis and the associated demonstrations show
how the compensation methods developed earlier can be applied
to a physical system. The demonstration system is, admittedly,
somewhat contrived so that the required manipulations can be eas-
ily performed with accuracy. In many actual systems, exact system
parameters are less certain. However, analysis parallel to that pre-
sented in the lecture generally provides an excellent first cut at the
appropriate compensator, which may then be refined based on test
results.

It is important that participants in this course have first-hand
experience with the kind of analysis and measurements required
for compensation. Toward this end, the problem (P5.15) suggested
below, which includes substantial laboratory effort, is a very nec-
essary part of the course.

Comments

I suggest aiming for 47° of phase margin in the lag-compensated
system without much justification for the design objective. The
reason is effectively an educational one. We choose the lead com-
pensation to provide the maximum possible phase margin given
the constraints of the topology. This approach is reasonable,
because the maximum achievable value of 47° is adequate, but cer-
tainly not overly conservative.

In the case of lag compensation, larger values of phase margin
could be obtained by using larger values of a. The value of 47° was
chosen so that direct stability and speed of response comparisons
could be made with the lead-compensated amplifier.

Clarification

Textbook: Sections 5.2.4 through 5.2.6.

Reading

10-11
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Problems

Problem 10.1 (PS.8)

Problem 10.2 (P5.12)

Problem 10.3 (P5.13): In calculating the settling time for the lag-
compensated gain-of-ten amplifier, make the simplifying assump-
tion that the loop transmission is second order. That is, the poles
of Equation 5.15 at 10* and 10° rad/sec may be ignored, and a”(s)
approximated by

5X 10%(1.5 X 1073 + 1)

@) = I 1093 X 105 + 1)

Problem 10.4 (P5.15)




I

D E O

C O U R S E

Feedback
Compensation

M A N U A L

11



11-2 | Electronic Feedback Systems

Blackboard 11.1
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Feedback Compensation

Topology for feedback Viewgraph 11.1
compensation
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I, Viewgraph 11.2
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N
+
+
v From output of
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Operational amplifier
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Comments Minor-loop compensation provides a preferable alternative to cas-
cade compensation for many physical systems. Examples include
servomechanisms using tachometric feedback and a number of
available integrated-circuit operational amplifiers.

The appropriate compensation for a particular application is
generally determined by assuming that feedback controls the
behavior of the minor loop at the major-loop crossover frequency.
The possibility is realistic because the relatively fewer elements
included in the minor loop permit it to have a higher crossover
frequency.

-
Reading Textbook: Sections 5.3 and 13.3.1.

Problem

Problem 11.1 (P5.14)

A et TN
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Blackboard 12.1 Op-Amp Example
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Blackboard 12.2




Feedback Compensation of an Operational Amplifier

\@pproximation Viewgraph 12.1
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network)
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Viewgraph 12.2
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Viewgraph 12.3
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2.2 k2 Viewgraph 12.5
= for one-pole compen-
sation.
Unity-gain inverter with
two-pole compensation.
T Viewgraph 12.6
Jw
Alternate types of

values
Dominant pole pair

trajectories depending
on actual parameter

Dominant pole
44— Pair in this region

high a, f, X for low a, f,
[ \ i - g —
High-frequency
amplifier poles
s plane

Root-locus diagram for inverter
with two-pole compensation.
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Demonstration Photograph
12.1 Operational-amplifier
compensation demonstration

Demonstration Photograph
12.2 Close-up of operational-
amplifier for compensation circuit




Feedback Compensation of an Operational Amplifier

In this session we show how minor-loop compensation is used to Comments
control the dynamics of an available integrated-circuit operational

amplifier. We find that in certain applications, dramatic perfor-

mance improvements are possible compared with a similar ampli-

fier that uses fixed compensation that is selected for unity-gain

stability.

While specific values for the compensating components are
selected based on parameters of the amplifier type used, the general
methods are applicable to any amplifier that allows the choice of
the components used for minor-loop compensation.

In about the middle of the first blackboard I give the expression Correction
for the closed-loop gain as:

Em
2Cs 1 1
gnf  f2C.s
2C.s f
The final expression should read:
1 1
f2C.s
=41
gnf

(There is a g,, missing in the equation on the blackboard.)

A=~

1 + + 1

Textbook: Sections 13.3.2 and 13.3.3. Reading
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Problems

Problem 12.1 (P13.5)

Problem 12.2 (P13.6)

Problem 12.3 (P13.7)

Problem 12.4 (P13.8)
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Blackboard 13.1
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Operational Amplifier Compensation (cont.)

Compensating network

Output
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stage = = stage
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Model for second stage of a
two-stage amplifier.

Input impedance
of second stage

Viewgraph 13.2

Compensating
network

Circuit used to evaluate slow-
rolloff compensation.

Viewgraph 13.3
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Viewgraph 13.4
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Demonstration Photograph
13.1 Slow-roll-off compensation
demonstration

Demonstration Photograph
13.2  Slow-roll-off network
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Comments Our discussion of minor-loop compensation tailored to specific
applications is continued. We find that if a zero is added to the
open- (major-) loop transmission at an appropriate frequency,
acceptable stability can be maintained when an additional pole (for
example, from capacitive loading) occurs. This type of compensa-
tion requires specific information concerning the location of the
additional pole.

Conversely, compensation that rolls off more slowly than 1/s
is advantageous when it is expected that the additional pole will be
located over a range of frequencies.

R
Reading Textbook: Sections 13.3.4 and 13.3.5.

Problems

Problem 13.1 (P13.10)

Problem 13.2 (P13.11)

e s A
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Blackboard 14.1
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Amplifier Viewgraph 14.1
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Demonstration Photograph
14.1 Trying to get the magnetic-
suspension system started

Demonstration Photograph
14.2 The magnetic-suspension
system in operation




Linear Analysis of Nonlinear Systems

The analytical techniques introduced up to this point in the course
make liberal use of superposition. Unfortunately, superposition
does not generally apply in nonlinear systems, and consequently
we need to develop new methods of analysis for systems where
nonlinearity influences performance.

One possible method is to linearize the system equations
about an operating point, recognizing that the linearized equations
can be used to predict behavior over an appropriately restricted
region around the operating point. This technique is used to deter-
mine compensation for a magnetic suspension system. The linear-
ized equations of motion of this system have a loop-transmission
pole in the right-half plane, reflecting the inherent instability that
exists when the magnetic field strength is fixed.

Comments

Textbook: Chapter 6 through Section 6.2.

Reading

Problems

Problem 14.1 (P6.1)

Problem 14.2 (P6.2)

Problem 14.3 (P6.3)

14-5
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Blackboard 15.1
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Describing Functions

Describing-function analysis offers a way to apply the powerful fre- Comments
quency-domain methods that are so useful in linear-systems anal-

ysis to nonlinear systems. The describing function indicates the
gain-and-phase shift that a nonlinear element provides to an input

sinusoid, considering only the fundamental component of the

output.

While describing-function analysis can be used to estimate the
magnitudes of all signals in a nonlinear system that is driven with
a sinusoid, the computational requirements for this type of
detailed analysis are generally not justifiable. However, describing
functions do provide a valuable way of estimating the amplitude,
frequency, and harmonic distortion of certain kinds of oscillators.

Textbook: Sections 6.3 through 6.3.3. Reading

Problems

Problem 15.1 (P6.6)

Problem 15.2 (P6.7)

15-3
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BlaCkboard 16.1 Describing Furction
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. 4E 1 €
Crv(t} ﬂ“_é 3-sin _éu ,

E>E,
with E”,E’ 2]

G®-4 3 gl
.(E) TE 3 -sin o
E>1 G (E)21, E<1
y
G’p(E)—-’E)E>>l

|
G® A

Viewgraph 16.1

VA | I VB
-1 1 -
-1 Y4

Schmitt trigger provides hysteresis
—-

=

Viewgraph 16.2

|
|
o 17 2\ 3 /4 15 6\ 7 T —
f
' : (seconds)
_1v_: |
I
| |

+1 V|- ——
B L | | |
0 1 2 3 4 5 6 7 t —>
(seconds)
-1V




Describing Functions (cont.) | 16-3

Transfer characteristics.

Input and output waveforms
for sinusoidal excitation.

vI=E sin wt

W

Wl—>

Viewgraph 16.3
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Viewgraph 16.4
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Describing-function analysis of the function generator.

Demonstration Photograph
16.1 Function generator




Describing Functions (cont.)

This lecture continues examples of describing-function analysis. Comments
The method is used to predict the operation of an oscillator formed

by combining an integrator with a Schmitt trigger. Reasonable

agreement with the exact solution is obtained even though the con-

ditions assumed for describing-function analysis are not particu-

larly well satisfied by this system.

We also see an example of a system where relative stability is
a function of signal levels.

Material covered in connection with Lecture 15 provides the nec- Reading
essary background for this lecture.

Problem

Problem 16.1 (P6.8)

16-5
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Blackboard 17.1
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Viewgraph 17.3
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Demonstration Photograph
17.1 Conditional-stability
demonstration

Demonstration Photograph

17.2 Close-up of conditionally-
stable system

_:;f
/v
. i' 1

R =, -
‘!j‘,%‘ SR

8§ 5
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This lecture introduces the idea of conditional stability and uses a
demonstration system to illustrate important concepts. In certain
systems, a loop transmission that rolls off faster than 1/s* over a
range of frequencies is used to achieve high desensitivity while
retaining a relatively low crossover frequency. If the frequency
range of fast roll-off is broad enough, the phase angle may become
more negative than — 180° over a range of frequencies below cross-
over. Such systems can be well behaved when they are operating
in their linear region, yet become unstable when saturation lowers
crossover frequency to a region of negative phase margin.

Describing-function analysis indicates the potential for this
type of behavior, predicts oscillation parameters in systems where
instability is possible, and can also be used to determine appropri-
ate nonlinear compensation methods.

Comments

Textbook: Sections 6.3.4 and 6.3.5.

Reading

Problem

Problem 17.1 (P6.9)
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Blackboard 18.1

O scillators
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£

LI

t .
e’A: EAP,‘AA— h
b,

RC
E A L

4
E
ty-—

4RC,

e

Desqn C onsiderations
W« _I

< RC
A nclodes integration

AL includes F»\fe(\n’}

Re comservatve !

N

Blackboard 18.3




Oscillators (Intentional) | 18-3

Viewgraph 18.1

Wien-bridge oscillator

Viewgraph 18.2

Quadrature oscillator
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Demonstration Photograph
18.1 Amplitude-stabilized oscillator
demonstration

Demonstration Photograph
18.2 Amplitude-stabilized oscillator

close-up




Oscillators (Intentional)

To this point in the series our effort has been directed toward Comment
designing feedback systems with acceptable stability. In this lecture

we look at how we might use the techniques we have learned to

design oscillators that provide outputs with high spectral purity.

The basic approach is to use a very slow (compared to the fre-
quency of oscillation) feedback loop to hold a closed-loop pair of
poles of the oscillator circuit exactly on the imaginary axis. The
validity of this approach is illustrated with a demonstration
system.

"
Textbook: Section 12.1. Reading

L ———
Problems

Problem 18.1 (P12.1)

Problem 18.2 (P12.2)

Problem 18.3 (P12.4)

18-5
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Blackboard 19.1

Phase-Locked Leops

Blackboard 19.2
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Phase-Locked Loops

Demonstration Photograph
19.1 Phase-lock loop
demonstration

Demonstration Photograph
19.2 Close-up of phase-lock loop

19-3
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L

Comments The phase-locked loop is a circuit that is used in applications rang-
ing from demodulation to frequency synthesis. A phase-locked
loop is a feedback system, and the performance and design con-
straints for such circuits can be determined using the methods we
have developed earlier in the course.

— — .

Reading/Problems There are no specific reading assignments or problems. For those
interested in a thorough background in phase-locked loops, an
excellent and detailed treatment is provided in: Floyd M. Gardner,
Phaselock Techniques, 2nd ed. (New York: John Wiley & Sons,
1979).
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Blackboard 20.1

Blackboard 20.2
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Demonstration Photograph
20.1 Here comes Super Train!

It is difficult to justify this much effort for a toy, but it is a lot of = Comments
fun!

No reading or problems—school is out! Reading/Problems
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S O L U T I O N S

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

Introduction and
Basic Concepts

Following the example of Section 1.2.3 of the textbook, with N =
3, we use the connection shown in Figure S1.1:

We then apply Equation 1.20 to write

R, R, R,

VO = = R[-] V;l - R!-z V’!Z - Rl-a I/lj (S]"l)
The desired gain expression is:
Vo = - Vr’l - 2V:'2 - 3V:3 (Sl'z)

Thus, R, = R, R, = 2R, and R;; = 4R, By choosing R, = 60
kQ, we satisfy these conditions with R;, = 60 kQ, R, = 30 k, and
R;; = 20 kQ.

To derive the block diagram, we follow the method of Section
2.4 of the textbook to write a pair of equations in V,, V,, V,,, V.,
and V.

We have, by superposition:

__ RARolRs _, . RIRRs
“ Ry + RJR,|R; R + RARulIR;;  © (S1.3)
A Rf”RiI” RI2 I/,'j 4 Rr’l “R:IHR!}.

Ris + R/ R, R, R+ R;|Ry|R;s °
and
V,= —aV, (S1.4)

Substitution of numerical values into Equation S1.3 yields

— Vo= —0Vy =%V — WV — 4V, (S1.5)

This, combined with Equation S1.4, yields the block diagram in
Figure S1.2:

Solution 1.1
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Figure S1.1 Three-input inverting
amplifier.

Thus, for the specified accuracy, we require that the closed-loop
gain of the output loop V,/V” equal seven within 0.01%. That is,

Vo a _ a
v 1+ax% *T+a

Thus, the minimum a is such that:

= 6.9993 (S1.6)

a
7+ a

which is satisfied by: a = 69,993. That is, the loop-transmission
magnitude must be greater than about 10,000.

=(1-10"% (S1.7)
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Vy —

V;z »

Vi ——

13

We note that the connection of Figure 1.7a is simply a special case
of Figure 1.7b with V;, = V,,. Thus, we first solve for the input-
output relationship for Figure 1.7b. By superposition:

10 kO 10k2 + 10 k@ 10 k@

V.=V, e Py MR

=Va X0k + 10k X 10ke Ve X 10ka
(S1.8)

using results derived in Section 1.2.2 of the text for inverting and
noninverting connections. This reduces to:

V,=Vy — Va (S1.9)

Thus, this connection is a unity-gain differential amplifier. (How
would you design for gains greater or less than unity?) To consider
Figure 1.7a, we set V;; = V;; = V,, to find:

V, = 0, for all V; (S1.10)

This shows the useful property that differential amplifiers reject
common-mode input signals.

Figure S1.2 Block diagram for
three-input inverting amplifier.

Solution 1.2 (P1.6)

S1-3
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Solution 1.3 (P2.1) With reference to Figure 2.20, we write
V, = a,V, or, equivalently, V, = % (S1.11)
2
. v,
V, = a,V, or, equivalently, V, = — (S1.12)
aa,
Vo=V, = V=V, — iV, — £V, (S1.13)
Now, we eliminate V, and V, by substituting S1.11 and S1.12 into
S1.13:
V. iV
—2 =V, —=———= £,V
a,a, ¢ a, ﬁ 2

Collecting terms yields:

1 A
V,=|— + = v,
, (M +4 +ﬁ) :
or,
Ve 1 + a fi + aa.f v,
a,as
Therefore,

V, a,a,
— = S1.14
Vi 1 + ajaf, + fi/a) ( )

which is the desired input-output relationship.

We solve the second part by a block-diagram manipulation
method. This is often easier than working through the algebra as
we have done in the first half of this problem. A valid manipula-
tion on Figure 2.20 yields the block diagram shown in Figure S1.3,
which reduces further to that of Figure S1.4, which is the desired

reduced form. We see that by using the relation 4 = ﬁzzf, Equa-

tion S1.14 can be derived by inspection of this reduced block
diagram.
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Figure S1.3 Manipulated block

diagram.
V. V.,
V’ a - a,
/
A £
s
Figure S1.4 Reduced block
diagram.
a,a; ¥,
f4d

S1-5
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Solution 1.4 (P2.11)

This problem is most readily solved by removing the load and ana-
lyzing the output impedance of the op-amp connection, which we
shall call R,,,. The output impedance with the load connected is
then simply R,,, in parallel with R;.

To solve for R,.,, we analyze the circuit of Figure S1.5:

Figure S1.5 Operational amplifier
connection with load removed.

g

ol

V'

[

Because R > R,, we assume that all of I, flows through the series
connection of R, and R,. Thus

V,=aV,+ I(R, + R) (S1.15)
Now, we require an expression for V,:
Vo= V; = ek er 2 (S1.16)
where V7 is as defined in Figure S1.5. But,
V'~ V,— IR, (S1.17)
Therefore:
V,=V,— V, + % (S1.18)

Equations S1.15 and S1.18 together define the block diagram
shown in Figure S1.6:

o i i
ol
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R,

5 2 h

Tl'd Il'd
. .V,

To calculate output-resistance R,,, we need the ratio - Note
d

that V; does not affect this ratio (as a consequence of linearity);

thus, we set V;, = 0. We then manipulate the block diagram by

2
Figure S1.6, to arrive at the reduced block diagram of Figure S1.7:

propagating the — block forward around the loop, as indicated in

Figure S1.6 Block diagram for
controlled output-impedance

connection with load removed.
N
\
\
\ R, G oz o
| Move 7 block in this direction.
/
/
V4

With V” defined as in Figure S1.7, we have V, = 1+ 2 V”, thus
Figure S1.7 Reduced block
diagram.
a
+
Vﬂ
—‘-’-;3—‘ + R, + R,
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aR, 1
V,=1I, (T + R, + R,,)(1 s a) (S1.19)

and

(—‘3 e 1)& + R,
vV, \2

o 1 +a

If we define R, as the output impedance with the load connected,
we have:

(S1.20)

Ramp =

a
(5 + I)Rs + R,

Run = RupllRy = ~——2———[ R.  (S121)
In the limit of large a, we have
(g + l)R, 5 X
Ry, = lim T IR | =3 IR (S1.22)

Solution 1.5 (P2.9)

Let’s start by modeling the physical system of motor and antenna
(the “plant” in control terminology), which has ¥, as its input and
6, as its output.

The motor is modeled as shown in Figure S1.8:

Figure S1.8 Motor model.

where w,, 1s the motor rotational speed in radians per second and
V, represents the motor’s back e.m.f. voltage.

Now, motor torque 7, is related to 7, by:
T,=10X1, (S1.23)

s it e g




From Figure S1.8, we write:

1
I, = = (Ve — 10w,,) (S1.24)
Thus, the first part of the block diagram appears as shown in Figure

$1.9.

Introduction and Basic Concepts

-+ I, T,
Vm ‘/ 5 - l O
Wi
10 je=

Now, we require a relation between 7, and w,. The rotational
equivalent of Newton’s law F = ma is T = Ia where [ is the rota-
tional inertia and « is the angular acceleration. Applying this rela-

tionship with «,, = doy and /,, = 2 kg-m we have

dt
dwn _ Ty
a2 (S1.25)
Thus, the transfer function between 7, and w,, is
T, 1
On = X : (S1.26)

Angular position is the integral of angular velocity. Therefore:

0, ==X wp (S1.27)

| =

Now, we can apply relations S1.26 and S1.27 to draw the complete
block diagram for the motor and antenna:

Figure S1.9 Partial block diagram
for Problem 1.5 (P2.9).

S1-9
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Figure S1.10 Motor and antenna
block diagram.

Tm (bm wm

Vm + !"

Ly | —
Y
G |-

10

A

Lastly, we add the differential amplifier. With the error signal
defined as in Figure 2.27, and an amplifier gain of 10, we have

V.. = 10[10(6; — 6,)] (S1.28)

This relationship allows us to draw the complete block diagram as
shown in Figure S1.11.

Figure S1.11 Complete block
diagram for antenna-rotator system.

81 ‘ + VP V," + Ia ] Tui ‘:‘Jm 1 Wy l 80
—1 10 10 Ys »{ 10 > > } ¥ '5'_

A— -

10

|

10 fe=
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This may be greatly simplified. The transfer function of the inner
loop is:

1

a s 1

1+af=l+£=s+10
5

(S1.29)

Then, the reduced block diagram is as shown in Figure S1.12:

Figure S1.12 Reduced antenna-
rotator block diagram.

6! + VNI l

9”
100 s+ 10

Y

Ly | o

By inspection of Figure S1.12, the transfer function between 6, and
6, is given by:

100

6, Ss+10) 100

0", 100 “F¥ios+io ¢ 5 O
G + 10) 100 10

To consider a wind disturbance, we sum a disturbance torque 7,
at the point labeled 7, in Figure S1.11 to get Figure S1.13:

Figure S1.13 Antenna-rotator
block diagram including disturbance
T torque.
d

ai P 100 V,,, + ) Tm + T;n.r 1 Wy 1 60

\

10

A
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At this point, we save further calculations by using a diagram
manipulation to move the 7, input to the same summing junction
as 0, yielding Figure S1.14:

Figure S1.14 Reduced block
diagram.

o

Yaoo

Vo i 1 W, 1 4,
5 1 s
10 =
Thus, we see that
1
7] 1 6 2
L =—"= L (S1.31)
TR E 1
100 10

For a constant input of 7, = 1 N-m, we evaluate the transfer func-

: 1 :
tionats = 0tofind g, = 300 radians.

; . s . 0,
In closing, there are two useful points to notice. First, both P

0, . . w

and T have the same transfer function denominator. This is the
d

term 1 + af, which is the system characteristic equation and does

not depend on where an input drives the system. Secondly, the

input 7, is attenuated relative to 6, by a factor of 200, which is

simply the forward path gain that precedes the torque disturbance.
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S O L U T I O N S

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

Effects of Feedback

Nonlinearities

on Noise and

There are two regions of operation for this circuit. When |v,| is
less than 1, the feedback element has an incremental gain of 1.
Thus:

v, _ 1000
v; 1+ 1000

When |v,| is greater than 1, the feedback element has an incre-
mental gain of zero. Thus:

v 1000

2= — =] > :

5 1FD 000, |vo| > 1 (S2.2)
These two equations describe the complete range of operation. The
closed-loop transfer characteristics are plotted in Figure S2.1:

19 IUO| = 1 (S2.1)

Solution 2.1 (P2.3)

-

slope = 1000

1 v,

slope = 1

Figure S2.1 Closed-loop transfer
characteristics for Problem 2.1 (P2.3).
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Solution 2.2 (P2.4)

(a) The complementary emitter-follower has the transfer charac-
teristic shown in Figure S2.2. Note the +0.6 volt deadzone.

(b) For a closed-loop gain of + 5, we use the noninverting connec-
tion with a value for the feedback signal of % of the output volt-
age, as shown in Figure S2.3:

(c) Here we must consider two nonlinear effects:

« the £0.6 volt deadzone
« saturation due to the finite value of V.

Because the open-loop gain of the operational amplifier is high
(10%), we expect the effect of the deadzone to be greatly reduced, as
was shown in Section 2.3.2 of the textbook.

The transistor stage has two regions of operation that we ana-

lyze separately. For |v,| < 0.6 volts, the output is zero. For |v,|
0.6 S

=< 0.6, we must have v, — v, < 10 However, in this range, v, =

0. Therefore v, = 0 when v, is less than 6 X 107° volts. For v, >

6 X 107° volts, the complementary emitter—follower will be driven

in its linear range, with v; > 0.6 volts. Here, it has an incremental

gain of 1. Thus,

Figure S2.2 Complementary
emitter-follower transfer
characteristics.

Tuo

I
|
|
1
[~~slope = 1
|
|
i

—Ve— 0.6 —0.6

0.6 Ve + 0.6 -
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Uy

Uf

@ -0 Vo
4R
-V,
vp = Yy
R

v, _ 100
v, 14 %10° "

Finally, we account for the finite value of V.. When v, reaches

5 [vg] > 6 X 107° (S2.3)

t V. the output will saturate. This will occur for v, ~ % . The

complete closed-loop characteristic is plotted in Figure S2.4. As
predicted, the deadzone has been greatly reduced (by a factor of
10%).

Figure S2.3 Circuit with closed-
loop gain of 5.

£ 4 bul v,

(axes not drawn to scale)

— e i ,_VC

Figure S2.4 Transfer
characteristics for circuit of Figure
$2.3.

S2-3
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Solution 2.3 (P2.5)

We start this problem by redrawing the block diagram of Figure
2.24. We move the summation point for vy to the input, as shown
in Figure S2.5:

Figure S2.5 Manipulated block
diagram for Problem 2.3 (P2.5)

Nonlinear Ue Vo
element

Note that due to the large gain of a = 10,000, the sinuseidal v, is
attenuated by a factor of 10,000 relative to v,. As stated in the prob-
lem assignment, in parts (a) and (b) we assume that vy = 0.

(a) Now, for V, = 0.5, V, will be approximately 5, and the non-
linear element has an incremental gain of 1. Thus, the incre-
mental gain is:

U, 10 10,000

v, 1+10°x01 1001 2 (824
For V, = 1.25, V, will be approximately 12.5, and the nonlin-
ear element has an incremental gain of %%. Thus, the overall

incremental gain is:

U, 5% 10° 5000
v, 1+5%X10°x0.1 501 2.93 (52.5)
(b) The signal v, is interesting to examine, because we will see that
it is acting in such a way as to reduce the effect the nonlinearity

has on the output signal v,.

In the absence of the sinusoid, vy, for |v,| = 1.001, |v,|
= 10. For |v,| < 10, the nonlinear element has an incremental
gain of 1. Thus,
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Va_ 10* _
e irxoT = %% 0=lul <1001 (S26)

For |v;| = 1.502, |vys| = 15. For 10 < |vy| < 15, the
nonlinear element has an incremental gain of %. Thus,
U, 104

" T F I X% %0l " 19.96 1.001 < |y;| = 1.502

(S2.7)

For |v,] > 1.502, the nonlinear element saturates, and
|[vp] = 15. Here, the nonlinear element has an incremental
gain of zero. Thus,

Y% = 10 |u,| > 1.502
Vi (S2.8)
lvg < 30

Finally, when |v,| = 30 volts, the amplifier saturates.

Then, with v,(f) = t, t = 0, we can use the above expres-
sions to solve for v ().
v4(2) = 9.99¢ 0=t=1.001 (S2.9)
vif) = 10 + 19.96(r — 1.001)  1.001 <= 1.502 (S2.10)
v () = 20 + 10%¢ — 1.502) 1.502 < t < 1.503 (S2.11)

vut) = 30 t = 1.503 (S2.12)
The resulting v ,(¢) is plotted in Figure S2.6.

(c) For v, = 0, the incremental gain % = 9.99, as calculated ear-

1
lier. As mentioned earlier, the gain for vy is a factor of 10* less,
or

Yo~ 9.999 x 10* (S2.13)
Uy

So the sinusoidal component of v, has an amplitude of about
103 vollts.

S§2-5
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Figure S2.6 Plot of v,(¢) for v,(¢)
= [Lt=0,

1)

Vt+t———— - — - —— ——

20

10

slope = 10*

‘N\islope =20
|
|
|
|

—

[ —

(seconds)




S O L U T I O N S

Introduction to
Systems with
Dynamics

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

From Figure 3.6 on page 79 of the textbook, a first-order system Solution 3.1 (P3.1)
has a step response as shown in Figure S3.1:

response.

T v,(1) Figure S3.1 First-order step

A, fo= ma=

] ) ot st s

where A, is the d-c gain of the system. This time response is

described by
vo(t) = Al — e™") (S3.1)
and the transfer function for this system is
Vo, _ Ao
v9 =5t 532

Here, we are given an operational amplifier connected for a non-
inverting gain of 10, as shown in Figure S3.2:
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Figure S3.2 Gain-of-ten
connection.

This corresponds to the block diagram of Figure S3.3:

Figure S3.3 Block diagram for the
gain-of-ten connection.

a(s)

0.1

A

This connection has a transfer function of

Ve (5) = a(s) _ _10a(s)
V; 1 +0.1Xa(s) 10+ a(s)

(S3.3)

We are given that this system is first order with 4, = 10, and r =

10¢ sec. Thus, using Equation S3.2, we have

10a(s) _ 10
10 + a(s) 1078 + 1

Solve this for a(s):
_ 10 + a(s)
) = 10755 + 1

(S3.4)

(S3.5)




Collect terms:

1 10
“(S)(l T 105 + 1) T 10°% + 1 (58)
or
10-s 10

“(S)(lo-f’s ¥ 1) T 10 + 1 (il

which yields:

7

)= lg_ (S3.8)

That is, the op amp is modeled as a pole at the origin, which rep-
resents an integrator.

Introduction to Systems

First, let’s examine the pole locations for this system. There is a
complex pair at 5, = —0.25 + j0.97 and 5, = —0.25 — j0.97.
There is a real axis pole at s; = —10. These poles are shown on
the s plane in Figure S3.4.

Solution 3.2 (P3.2)

T Im(s)

—10 —1 '

Figure S3.4 Pole locations for
Problem 3.2 (P3.2).

S$3-3
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Following the discussion of Section 3.3.2 of the textbook, because
the real axis pole is a factor of 10 farther from the origin than the
complex pair, the system is well approximated by the complex pair
alone.

The complex pair has w, = 1, and { = 0.25. We consider the
system to be approximated by the transfer function:
.
s+ 0.5s5 + 1

This has a step response given by Equation 3.41 of the textbook.
That is:

vo(t) = ao[l e d e “'sin (V1 — P ot + @)]

A(s) ~ (S3.9)

Vi-p
where
ST — 72
® = tan' (%) (S3.10)

Here a, = 1, and ® = 1.32 radians. Thus,
vo(t) = [1 — 1.03e™"* sin (0.97t+ 1.32)] (S3.11)

For this second-order system, we can estimate the peak overshoot
by using Equation 3.58 of the textbook. That is,

Po=1+e""?% =145 (S3.12)

Thus, there is a 45% overshoot.

Solution 3.3 (P3.5)

A system that is second order, with a d-c gain of 1, has a transfer
function of the form

% 1
Zo(s) = —a—— (S3.13)
7 2
! L) O
w; W,

Given that P, = 1.38, we can use Equation 3.58 of the textbook to
solve for {. We have:

P,=1+ ™"’ =138 (S3.14)

e A g ot

e . e e e A o et e
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Stability 4

Note: All references to Figures and Equations whose numbers are
not preceded by an *““S” refer to the textbook.

Because the coefficients of the polynomial Solution 4.1 (P4.1)
S+ 5 +32+457+ s+ 2 (S4.1)

are all present and of the same sign, the necessary condition for all
roots to have negative real parts is satisfied. The Routh array is:

1 3 1
1 4 2
(IXY-(AxXy_ _, AXD=(1UXD_ _, 4
1 1 (S4.2)
(—1><4)_—l(1><rn=3 (—1><2)_T(1><0)=20
BX-D—(-1x2 1
3 =g 0 0
(—‘/a><2)—(3><0)=2 o "

—14

Redrawing the array for clarity, we have

1 3 1

1 4 2
—1 -1 0

3 2 0 (S4.3)
—Y% 0 O

2 0 O

There are four sign changes in the first column, and thus four right-
half-plane zeros of the polynomial.
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e e s |

Solution 4.2 (P4.2)

Following the development on pp. 116 and 117 of the textbook, we
write the characteristic equation as 1 minus the loop transmission.

That is,

Characteristic _ , _ a,

equation =1—-L()=1+ @+ 1) (S4.4)
After clearing fractions, the characteristic polynomial is

.P(S) = (Ts + 1)‘1I + a, (S4.5)

=+ 473 + 6%+ drs+ 1 + a,

The Routh array associated with this polynomial is

r 672 1 + a,
43 4r 0
572 1 + a, 0 (S4.6)
4r (4 = “") 0 0
1+ aq, 0 0

The reader should check the algebra used to derive this array.

Assuming 7 is positive, roots with positive real parts occur for
a, < —1 (one right-half-plane zero), and for @, > 4 (two right-half-
plane zeros). Recall that the problem asks for the a, that results in
a pair of complex roots on the imaginary axis. Only the value a,
= 4 satisfies this condition. With g, = 4, the entire fourth row is
zero, and we can solve for the pole locations by using the auxiliary
equation. Using the coefficients of the third row, the auxiliary
equation is

5728 + 5 =0 (S4.7)

The equation has solutions at

s=+ (S4.8)

=S .

e : . . 1
indicating that with a, = 4, the system will oscillate at — rad/sec.
T

Now that we have found two of the poles for a, = 4, they can
be factored out to find the two other roots of the characteristic
equation. That is, we can factor P(s) as the term 7°s* + 1 multiplied
by a quadratic. This quadratic can be found by applying synthetic
division to P(s) as shown below.

e e i e




S+ 45+ 5
PS4+ 1) + 478 + 6% + drs + 5
st + 7s?
47 + 57> + drs + S
47°s® + 4rs

572 + 5
57%* + 5

0
Then the two remaining poles are solutions of
s +4rs+5=0
which is solved by the quadratic formula to give

—2+

T

and

T

§ =

as the two other closed-loop pole locations when a, = 4.

(S4.9)

(S4.10)

(S4.11a)

(S4.115)

Stability | $4-3
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S O L U T I O N S

Root locus 5

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

(a) Rule 2 is all that is required to find the branches, and Rule 1 Solution 5.1 (P4.5)
tells us that the branches terminate on the two zeros. Thus the
root locus is as sketched in Figure S5.1a.

Figure S5.1 Root loci for
o Problem 5.1 (P4.5). (a) Root locus for
Figure 4.27a.
5 plane
o
——O— 3 L, g

(a)

(b) Rule 4 tells us that the average distance of the poles from the
S ; 2

origin remains constant at § = — -i;—_t—l = —%. By Rule

5, the two complex poles approach asymptotes of +60°. By

Rule 6, the angle of the branch in the vicinity of the upper

complex pole is

6,=180°+ S <z— T <p
= 180° + 0 — 90° — 45° (S5.1)
= 45°

At the lower complex pole the angle will be —45°.

The point at which the complex pair crosses the imaginary
axis can be estimated by using the asymptotes that intersect the
real axis at s = —%. They intersect the imaginary axis at s =
t+% tan 60° = +;2.31. The complex pole pair will cross the
imaginary axis near this point.
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The exact intersection of the root loci with the imag-
inary axis can be solved for using the Routh criterion. By
inspection of the pole-zero diagram the characteristic equation
(after clearing fractions) is

P)=G+26c+1+Dps+1—)+ af,
=(s+ 2)(s*+ 25 + 2) + a.f, (S5.2)

=5 + 45+ 65 + 4 + a,f,
The Routh array is

1 6 |
|
4 4+ af, (S5.3) ?
af, i
§ —=4 0
4+af O

The value g,f, = 20 will make the third row all zero. With this
value of a,f,, we use the second row to write the auxiliary
equation

4 + 24 =0 (S5.4)
This has solutions at
s= +j\/6 = +;2.45 (S5.5)

This exact value is close to our earlier estimate of s = +;2.31,
as expected. In many cases, such an estimate will be suffi-
ciently accurate, and the Routh computation may be avoided.

Using all of the above information we sketch the root
locus in Figure S5.15.

(c) Following the development in the textbook of Rule 7, for mod-
erate values of a,f,, we may ignore the pole at s = — 1000, and
sketch the locus of the three other poles. Using Rule 3, the
breakaway point between the polesat s = —1 and s = —2 will
occur at the solution of

d(s + 1)(s + 2)(s + 3)) _
ds B

0 (S5.6)

Multiplying gives

ds’ + 65 + 115+ 6) _
ds -

0 (S5.7)
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Figure S5.1 () Root locus for
Figure 4.27b.

ij- -3

(b)
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Figure S5.1 (c) Root locus for
Figure 4.27¢.

5 plane

B s e § et
—1000

(o)




(d)

which gives

3+ 12s+ 11 =0 (S5.8)
This is solved by
s=—142
and
s = —2.58 (S5.9)
Only the solution at s = —1.42 is meaningful here (see p. 127
in the textbook), so the breakaway point is at s = —1.42.

By Rule 5, the loci approach asymptotes of +60°, and
these asymptotes intersect the real axis at s = —2. The asymp-
totes cross the imaginary axis at s = *;2 tan 60° = +;3.46.
Using this information, we sketch the root locus as shown in
Figure S5.1c.

By Rule 7, for low values of a,f,, the root locus will be the same
as in part ¢. However, by Rule 2, we know that there is a
branch of the locus to the left of the zero at s = —2000. Thus,
while the two complex poles initially enter the right half of the
s plane, they must at some point turn around, reenter the left
half of the s plane, and rejoin the real axis at some point to the
left of the zero at s = —2000. After rejoining the real axis, one
pole will move to the right to the zero at s = —2000, and the
other pole will move off to the left to infinity. Thus, the root
locus appears as sketched in Figure S5.14d.

This system has the interesting property of being stable for low
and high values of a,f,, but unstable for intermediate values of

a.f..

Root Locus

S5-5
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Figure S5.1 (d) Root locus for
Figure 4.27d.

—2000 —1000

(d)

(e) By Rule 2, branches exist on the real axis between s = 0 and s
= —2. By Rule 5, because there are four poles and no zeros,
all four poles eventually (for large a,f,) approach infinity along
asymptotes of +45° and * 135°. The asymptotes intersect at s
= —2. By Rule 6, the loci leave the poleat s = —1 + jat an
angle of —90°, and leave the pole at s = —1 — j at an angle
of +90°. Combining this information we sketch the root locus
as in Figure S5.1e.
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Figure S5.1 (e) Root locus for
T Figure 4.27e.
Jw

(e)
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Solution 5.2 (P4.7) The noninverting configuration is as shown in Figure S5.2.

The loop transmission for this topology is —a(s)f,, where f, =
R,

——=— . As long as the a,f, product is large, that is, as long as f,
R, + R,

. . 1
> 107% the closed-loop gain is well approximated by f =

R, + R,
R, ~

Figure S5.2 Noninverting |
amplifier. V. + |

a(s) V,
/ R,

At this point, a sketch of the root locus is helpful for under-
standing the system behavior as f; is varied. The closed-loop poles
start at the poles of a(s) for small values of f,, and move as shown
in Figure S5.3 as f; is increased. (Note that the axes are not drawn
to scale.)

The root locus has been drawn by recognizing that two of the poles
will approach asymptotes of +60°, and eventually enter the right
half of the s plane, as f, grows. The third pole follows the real axis
off to the left. Other details, such as breakaway points, are not
important for this analysis, and we do not solve for them.

The dashed lines indicate points where the damping ratio for
a complex pair is equal to 0.5. From the root-locus sketch it is
apparent that there is some value of f, for which the poles will lie
on this line. Following the development on p. 128 of the textbook,
when the system damping ratio is 0.5, its characteristic equation is
given by Equation 4.62 as

P(s) = s + (v + 2B)s* + 2B8(y + 28)s + 4v8> (S5.10)

The closed-loop characteristic equation for the amplifier is 1 minus
the loop transmission, which is (when cleared of fractions)
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P

P(S) = (OlS + 1)(10“65 + 1)2 + 10% (85.11)
=~ 107" + 2 X 1077s*+ 0.1s + 10%,

where three insignificant terms have been dropped. Now, we mul-
tiply P(s) through by 10" and equate with P’(s)

s+ 2 X 10%% + 10'%s + 10¥, = §° (S5.12)
+ (v + 2B)s*> + 2B6(y + 2B)s + 45’
Equating the coefficients of s’ yields
v+ 28=2X10° (S5.13)

Figure S5.3 Root locus for
Problem 5.2 (P4.7).
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Equating the coefficients of s,.and substituting in from Equation
S5.13 gives

26(2 X 10%) = 10" (S5.14)
Thus,
B=25X10
and
v = 15X 10° (S5.15)

Then the remaining term is used to find that

=375 x 10 (S5.16)
With this value of f, , the low-frequency loop transmission is large,

and the low-frequency closed-loop gain is given by fl which is

equal to 26.7. Resistor values to realize this gain can be chosen by
setting

R
Rit Ry _ 567 (S5.17)

R,
or

RI = 25.?R2
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More Root
Locus

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

For the first transfer function a(s), the root locus is shown in Figure Solution 6.1 (P4.6)
Sé.1a.

Figure S6.1 Root loci for

T Problem 6.1 (P4.6). (a) Root locus for
Jw af0.5s + 1)
a(s) = :
(s + 1)0.01s + 1)0.51s + 1)
5 plane
Asymptote at
s = —50.48
L0
—X% -
—100 a

(a)

For moderate values of a,, we evaluate the root locus by ignoring
the pole at s = —100. Then, the locus is similar to the locus of
Figure 4.8 in the textbook. The exact locations of the breakaway
and reentry points are not necessary for this problem, and we do
not solve for them. By Rule 5, two of the poles approach asymp-
totes of +90° from the real axis. These asymptotes intersect the
real axis at

_ =100 — 1.96 — 1 +2
2 (S6.1)

—50.48
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Considering that the third pole is moving to the right towards the
zero at s = —2, the two poles must break away slightly to the right
of the asymptotes, in order to satisfy Rule 4.

For the second transfer function a@’(s), the root locus is shown
in Figure S6.1b.

Figure S6.1 (b) Root locus for
a, 0.51s + 1) , T
(s + 1)0.01s + 1)0.5s + 1)’ Jjw

a'(s) =

Asymptote at § plane
& —50.52 _q
% e - ¥ O—=—H— .
—100 -1.96 -1 o

(b)

By Rule 5, two of the poles will approach asymptotes of +90° from
the real axis. These asymptotes intersect the real axis at
—-100—2 —1 1.96
g . L (S6.2)
Because the third pole is moving to the left towards the zero at s
= —1.96, the two poles must break away from the real axis slightly
to the left of the asymptotes, in order to satisfy Rule 4.

The root locus for the third transfer function a”(s) is shown in
Figure S6.1c.
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Figure S6.1 (c) Root locus for
a«”
(s + 1)0.01s + 1)

a’(s) =

A

A
Asymptote at 5 plane
/ s = —50.50
—— -t H—
Y

(c)

Again, the asymptotes are at +90°, and intersect the real axis at

s = # — —50.50 (S6.3)
To satisfy Rule 4, the poles break away from the axis exactly on

the asymptotes.

Inspection of the three root-locus diagrams indicates that the
three systems will have very similar behavior for moderate to large
values of a,. This is true because the complex pairs approach
nearly identical asymptotes in all three cases. Further, the low-fre-
quency pole-zero doublets effectively cancel out. Thus, intuition is
verified by the root-locus behavior.
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Solution 6.2 (P4.8)

The unity-gain inverter connection is shown in Figure S6.2.

Figure S6.2 Unity-gain inverter.

The loop transmission for this connection is —'%a(s). Thus the
characteristic equation of 1 minus the loop transmission is

1 4+ %a(s) =0 (S6.49)
or, substituting in for a(s):

5 X 10 N
(rs + 1)(107%s + 1)

Clearing fractions and multiplying terms gives
0%+ (r+10%)s +1+5X10*=0 (S6.6)
Following Equation 4.75 in the textbook, we make the associations
p'(s) = s(107%s + 1) (S6.7a)

I 0 (S6.5)

and
q'(s) =~ 107% + 5 X 10* (S6.7b)

Then, the root contour method indicates that we should form a
root locus with poles at the zeros of ¢’(s) and zeros at the zeros of
p’(s). Thus, we have a poleat s = —5 X 10'°, and zeros at s = 0,
and s = —10°% This configuration of singularities may seem
strange, because it represents a physically impossible system hav-
ing more zeros than poles in the finite s plane. Remember, how-
ever, that the zeros associated with the root contour technique are
not the closed-loop zeros for the system under study. (The invert-
ing connection in question here certainly doesn’t have a zero at the
origin.) The root contour does, however, accurately represent the
location of the closed-loop poles as 7 is varied.




We construct the root contour by recognizing that there is a
pole at infinity that will move in from the left. Thus, the contour
is as shown in Figure S6.3.

More Root Locus

¥

§ plane

circle centered
at —5 X 10"

The angle condition imposes the geometric constraint that the
branches circle the pole at —5 X 10'°. The entrance point on the
real axis at s = —5 X 10° is solved for by applying Rule 7 to
the group of singularities near the origin (i.e., the zeros at s = 0
and s = —10°). That is, the breakaway point found by considering
only the zeros is at the point

S_—106+0_
- 2

For some people (including the author of this solution), this root
contour will still seem contrary to common sense. What is perhaps
a more intuitive solution may be found by making the substitution
a = 1/7. Then, the characteristic equation (after clearing fractions)
is

-5 X 10° (S6.8)

s(107%s + 1) + «(107°s + 5 X 10*) = 0 (S6.9)

This root contour has poles where the contour of Figure S6.3 has
zeros and vice versa, which will look more natural to many read-
ers. The location of the contour is identical in both cases.

Figure S6.3 Root contour for
Problem 6.2 (P4.8).

S6-5
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Returning to the contour of Figure S6.3, we solve for the value
of 7 required to set { = 0.707. In the vicinity of the origin, where
the closed-loop poles have a damping ratio of 0.707, the root con-
tour is well approximated by a vertical line through the point s =
—35 X 10° as shown in Figure S6.4.

Figure S6.4 Root contour for
Problem 6.2 (P4.8) in the vicinity of
the origin.

x ________________ - 5 X 10°
Y
5 plane
-5 X 10° o
A

X--—————-——-- - —Jj5 X 10°

Poles on this contour with a damping ratio of 0.707 will be at s =
—5 X 10° £ j5 X 10° as shown. Then, Rule 8 is used to solve for
the value of r which will result in this damping ratio. From Equa-
tion 4.56, the required value is




_ 'q’(S)
p'(s)
107% + 5 X lO“l
s(107% + 1) ls=—sxi050+)
= 0.1
In closing, we note that this problem could be solved quite

5=—=5X1051+/)

(S6.10)

directly by putting Equation S6.6 into the standard form —Siz +

X s + 1 = 0. Then, simply set { = 0.707, and solve for . Such an

Wy,
approach verifies the results we have obtained via the root contour.

More Root Locus

S6-7
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Stability via 7
Frequency Response

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

The time-delay term has a constant magnitude of 1, and a phase Solution 7.1 (P4.9)
of —0.01w radians. (It is a common mistake to use units of degrees

here.) Thus a pure delay is equivalent to a negative phase shift that

varies linearly with w. Applying Equations 3.46 and 3.47 from the

textbook gives

a
L(j = —— S7.1
and
< L(jw) = —tan"'w — 0.0lw radians (S7.1bH)

These two expressions are used to sketch a Nyquist diagram as
shown in Figure S7.1.

Figure S7.1 Nyquist diagram for

a.e 00
Lk

T L(s) = — m
|a(jw)fljw)|
w=0
af plane
= —100
—270° +2l7'0°
__‘.
<Lla(jw)f(jw)]
w = 314 w= —314
—— a[]
1000
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Because we use degrees as the units for the phase axis, it is helpful
to remember that there are 57.3 degrees per radian. As w — <o, the
phase is unbounded. Thus, for a sufficiently large value of q, , the
1 180° points will be enclosed in the contour, and the system will
be unstable. The maximum value of a, for stability is such that the
+ 180° points are intersected by the af contour. Inspection of the
Nyquist diagram indicates that this point will occur for » > 100.
In this region, the magnitude and phase are well approximated by

| L(jw)| =~ % w> 1 (S7.2a)
and
S L(jw) =~ — % —00le w>1 (S7.26)

Applying Equation S7.2b, the frequency at which the phase is
—180° is:
S e 0.01w,

2

or

w, = 157 rad/sec (87.3)

Then, to intersect the —180° point, we must have |L(jw)|.-1s57 =
1. Then, by Equation S7.2a, a, = 157 is the maximum value that
results in a stable system.

Because the feedback path is frequency independent, we may
apply Equation 4.88 from the textbook to solve for the value of a,,
which results in M, = 1.4.

S |
"~ sin ¢,

(87.4)
Thus

¢m = sin”! (1—14-) =~ 45° (S7.5)

For a 45° phase margin, Equation S7.2b requires crossover at a fre-
quency such that

™
- T = — E — 0.0lw .
or
w =~ 79 rad/sec (S7.6)

To have crossover at w = 79 rad/sec, Equation S7.24 requires that
a, = 179.




Stability via Frequency Response | S7-3

Before drawing the Nyquist plot, it is helpful to draw a Bode plot Solution 7.2 (P4.10)
for this system. Then, the Nyquist plot may be sketched directly

from the Bode plot. Figure S7.2 is a Bode plot for the transfer func-
tion of interest

_ a5’
9=~ nons+ iy GLI)

Figure S7.2 Bode plot for
Problem 7.2 (P4.10).

| L(jw) |

100a, +

10a, +

i —_—
100 1000 @

180° 1

90° 4

Oﬂ

0.1

1000 @ >
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Because there are singularities at the origin, we choose the contour
shown in Figure S7.3a. The resulting Nyquist plot is as shown in
Figure S7.3b. The points labeled 4 through L in the s plane map
to the points equivalently labeled in the af plane. There are several
important features to notice. For points near the origin in the s
plane, the magnitude of L(s) is very small. Thus, the point 4 in the
s plane maps to the negative imaginary axis in the af plane as
shown. For |s| > 10 (i.e., for points in the s plane far from the
origin)

L(s) = 100a, (S7.8)

Figure S7.3 Nyquist analysis for
Problem 7.2 (P4.10). (a) Nyquist
contour for Problem 7.2 (P4.10).

—-10

(a)
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|a(jw) /()] I

looaﬁi fE, F, G‘H,I

I

af plane

Figure S7.3 (b) Nyquist plot for
Problem 7.2 (P4.10).

<[a(jw)f(jw)]

L] L} ¥ T T T
-270r —180° —90° +90° +180° +270°
-‘ 100
test detour
2 g 5 Y
& A B
(b)

This is true all the way around the semicircle in the right half of
the s plane. Thus, the points E, F, G, H, and I map to the point af

= 1004, in the af plane. Finally, the test excursion shows that the
interior of the contour in the s plane maps to the interior of the
contour in the afplane. Clearly, for a large enough a,, the points at
+ 180° will be enclosed, and the system will be unstable.

The value of a, required to reach the edge of instability can be
solved for by finding the frequency at which <L(jw) = 180"
Either directly from the Bode plot of Figure S7.2, or by iterating
numerically on the expression for <t L(jw)

S7-5
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IL(jw) = 3771- —tan 'w — 2tan"' 0.1w (S7.9)

we find that < L(jw) = 180° when w = 2.2 rad/sec. Then, the max-
imum a, for which the system is stable is such that

| L(je)]| 1 (S7.10)

w=2,

Substituting in the expression for | L(jw)| gives
3

aw
e = it |
@+ D2 X (OIf F 1) loezs (5141)
or
2- v 1/2 I 2
g, = S TV QT HD _gos  (s702
2.2
Thus, the system is stable for a, < 0.24.
Figure S7.4 Root locus for
Problem 7.2 (P4.10). T
Jw Asymptote at 60°

5 plane

Asymptote at —6(°




A root-locus construction also supports the conclusion that
the system is unstable for large enough values of a,, as shown in
Figure S7.4. As previously calculated, the poles cross the imaginary
axis at w = 2.2 and enter the right-half plane for a, > 0.24. For
large a,, the two right-half-plane poles must approach the origin
along asymptotes of +60°, while the third pole approaches along
the real axis. This must be so, because as the closed-loop poles
approach the origin, the angle contribution from the pole at s =
— 1, and the two poles at s = —10, is essentially zero. Thus, the
total angle from the three zeros to the closed-loop poles must be an
odd multiple of 180°, which is satisfied by the asymptotes at +60°.
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Poles that have a damping ratio of less than 0.707 lie to the right
of a pair of lines at +45° from the negative real axis, because from
Figure 3.7 of the textbook, § = cos™'¢ = cos ' 0.707 = 45°. A con-
tour that follows these lines, and encloses all poles with damping
ratios less than 0.707 is shown in Figure S7.5.

Solution 7.3 (P4.11)

W

s plane

45° test detour

Figure S7.5 Modified Nyquist
contour.

206 o
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To make the modified Nyquist test we are interested in whether
there are any poles within the contour of Figure S7.5, that is,
whether there are any solutions of the characteristic equation 1 +
a(s)f(s) = 0 that occur for s within the contour of Figure S7.5. If
there are such solutions, then the system has closed-loop poles with
damping ratios less than 0.707. Thus the test in the af plane is
unmodified. We look for points such that a(s)f(s) = —1 in exactly
the same manner as the Nyquist test. Only the contour in the s
plane needs to be changed to that shown in Figure S7.5. As in the
Nyquist test, a test detour is used to determine where the interior
of the contour in the s plane maps to in the af plane. The poles

indicated at s = — 1 are the poles of the transfer function
a,
a(s)f(s) = TS (S7.13)

which we wish to evaluate using the modified Nyquist test. This
test, then, is made by picking points in the s plane along the con-
tour ABC, then plotting the value of a(s)f(s) in the afplane for each
of these points.

Applying this to the transfer function of Equation S7.13, at s
= 0, |a(s)f(s)| = a,, and <a(s)f(s) = 0°. As |s| — oo along con-
tour A4, |a(s)f(s)|— 0 and <a(s)f(s) — —270°. Along the contour
B, the magnitude of a(s)f(s) remains small, and the angle changes
from —270° to +270°. The values of a(s)f(s) resulting as the con-
tour C is traversed are identical in magnitude and opposite in
phase from the values generated along contour A4. This preliminary
analysis gives a general indication of the characteristics of the plot
in the af plane. A more detailed analysis requires solving numeri-
cally. Along the contour 4, s = —w + jw, thus

a,
&&= et Jo + 1) (S7.14)
a,
T2 — 20+ 1
and
a,
Y| = (—w + jw + 1) (S7.15)

1
l —w

—2 tan~




The magnitude and angle of a(s)f(s) can then be solved numeri-
cally as s takes on the values s = —w + jw, and w is allowed to
vary. (A programmable calculator is quite helpful here, as it is
throughout the subject.) When solving for the angle, be careful
because the arc tangent is not a single-valued function. The earlier
preliminary analysis serves as a check on the numerical results.
Some values are summarized in Table S7.1.
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w la(—w + jo)—w + jw)| Ja(—w + jo)f(—w + jw)
0 1.00a, 0°
0.01 1.02a, —1.1°
0.05 1.10a, —6.0°
0.10 1.22a, —=12.1°
0.25 1.60a, —36.9°
0.50 2.00a, —90.0°
0.75 1.60a, —143°
1.00 1.00a, —180°
1.25 0.62a, —203°
1.50 0.40a, —=217°
1:75 0.28a, —226°
2.50 0.12a, —242°
5.00 0.02a, —257°

10.00 0.006a, —264°
— 00 —- 0 — =270°

Using these values, the contour of Figure S7.6 is then drawn in the
af plane. The test detour indicates that the interior of the contour
in the s plane maps to the interior of the contour in the af plane.
Then, there are closed-loop poles with a damping ratio of less than
0.707 when the af plot of Figure S7.6 encloses the points at unity
magnitude and an angle of + 180°. There is a pair of poles with a
damping ratio of exactly 0.707 when the af contour intersects the
— 1 point. From the numerical values of Table S7.1, or by exam-
ining Figure S7.6, this occurs for a, = 1.

Table S7.1 Magnitude and angle

da,
of ———— , evaluated along the
(s + 1y 8

contour § = —w + jw.
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Figure S7.6 Modified Nyquist
diagram for Problem 7.3 (P4.11).

la(—w + jo)f(—w + jw)|

test det
STHAN af plane

C

da(—w + jw)f

(—w + Jjw)
) ) 0.0la, ) [
—270° —180°  —90° 1 90° 180° 270°
10.001a,
- —

We check this result by factoring the characteristic equation
for a, = 1. With a, = 1, the characteristic equation is

1

1 + (TIT)Z =0 (87.16)
After clearing fractions, we have
s$$+2s+2=0 (S87.17)
which has roots at
-2+ V4-—-38
5§ = 5 =—1=xj (S7.18)

These roots lie on lines at +45° from the negative real axis. Thus,
as predicted, they have a damping ratio of 0.707.
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Compensation

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

As suggested in Lecture 8, to perform a Nyquist analysis, we first Solution 8.1 (P4.13)
sketch the Bode plot. The transfer function of interest is the af
product given by

100.01s + 1)?
(s+ 1)

Using the methods of Section 3.4 of the textbook, the Bode plot is
sketched in Figure S8.1. From this Bode plot, a gain-phase Nyquist
plot is generated in Figure S8.2. From this figure, it is apparent that
for some range of intermediate values of f,, the —1 points will be
enclosed within the contour, and the system will be unstable. How-
ever, for small enough or large enough values of f, the system will
be stable. For instance, from Figure S8.2, the system is stable if f,
= 1, and it is certainly stable for any f, > 1.

a(s)f(s) = X fo (S8.1)

This same result can be obtained from a root-locus construc-
tion as shown in Figure S8.3. Because the two zeros are a factor of
100 farther from the origin than the three poles, the root-locus
branches will initially follow asymptotes of +60° and 180° from
the real axis, by Rules 7 and 5. The two branches that leave the
real axis at +60° will enter the right half of the s plane at about w
= 1.7 for large enough values of f,. However, these two branches
must rejoin the negative real axis at a point to the left of the two
poles at s = — 100, by Rules 2 and 3. Thus the branches cross back
into the left half of the s plane and the system is stable for suffi-
ciently large f,. (Because only a qualitative analysis is required, the
exact point at which the branches reenter the negative real axis will
not be solved for.) Thus, both the Nyquist and root-locus analyses
indicate that the system is stable for small values of f,, unstable for
intermediate values of f,, and stable for large .

Now, we can use a Routh analysis to determine the values of
f, that separate these regions of stability and instability. The char-
acteristic equation is

0.01s + 17 _
e (S8.2)

After clearing fractions and collecting terms, we have

1 + a(s)f, = 1 + 10%,
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Figure S8.1 Bode plot for
Problem 8.1 (P4.13). T

10°/, =
10°4, ¢
10%, 1
10%,
10%f; 1

10f,

la(s)fel

—90° +

—180°

—-270° 4

<a(s)f,
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Figure S8.2 Nyquist plot for
Problem 8.1 (P4.13).

| a(s)fs |

10°1, af plane

l : t ‘ t e —
—270°  —180"\_—90° 9V180° 270° <a(s)f,
T 0.1%
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Figure S8.3 Root locus for
Problem 8.1 (P4.13).

5 plane




S+B+ 1)+ B+2X104)s+ 1+ 105, =0 (S8.3)

From the polynomial, the Routh array is constructed as

1 3+ 2 % 10%,
3+ 10% 1 + 10,

2 X 1052 — 0.94 X 10°F, + 8 0 (S8.4)
3+ 107,
1 + 10% 0

The third row becomes zero (indicating poles on the imaginary
axis) when

2 X 1052 — 094 X 105/, +8 =0 (S8.5)
which is solved by

f= 0.94 X 10° + 1/(0.94 X 10°? — 64 X 10°
o 4 % 10°

= 0.2350000 £ 0.2349915 (S8.6)
= 8.5 X 107, 0.47 (S8.7)

Note that high numerical precision is required to extract the root
at £, = 8.5 X 107, This problem could be avoided by framing the
Routh calculation in terms of a,f,. However, a scientific calculator
can carry out this calculation with sufficient accuracy. We carry
this precision only where necessary, and round the answers of
Equation S8.7 to two significant figures. The third row is negative
for

8.5 X 107° < f, < 0.47 (S8.8)
Thus, the system is stable for
f,<85%10°¢
and
f, > 0.47 (S8.9)

which are the two borderline values the problem statement asks
for.

Compensation

S8-5
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.
Solution 8.2 (P5.1) The circuit of Figure S8.4 provides an ideal gain of —10, and

allows lowering of the loop-transmission magnitude.

The block diagram for this connection is as in Figure S8.5.

Figure S8.4 Connection with gain
of — 10, which allows lowering of the

loop-transmission magnitude.

R

10R

aR

/
E
&,
o+
=
Ol

Figure S8.5 Block diagram for
circuit of Figure S8.4.

V. aR|[10R - a(s) v,
R + aR|10R
aR|R
10R + aR|R

The value of R cancels out of both blocks in which it appears. After
algebraically reducing the expressions in these blocks, we have the
diagram of Figure S8.6.
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Figure S8.6 Reduced block

diagram for Problem 8.2 (P5.1).
V: " - v,
—* Beti. a3
a —
10 + lla -
This can be further reduced as shown in Figure S8.7.
Figure S8.7 Reduced block
diagram for Problem 8.2 (P5.1).
Vi o+ & v
—»{ —10 |
X 0F Ta

From the form of the block diagram, this system has an ideal
gain of — 10 as stated earlier. The negative of the loop transmission
is

o

10 + lla (S8.10)
2 X 10° 5 a
(0.1s + 1)(107%s + 1)* 7 10 + lla

From Figure 4.26b, the required damping ratio for P, = 1.1 is
approximately 0.6. From Figure 4.264, this implies a phase margin
of about 58°. That is, the loop-transmission phase must be —122°
at the crossover frequency w.. The form of a(s) allows us to readily
solve for this frequency, because at frequencies where the two poles
at s = — 10° are contributing any significant phase shift, the pole
at s = —10 is contributing —90° of phase. Thus, at w,, the phase
due to the two poles must be —32°. Applying Equation 3.47 from
the textbook, we can write

—32° = —2tan"' 107 %, (S8.11)

—L.T. = a(s)
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which is solved for w, as
w, = 10° tan 16° = 2.87 X 10 rad/sec (S8.12)

Now, we need to pick « to set the loop-transmission magnitude
equal to unity at this frequency. Applying Equation 3.46 to the
three poles gives

2 X 10° o
l = X S8.13
V0.0lw? + 1 (107 %2 + 1)~ 10 + 1l ( )
Substituting in w, = 2.87 X 10* gives
(84
L= A Tie (58:14)
which is solved by
a=~0.19 (S8.15)

Thus, the value of the attenuation resistor is 0.19R.

Solution 8.3 (P5.2)

This is the same topology as in Problem 8.2 (P5.1). The only dif-
ference is that the noise voltage E, adds directly to the error signal,
and the ideal gain is — 1 rather than —10. The appropriate modi-
fications to the block diagram of Figure S8.5 give the block dia-
gram of Figure S8.8, which represents the connection of Figure
5.23a. '

Figure S8.8 Block diagram for
circuit of Figure 5.23a.

aR| R
R + aR)R

a(s)

aR|R
R + aR|R
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By a block-diagram manipulation, Figure S8.8 reduces to Figure

S8.9.
Figure S8.9 Reduced block
l E, diagram.
I + 2
(4 4
+
- a
Vi s % Ve

From Figure S8.9, at frequencies where | a(s)

= o
1 + 2«
Vfs) 1+ 2a
E(s)  «

(S8.16)

V(s)
E.(s)
very large, verifying the assertion at the end of Section 5.2.1 that
this type of attenuation increases voltage noise at the amplifier
output.

For « > 1, this ratio is about 2. For a « 1, the ratio

becomes
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More Compensation 9

Note: All references to Figures and Equations whose numbers are
not preceded by an ““S” refer to the textbook.

Because the operational amplifier is ideal, having infinite open-
loop gain and contributing no dynamics, its connection forms an
ideal integrator. Further, due to the infinite open-loop gain, the
inverting input terminal is forced to ground potential, and thus the
10 kQ input resistor has no effect on the system outer-loop trans-
mission. Thus, the integrator connection contributes a term of
—1
RCs
negative of the outer-loop transmission is given by

1 1
RCs % (107%s + 1}(1077s + 1)

To set the phase margin to 45°, this term must have a phase angle
of —135° at the loop-transmission crossover frequency. The inte-
grator contributes —90° at all frequencies. Thus, the crossover fre-
quency, w., must be such that

N

(10°%s + 1)(107’s + 1)

A rough estimate of w. is 10° rad/sec, because at this frequency the
pole at 10° rad/sec contributes —45°, while the pole at 107 rad/sec
contributes little phase shift. This estimate may be refined by rec-
ognizing that the pole at 10’ rad/sec will contribute —5° of phase
when w is about 10° rad/sec (i.e., a decade below the upper pole).
Thus, we look for the frequency where the pole at 10° rad/sec con-
tributes —40° of phase. That is,

1
= (10“"3 + 1)

tan~! 10~%w, = 40° (S9.4)

(where R = 10 kQ) to the outer-loop transmission. Then, the

—-LT. =

(89.1)

= — 45  (S9.2)

5= jwe

= —40° (S9.3)

5= juc

or

Solution 9.1 (P5.3)
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which is solved by w. = 8.4 X 10’ rad/sec. For a more exact
answer, we can program the expression for the phase angle of
Equation S9.2, and search numerically to find that the angle is
—45° at w, = 8.45 X 10° rad/sec, verifying the accuracy of the
approximation of Equation S9.4. The ability to make useful
approximations is important in this subject, both for efficiency of
computation and for understanding the impact of individual terms
on system performance. For instance, here the pole at 10’ rad/sec
has only a minor effect on system behavior. It is the pole at 10°
rad/sec that is most significant.

Now, we pick the value of C to set crossover at 8.4 X 10° rad/
sec. At this frequency, the poles at 10° and 107 rad/sec contribute
a magnitude of 0.76. Thus, to set the crossover point, we must
have

|

.76 = i
RCo. X 076 = 1 (S9.5)
or
1 0.76
C= X 0.76 =
ROJF 104 X 8.4 X 105 (59-6)
= 9] pF

Solution 9.2 (P5.4)

(a) We begin by drawing the block diagram for the motor. Let the
motor torque be 7', Then, from the model of Figure 5.25b, we
have

(Va — O‘IQS)
1

where V, is the voltage at the output of the operational ampli-
fier. Recall from physics that angular velocity is related to
torque by integration, through the rotational equivalent of
Newton’s F' = ma. That is,

T,=011,=0.1 (59.7)

Q = JL J- T dt (S9.8)
L




where 7T, is the torque applied to the load inertia. In the
Laplace domain, this becomes

Qs) = J% (S9.9)

Now, because T, is the net torque applied to the load, it is the
sum of the motor torque and the disturbance torque. That is,

T,=T,+ T, (S9.10)

More Compensation | S9-3

0.1

Combining Equations S§9.7, §9.9, and S9.10, we draw the block
diagram for the motor and load as shown in Figure S9.1.

Now, the remaining portion of the loop including the
operational amplifier is shown in Figure S9.2.

Because the op amp is ideal, the inverting terminal is held by
feedback at ground potential. The current through the series

RC is then &w , and the output V, is given by
_ _ (Vi+0.010) e
VAs) = T X|R+ Cs (S9.11)
or
RCs + 1
Vis) = —(V; + 0.01Q) (_IW) (S9.12)

Figure S9.1 Block diagram for
motor and load.
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Figure S9.2 Amplifier connection
from Figure 5.25.

100 kQ

The block-diagram representation of Equation S9.12 is added
to the block diagram of Figure S9.1 to give the complete sys-

tem block diagram as shown in Figure S9.3.

Figure S9.3 System block
diagram for Problem 9.2 (P5.4).

T,
RCs + 1 1 Q,
10°Cs J.s
0.01 j=
(b) By inspection of Figure S9.3, for 7, = 0,
0.1
Q(s) Jis 10
= = 1
V(s) 0.01 100J.s + 1 (3%13)
B
J.s
Then, the system loop transmission is
LT, = —0.01 (RCS s l)( L ) (S9.14)

10°Cs

100J.s + 1
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The problem requires that the loop transmission be —100/s.
To achieve this, the zero due to the series RC is used to cancel
the motor pole, and capacitor C is used to set the loop-trans-
mission magnitude. That is, we require

RC = 100J, (S9.15)
and

10°C = 0.01 (S9.16)
Thus, C = 0.01 uF and R = 10'J,.

(c) Here, we must examine the relation between 7, and @, It will
be shown that this transfer function has a zero at the origin,
thus the shaft velocity , is unaffected by any constant 7',

For a system in standard form we recall that the transfer
a(s)

1 + a(s)f(s)
Figure S9.3, we identify

function is Applying this to the block diagram of

1

a(s) = Ts (S9.17)
and
RCs + 1
f(s) = 0.1 [0.1 + 0.01 (WS_—) J (S9.18)
But, from part b, RC = 100/, and C = 0.01 uF, so
f(s) = 0.01 + I—OO-{:‘—*—' (S9.19)
Applying Equations S§9.17 and S9.19 to the standard form, we
have
Q) _ 1/J.s
Tds)
O L oo + 10T}
JLS S
s

= 7.8 + 0.01s + 100/,s + 1 (33:20)

&
© (100J,s + 1)(0.01s + 1)

The d-c response is given by
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2 _
m 7 ®

Thus the response to a constant 7, is zero, as stated earlier.

0 (S9.21)

e
Solution 9.3 (P5.5)

The transfer function for the network of Figure 5.26 is

R, +
Vis) © OGS
s o 9.22
e 3 (S9.22)
Bic e =
Cos R, + L
: Cis
After some algebraic manipulation, this becomes

Vis) R, CR,Cs + (R,C, + R,C, + R,Cy)s + 1

At this point, attempting to find the pole locations by factoring the
denominator of Equation S9.23 simply leads to an algebraic mess.
We can avoid this difficulty by examining the general characteris-
tics of the lag-lead network. Such a network will have a pole-zero
pair and a zero-pole pair at higher frequencies, forming the lag and
lead components respectively. Furthermore, the network of Figure
5.26 imposes the constraint that the « of the lag and lead pairs
must be identical. (See Section 5.2.3 in the textbook for the defi-
nition of a.) This is required because the magnitude of I—t‘% is
unity both in the limit as s — 0 and in the limit as s — oo, (Con-
sider the limiting cases where the capacitors are open-circuited [s
— 0], or short-circuited [s — <0].) If the lag and lead « parameters
were not equal, this would not be possible. Following this argu-
ment, the singularities will be placed as shown in Figure S9.4,
where 7, and 7, are the time constants associated with the two
ZEros.

B i
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lead lag s plane
,——-\_,.)\_,—\
O O
—X © o X% 5
e 1 1 _1 q
T2 T2 T T,

The transfer function that realizes the singularity pattern of
Figure S9.4 is

(118 + )78 + 1)

H(s) = (S9.24)
(ars + 1) (ES + l)
(44
This reduces to
His) e (s + 1)(ms + 1) (9.25)

78 + (a‘r. + E) s+ 1

By means of the above argument, we have restricted the form of
the transfer function we are trying to realize, thereby simplifying
the design process. At this point, we match coefficients in the
denominators of Equations S9.23 and S9.25 to find that

R\ C\R,C, = 1, (59.26)
and

RC 4 Rl %-RiCi= or: + E (S9.27)

Further, matching numerators requires that either R,C, = 7, and
R,C, = 15, 0or R,C, = 7, and R,C, = 7,. The choice between these
two solutions is arbitrary. That is, for a given transfer function of
the form of Equation S9.25, there are two sets of network element
values that will realize the desired transfer function. We arbitrarily
choose the solution where

R 1 C| =N (S9.2 8“)
and
RzCz = T3 (59.285)

Figure S9.4 Singularities for
circuit of Figure 5.26.
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Equation S9.26 is identically satisfied, and substitution into Equa-
tion S9.27 yields:

n+ 14+ RGC =ar + E (S9.29)

which reduces to

RGC = (a— ), + (i - l) T3 (S9.30) i
Note that the equivalence of Equations S9.23 and S9.25 has
imposed only three independent constraints, while the network of
Figure 5.26 has four elements. This means that the choice of one
network element value is arbitrary. Once this element value is
picked, the other three values are determined by Equations S9.28
and S9.30. Thus, it is shown that the network of Figure 5.26 may
be used to realize an arbitrary lag-lead network.

Now, we turn to the question of realizing the given transfer

function
=2
7 BT LS G R
Comparing this with Equation S9.24 gives
7 = 0.1 (S9.31a)
7, = 1072 (S9.31b)
and
a=10 (S9.31¢)
Combining these with Equations S9.28 and S9.30 gives
RC =171 =0.1 (S9.32a)
and
R,C, =1, = 1072 (S9.32b)
and
RC, = (a— D7 + (l — 1)1’2
= (S9.32¢)

=9 X 0.1—-09 X 1072 = 0.891
Use the one arbitrary component value choice to let R, = 10 kQ.




Then, by S9.32aq,

C, = 10 uF (S9.33a)
by S9.32¢,

C, = 89.1 uF (S9.33h)
and by S9.325b,

R, =112Q (S9.33¢)

This is one set of possible component values. Due to the several
arbitrary choices involved in this design process, there are an infi-
nite number of other sets of component values that will give the
desired transfer function.

More Compensation | §9-9

10 . . -
Because L(s) = — @ it contributes a constant phase shift of

—180° to the af product. Thus, to maximize phase margin, we
must place the loop-transmission crossover frequency at the point
where the positive phase shift of the lead network is maximum.
Recall from Section 5.2.3, that the point of maximum positive
phase shift occurs at the geometric mean of the pole and zero loca-
tions. For the lead network, let the pole location be w,. Then, given
Wp

10°
@p

shift occurs at wy,, = itk the geometric mean of these locations.

that « =10, the zero is at and the maximum positive phase

. = = A 1
At this frequency, the lead-network gain is — = —— . As stated
MUY & Va V10

earlier, we must set crossover frequency w, at w,,,, to achieve max-
imum phase margin. Because the lead network contributes a gain

1 :
of — at w,,.,, We require
m maxs

. 10¢
| L(jwmex)| = 55— = V10 (S9.34)

max

Solution 9.4 (P5.6)
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to set the loop-transmission magnitude to unity at wy,,. This is
solved by wmn = 10*” = 562 rad/sec, which will be the system
crossover frequency. From Equation 5.6 in the textbook, at this
frequency, with « = 10, the lead network contributes a positive
phase shift of

Omax = sin™' (%) = 54.9° (89.35)

Because, as stated earlier, the rest of the loop contributes a phase
of —180°, the loop phase margin is 54.9°.
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Compensation
Example

10

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

(a) The solution of this problem is outlined in the discussion on Solution 10.1 (P5.8)
p. 183 of the textbook. Associated with this discussion are the
circuit and block diagrams of Figure 5.13, which are appli-
cable to this problem. In the textbook, the block diagram of
Figure 5.13b is presented without derivation. Here, we fill in
the details of this derivation.

When faced with deriving a block diagram for the circuit
of Figure 5.13a, one may proceed by writing network equa-
tions in terms of V; and V,. Then, after some algebraic manip-
ulation, these equations are used to draw the block diagram.
The disadvantage of this approach is that it is algebra intensive
and tends to obscure physical insight. What is perhaps a more
illuminating approach is detailed below.

We start by constructing the Thevenin equivalent circuit
for the R-9R feedback network as shown in Figure S10.1a and
b.

Figure S10.1 Analysis of Problem
10.1 (P5.8) through the use of a
Thevenin equivalent circuit. (a) R-9R
feedback network. (b) Thevenin
equivalent as seen at terminal pair
aa’.

(b)
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With this manipulation, the circuit diagram is as shown in Fig-

Figure S10.2 Modified circuit

diagram for Problem 10.1 (P5.8).

it
= S il

H

ure S10.2,
\
c +
v, a(s) o V., o
R,
y 4 /
0.9R

a’

1

where V, is the differential input voltage. That is, V,(s) =
a(s)V.(s). Then, by superposition and the voltage divider
relationship,

1

R| + s
Cs Vs
Vids) = —— v - 24
R, 4+ =+ 09R
Cs (S10.1)
_ s+ 1 RO
T ars+ 1 [V;(S) 10 ]
R, + 09R

where o = and 7 = R,C as defined on p. 181 of the

R,
textbook. The block diagram of Figure 5.13¢ follows directly
from Equation S10.1 and our definition of V..

The negative of the loop transmission for this system is
then as given by Equation 5.14.

a’(s)f”(s) = 0.1 ol
aTS

a(s) (S10.2)

If we short out the capacitor (i.e., let C — oo, and thus
T — 00),

a”(S)f”(s) = % a(s) (S10.3)




To lower the loop transmission by 6.2 at all frequencies then
requires that

(S10.4)
This is solved by R, = 0.173R, as suggested in the textbook.

Thus the circuit with a,f, reduced by a factor of 6.2 is as shown
in Figure S10.3.

Compensation Examples

S§10-3

0.173R

|
H

To lower the lowest-frequency loop-transmission pole by
a factor of 6.2, we use the lag-network zero to cancel the pole
of a(s) at s = — 1. Then, the lag network « is set at 6.2, so that

the lag-network pole is at s = 2 That is, given that the neg-

ative of the loop transmission for Figure 5.13c is

s+ 1 5% 10°
ars + 1 (s + 1)(107*s + 1)(107°s + 1)

(S10.54q)

a”(s)f”(s) = 0.1

ifwe let = | and a = 6.2 this becomes

5% 10°
+ 1)(10~% + 1)(10 s + 1)

and the lowest-frequency pole has been effectively moved
down by a factor of 6.2. From earlier results, for « = 6.2, R,
= (0.173R. Then because r = R,C, forr = | we have R,C =

1, which is solved by C = 5—;8 . Thus, the circuit that imple-

ments this pole lowering is as shown in Figure S10.4.

a”(s)f”(s) = 0.1 625 (S10.5b)

Figure S10.3 Circuit with a,f,
reduced by a factor of 6.2.
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Figure S10.4 Circuit with lowest-
frequency pole moved down by a

factor of 6.2. 5.78 I
0. 173RT

(b) The loop-transmission magnitude Bode plots for the two com-
pensation schemes are shown in the textbook in Figure 5.16.
The corresponding angle curves are not difficult to sketch, and
thus are not included here.

=

(c) The phase curves for reduced a,f, and the lowered first pole
differ only for frequencies below about 10 rad/sec, due to the
difference in the low-frequency pole location. They are identi-
cal in the vicinity of crossover. At the crossover frequency of
6.7 X 10’ rad/sec, the phase for both compensation schemes is
—128°. Thus, the phase margin is 52°, which is better than the
lag compensation by about 5°. This improvement is due to the
fact that the lag network has a residual phase of —5° at
the crossover frequency. By moving the lag network to a lower
frequency, the phase margin may be slightly improved (up to
5°) at the expense of midband desensitivity.

Solution 10.2 (P5.12) As a matter of cultural interest, the factor

(s%/12) — (s/2) + 1 i
(s%/12) + (s/2) + 1 (510.6) l

is the second-order Pade approximation to a 1-second time delay.
See p. 530 of the textbook for further discussion of this topic. This
factor has a pole-zero pattern as shown in Figure 12.26 and a phase
characteristic as shown in Figure 12.27.




To compensate this system, a lead network alone is not useful,
because its transfer function magnitude increases with frequency,
and the Pade approximation magnitude is constant. This is dis-
cussed in greater detail in Section 5.2.6 of the textbook. To force
the loop to crossover, we must introduce a compensating element
that provides attenuation with increasing frequency. At the same
time, the compensating element should introduce a minimum of
negative phase shift. A single pole satisfies these criteria, so we will
compensate the loop by using a dominant pole.

Let’s design the loop compensation for 45° of phase margin.
Near crossover, the dominant pole will contribute a phase of —90°
because it is to be located well below crossover. Thus, to have 45°
of phase margin, crossover should be set at the frequency where
the Pade approximation has a phase of —45°. From Figure 12.27,
then, crossover must occur at a frequency somewhat below 1 rad/
sec. The exact expression for the phase of the Pade approximation
is given in Equation 12.65. However, as explained on p. 531 of the
textbook, for w less than 2 rad/sec, the phase is well approximated
by an angle of —57.3°w. Using this approximation, the frequency

at which the phase is —45° is w,. = % = (.79 rad/sec. Because

the Pade approximation has unity magnitude, then, the compen-
sating transfer function must pass through unity magnitude at
w, = 0.79 rad/sec. For a dominant pole located at w,, where
w, € w,, and with a d-c gain of a,, the compensating transfer func-
tion is

a,

H(jw) = — (S10.7)
J—p ]
Wy
. . . w. 0.79
To have unity magnitude at w. then requires that g, = — =
Wp wp

Any compensation satisfying the above conditions will yield a
phase margin of 45°.

To achieve maximum desensitivity, a, should be made as
large as possible. In the limit, let w, — 0 and a, — oo, while main-

taining the relationship a, = . The result is

Wp
H(jw) = w (S10.8)
Jw

Compensation Examples

S10-5
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That is, the compensation is an integrator, which has infinite gain
at d-c, and thus infinite desensitivity at d-c. As expected, this has
unity magnitude at w. = 0.79 rad/sec, and an angle of —90° at all
frequencies, thus the loop has 45° of phase margin.

More complex schemes, such as using a double integration
(1/s%) with lead compensation, are also possible. This would offer
higher desensitivity at midband frequencies. However, when
implemented with real hardware, such a scheme is more sensitive
to component variations than the single-pole compensation, which
is quite robust. Therefore, except under special circumstances, the
single-pole compensation is the most reasonable solution.

Solution 10.3 (P5.13)

For the lag-compensated system described by Equation 5.15, the
root locus is as shown in Figure 5.15¢. For the given compensation,
and value of a,f,, the closed-loop singularities are located approx-
imately as shown in Figure S10.5.

Figure S10.5 Closed-loop
singularities for Problem 10.3 (P5.13).

x }
Jw
§ plane
*— ©
—670 =
X
The pole-zero doublet near s = —670 sec™' is responsible for the

long-time constant tail associated with the lag-compensated
system.




As the lag-compensated system is fourth order, an exact solu-
tion of the closed-loop pole locations will require solving for the
roots of the fourth-order equation 1 + a”(s)f”(s) = 0. This is fea-
sible with machine computation. However, as suggested in the
problem assignment, a simplifying approximation is possible. That
is, we ignore the polesat s = —10°and s = —10°, and assume that
a(s) is given by

A = 5X10°(1.5 X 1073 + 1)
(s+ 1)9.3 X 1073+ 1)

The root locus for this simplified system is sketched in Figure
S10.6.

(S10.9)

Compensation Examples

Jw

Figure S10.6 Root locus of
approximating second-order system.

§ plane

Note that this locus is very similar to a section of the root locus of
Figure 5.15c¢ in the textbook. Further, since the closed-loop com-
plex pair of the full fourth-order representation is located a decade
up in frequency from the zero at s = —670, it is reasonable to
expect that the complex pair has only a slight influence on the locus
in the vicinity of the zero.

For the above reasons, we expect that the second-order
approximation of Equation S10.9 will be acceptably accurate.
Using this approximation, the closed-loop transfer function is

S10-7
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_ a(s)
Als)= 1 + a(s)f(s)
5X 10°(1.5 X 10735 + 1)

TE+DO3X10s + 1)+ 5 X 10415 X 1073 + 1)

1.5 X 1073 + 1
1.86 X 1077s* + 1.52 X 1073 + 1 (S10.10)

=10

The poles of A(s) are ats = —722 and s = —7.45 X 10° That is,
the closed-loop pole configuration is as sketched in Figure S10.7.

Figure S10.7 Closed-loop
singularities for the approximate
system.

% ©
—7.45 X 10° —670

An exact analysis of the fourth-order case indicates that the pole
of the pole-zero doublet is actually at s = —717. The close agree-
ment with the approximate value of s = — 722 verifies the approx-
imation. The settling time will be dominated by the pole-zero
doublet. The step response of the doublet alone is given by

v(t) = 1 + 0.08¢ (S10.11)
This will settle to within 1% when
u(t,) = 1.01 = 1 + 0.08¢ 720 (S10.12)
or
0.01 = 0.08¢ ™0 (S10.13)

which is solved by 7, = 2.9 msec. The solution is arrived at by
recognizing that the initial value theorem requires that the step

response at f — 0+ is %% = 1.08. Further, as 1 — oo the final value

theorem requires the step response to approach unity. The time

constant of the exponential connecting these two values is :,7;—2 =
1.39 msec.




For the first-order system, with a crossover at = 6.7 X 10?
rad/sec, the step response will be given by

v(f) = 1 — g 8710 (S10.14)

This will settle to 1% when e~ %7!%" = (,01. This is solved by ¢, =
0.69 msec. That is, the first-order system is about a factor of 4
faster than the lag-compensated system. In many instances, such
as analog-to-digital conversion, settling time is quite important.
The lesson of this problem is that a pole-zero doublet can have a
very significant effect on an amplifier settling time.

The principal objective of this problem is to provide the student
with the experience of applying analytical results in the laboratory.
As the laboratory portion of the problem is essential, and the
hands-on experience more important than the actual answers,
extensive solutions are not provided here. Furthermore, as with
most design problems, there is no one correct answer, so it is
expected that each student’s solution will differ in some respects
from other students’ solutions.

Included here are some general guidelines and suggestions for
approaching the problem, as well as answers to some of the ques-
tions posed in the problem statement. Appropriate topologies for
each of the three compensation techniques are also given. If the
analytical and experimental portions of the problem are properly
solved, the student should gain confidence that the analytical
approaches we have studied thus far are useful design techniques
and can be applied with accuracy to real circuit problems.

The problem statement suggests the use of a resistive atten-
uation at the amplifier input. A possible topology is shown in Fig-
ure S10.8.

Compensation Examples

Solution 10.4 (P5.15)

1 k@

+0
V.

(from signal generator)

= 50 Q 10Q

Figure S10.8 Attenuator.

390

e
Vom
0 —

(to rest of circuit)

S10-9
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]

This attenuator provides a 100: 1 attenuation ratio, with 50Q input
and output resistances. Thus, it is also useful for high-frequency
applications, where a 502 impedance must be maintained. For the
purposes of this lab, because only low frequencies are of interest,
both the 502 and 39Q resistor may be omitted.

The capacitor C adjusts the location of the low-frequency pole
associated with the LM301A. Therefore, because this pole is at a
frequency much lower than 10° rad/sec, C may be used to adjust
the loop-transmission crossover frequency without significantly
affecting the phase at crossover. By adjusting C to bring the config-
uration to the verge of instability, the crossover frequency is set
near the point where the negative phase shift of the loop transmis-
sion is slightly less than 180°. Stability can easily be ascertained by
examining the amplifier step response. Adjust C to create a lightly
damped step response. The longer the step response rings, the
closer the poles are to the jw axis. A ring time of 200 to 500 msec
is sufficient. Note that smaller values of C will result in longer ring
times. Also make certain that the circuit is stable, that is, the ring-
ing step response must decay with time.

In order to achieve good numerical agreement between theo-
retical and experimental results, use resistors that match the values
indicated in Figures 5.28, 5.29, and 5.30 within * 1%, and capaci-
tors that match the indicated values within *+ 5%. This capacitor
tolerance does not apply to the two 0.01 uF decoupling capacitors.
Do make sure to include these decoupling capacitors located close
to the LM301A in order to avoid instabilities caused by power-
supply lead inductance. In general, a bit of care in circuit construc-
tion will pay off in reliable circuit operation.

For the purposes of analysis, use the approximate transfer
function for a(s) as given in the problem statement. Because the
pole at s = —1 is providing —90° of phase shift in the vicinity of
crossover, standardization by adjusting C places crossover near the
point where the poles at 10* and 10° rad/sec are providing an addi-
tional —90° of phase shift. This occurs at w = 3.16 X 10° rad/sec.

The Bode plot for the inverting gain-of-ten configuration of
Figure 5.30 should indicate a crossover frequency of 2 X 10° rad/
sec, with a phase margin of 15.3°, and a gain margin of 2.4. With

. . 1
this phase margin, we expect M, = Sn 153 = 3.8.
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22 kQ

220 kQ
a(s) Vo
+
(a)
220 kQ
a(s) Vo
+
(b)
C
| |
||
220 kQ

Vo

(©)

Figure S10.9 Suggested
topologies for the three compensation
schemes. (a@) Reduced a,f,. (b) Lag. (¢)
Lead with reduced a.f,.
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The three types of compensation have been covered in detail
in this chapter, and thus are not solved for explicitly here. During
the design and analysis of each compensation scheme, it is useful
to have some form of computation that can provide results of
transfer-function magnitude and phase versus frequency. A short
program written on a computer or hand-held calculator will suffice.
Appropriate topologies for the three forms of compensation are
shown in Figure S10.9. Others are certainly possible.
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Compensation 1 1

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

(a) Ifthe major loop crosses over at w = 10’ rad/sec, then it is very Solution 11.5 (P5.14)
likely that we can choose b and 7 such that the minor-loop
transmission crosses over well above this frequency. For w >
1, the minor-loop transmission is given approximately by
b
75 + 1

At w = 10° rad/sec the minor-loop transmission magnitude is

L.T. = —10"

(S11.1)

approximately 10’ g , which will be large when 10’6 > 7. We

proceed under this assumption, and check its validity later in
the solution. Also note that the phase shift of the negative of
the minor-loop transmission never exceeds —90°. Thus, sta-
bility of the minor loop is guaranteed for all positive values of
band 7.

Assuming the minor-loop transmission magnitude is
large, and following the development in Section 5.3, the major-
loop transmission is given approximately as

s + 1
bs®
To achieve 55° of phase margin, the zero must supply 55° of

positive phase shift at the crossover frequency of 10’ rad/sec.
Thus, we require

a(s) = 3 X 10‘3( (S11.2)

tan~' 10°r = 55°
or
r=10"%tan 55° = 1.43 X 1073 (S11.3)

That is, the zero should be located at « = 700 rad/sec. At
crossover, with this value of r, the major-loop transmission
magnitude is given by

3 % 1073
22 V(.43 X 1010 + 1
b X 10° (S11.4)

=1 -9
=5 X 52X10

|a(s)|
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Thus, to set the magnitude equal to unity, we must have b =
5.2 X 107°. Now to check the original assumption. At w = 10°
rad/sec, the minor-loop transmission magnitude is about 30,
which is sufficiently greater than 1 to satisfy the conditions of
our analysis.

Now, we sketch the open-loop Bode plot for the amplifier.
An approximate analysis follows. For frequencies well below
the zero location, the feedback path of the minor loop is
approximately bs’, and the open loop is approximately given
by

V(s) _ —10'"°
= 107 X
1
L T
i e e I

which has a complex pairof polesat s = —1.8 X 107% £ j0.14,
which is lightly damped, but stable. From earlier results, we
know that there is an open-loop zero at s = —700 rad/sec.

That is, the pole in the minor-loop feedback path is an

s + 1
open-loop zero of the amplifier. Finally, for frequencies well
above the zero location, the minor-loop feedback path is

. bs . .
approximately p and the open-loop transfer function is

approximately given by

V(s) . —10"
St ~3X 10 —m———
Vi(s) 10'°bs
s +
: T (S11.6)
_ —8.2 X 10 1s| > 700
§
3(3.7 X 10° © 1)

This has a pole at the origin, which represents the net effect of
the two poles and the zero as seen at frequencies much greater
than 700 rad/sec. The higher frequency pole at s = —3.7 X
10 rad/sec is due to the minor-loop transmission crossover.
Thus, the open-loop transfer function has a complex pole pair
ats = —1.8 X 107% % j0.14, a zero at s = —700, and a pole
at s = —3.7 X 10°. An exact numerical solution of the full
third-order open-loop transfer function confirms these approx-
imate results. Given the above singularity locations, we can
sketch the Bode plot as shown in Figure S11.1.




Feedback Compensation | S11-3

10* Figure S11.1 Open-loop
3% 107 | magnitude and phase versus
107 - T frequency.
10°+ 3
x ]
. Magnitude 5
i b
3
; 10
2
10°
10° 4 —90°
10
l = IB()°
.001 TR

slope = —1

slope = —2.5

(b) Itis not possible to match the resonant peak at w = 0.135 rad/
sec with any |a{jw)| = 1, however, we are only asked to
match the magnitude characteristics asymptotically. This is
possible by placing two poles at s = —0.135, two zeros at s =
—1 to cancel the poles at s = —1, one zero at s = — 700, and
one pole at s = —3.7 X 10°% This will give a transfer function
of

(s + 1)2(ﬁ+ 1)

2
§ S
(0.135 + 1) (3.7 X 10° T 1)

This has |a(jw)| = 1 for all w, although it is not physically
realizable, because at high frequencies | a(jw)| =~ 0.96, imply-
ing infinite frequency response, which is of course impossible
for any real circuit.

afs) = (S11.7)
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Note: All references to Figures and Equations whose numbers are
not preceded by an *“*S” refer to the textbook.

This approximate a(s) is identical to the approximate a(s) given by Solution 12.1 (P13.5)
Equation 13.20 of the textbook with K = 2 X 10~* mho. If a single
capacitor is used for the compensating element, and, as is the case
here, the crossover frequency is low relative to higher-order sin-
gularities, then Equation 13.26 applies. Here, f, = 1, thus the

o b K :
closed-loop crossover frequency is given by w, = —. This can be

C.
2 X107

set to 10° rad/sec by choosing C, = T 200 pF.

R R
The loop transmission for the log circuit of Figure 13.9a is given Solution 12.2 (P13.6)

by Equation 13.19 of the textbook. At room temperature, iT =~
40, thus the loop transmission is L(s) = —40 a(s)v,. The loop

transmission varies from 0 to —400 a(s) as the input varies from
0 to + 10 volts. Thus, we need to maintain adequate phase margin
over a wide range of frequencies. This requires single-pole
compensation.

With single-pole compensation, if the system is stable for the
largest loop-transmission magnitude, then it will be stable for all
smaller loop-transmission magnitudes. Thus, we force crossover at
1 MHz when v, = + 10 volts, and the crossover will occur at lower
frequencies with adequate phase margin for all 0 < v,< 10 volts.
Letting Y(s) = Cs, and evaluating the magnitude at | MHz, we
have

| 2:% 10~*
L = |
| () w=6.283106 rad/sec 400 X C X 628 X 10° (S12.1)
_ 127x10°0
G
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Unity-gain crossover at 1 MHz is set by choosing C = 1.27 X 10°*
=~ 0.013 uF.

Now, with ¥, = 0.1 volt, the loop-transmission magnitude is
reduced by a factor of 100 from the value when ¥V, = 10 volts, and
crossover occurs at 10 kHz. The circuit step response will be first

1 :
' i e - c. Settling to
order with a time constant 7 77 X 10° 16 usec. Settling

within 1% of final value requires that e™V* = 0.01, which is solved
by t = 4.6 = 73 usec.

Solution 12.3 (P13.7) The closed-loop response of a unity-gain inverting amplifier is
: - a(s) : : i
given by A(s) Yo TF %als) TerEd As is apparent from this expres

sion, the closed-loop steady-state response to a sinusoid at 10 kHz
is determined entirely by the magnitude and phase of a(s) at 10
kHz. We shall see that the two-pole compensation yields better
phase accuracy, with slightly less closed-loop gain accuracy than
the single-pole compensation, due to the differing magnitude and
phase of a(s) under the two compensation schemes.

The loop transmission is —’a(s). Thus, for single-pole com-
pensation, to cross over at 1 MHz, we must choose a’(s)=

10° .
—— . At 10 kHz, a’(s) 1s
0.5s 1
27
YF i £y 106 —j1.5705963
a(ﬂ:rl(]) = m = 199.99999 ¢ (812.2)

Thus, the single-pole compensated closed-loop response at 10 kHz
is
_1 199.99999 ¢/!-3705%3

21 4+ % X 199.99999 ¢~/!-5705%3 (S12.3)
0.99994800 < 179.427°

where phasor notation has been used to indicate the angle in
degrees.

A'(j2710%)

For two-pole compensation, many choices are possible; how-
ever, for simplicity, we choose to place the compensating zero at
100 kHz, a factor of 10 below crossover. The double poles must
then be placed at 447 Hz to set crossover at 1| MHz. That is, a”(s)
is given by
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6 s
1D (271' X 10° * 1)

a’(s) = ;
1
(27:*)( 447 )

(S12.4)

At 10 kHz, a”(s) is

6 .
a(jam10fy = 2L+ D 5504 0513 e-rossn (5125

j10*
— 4 ]
(447 * )
Thus, the two-pole compensated closed-loop response is

_ l 2004.0513 ¢ /29529834
21 4+ % X 2004.0513 ¢~/29525834 (S12.6)
= 1.0009811 < 179.989°

again in phasor notation.

A”(j2710%) =

Thus, for the single-pole compensation the closed-loop gain is
accurate to within about 0.005%, with a phase error of about 0.57°.
For the two-pole compensation, the closed-loop gain is accurate to
within about 0.1%, with a phase error of about 0.01°. So in terms
of phase accuracy, the two-pole compensation is far superior. For
gain accuracy, the single-pole scheme is better.

A good approximation to the above results can be derived
with far less computational effort by using the asymptotic values
for a’(s) and a”(s). That is, assume that at 10 kHz, a/(j2710*) =~
200 e and a”(j2x10% =~ 2000 e¢~~. Then, plug these approxi-
mations into the expressions for 4’(j2710*) and A4”(;j2710%). The
results will be essentially the same as the detailed analysis above.

(a) With the given input, the output of the amplifier will be a ramp
with a slope of 10° volts per second. The input to the amplifier
is 10 mV. Following the discussion of Section 13.3.3, we
assume that the amplifier functions as an integrator on an

: ; k s
open-loop basis, that is, a(s) =~ e The constant k is in volts

10° V/sec

— 107
omv 10°. Thus

per second per volt and is given by k =

107
a(.S‘) o= T 1

Solution 12.4 (P13.8)

S12-3
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(b)

(c)

Following the discussion of Sections 5.3, 9.2.3, and 13.3, the
magnitude of the open-loop response of the amplifier will fol-
low the lower of the single-pole approximation and the uncom-
pensated transfer function. Thus, we can use the transfer
function given in the problem statement to refine the transfer-
function estimate. The two magnitude curves are shown in
Figure S12.1. We have omitted the corresponding phase curves
because they are unnecessary for this problem. The more accu-
rate approximation is shown as the darkened line indicating
the lower of the two curves.

For an LM301A, from Equation 13.20, a(s) = % , where K
107
mho. From part a, we have a(s) =~ T . Thus, Y (s)

2 X 10-4

= % = 2 X 107"s. This is the admittance for a 20 pF capac-

itance, which is therefore the compensating element.

(d) As described in Section 13.3.3, for essentially zero steady-state

ramp error, we select two-pole compensation. From Equation
13.36, for two-pole compensation,

Figure S12.1 Open-loop transfer
functions for amplifier of Problem
12.4 (P13.8).

107 + . § b + +

10° 4 \;-i“ Single-pole approximation magnitude L
.
T 10° 1 G - T
~, Uncompensated magnitude
— *
2 \\ﬁ
5 101 e
\
A
\\
10*1 \\\ 5 i
Compensated magnitude /
(lower of two curves)
10* 1
10 + 4+
1
N
0.1 s

| 10 100 10 10° 10° 10° 107  10°

w(rad/sec) ———»
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LGliial) (S12.7)
s

where 7 = R(C, + G,) and K’ = K/RC,C,. As usual, K = 2 X
10~ * mho. The compensating network topology is shown in Figure
13.19 of the text. The results of part b indicate that the single pole
compensated gain-of-ten amplifier loop transmission will cross
over at 10° rad/sec, with about 90° of phase margin. We now design
the two-pole compensator to have the same crossover frequency.
We locate the zero a decade below crossover to guarantee adequate
phase margin. Thus, 7 = 1073 sec. Then, to set crossover at 10°
rad/sec, we must have K’ = 107, which gives K’ = 10"2. One more
constraint is required to solve for the compensating element val-
ues. This represents an extraneous degree of freedom, which we
eliminate by choosing C, = C,. Then, the above equations in r and
K’ allow us to solve for C, = C, = 40 pF, and R = 125 k. The
resulting phase margin is about 84°.

a(s) =~

Si12-5
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Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

With minor-loop compensation, including the capacitive loading, Solution 13.1 (P13.10)
- K

T Y(s)(107%s + 1)
The desired open-loop transfer function is

11 -6
a(s)zzx 10'(5 X 107°s + 1)
5.2
Equating the above two expressions allows us to solve for Y .(s) as
Ks?
2 X 10"(5 X 107 + 1)(107%s + 1)

This is a second-order transfer function; thus, we can realize it with
two energy storage elements. We choose to use two capacitors.

a(s) (813.1)

(S13.2)

Y{(s) = (S13.3)

At high frequencies (|s| > 10°),
K : :

YAs) = X 107G X 10910 ~ 2 X 107 That is, at high fre-
quencies the network is resistive, with R = 5 kQ. Thus, the com-
pensating network is of the form shown in Figure S13.1, consisting
of a second-order network yet to be determined, in series with a 5
kQ resistor. Further, the two-port network must appear as a short
circuit at high frequencies.

Figure S13.1 Compensating
R, =5kQ network for Problem 13.1 (P13.10).

Second-order
+0 two-port VVV o+

Va
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Using the above discussion for guidance, we pick the compen-
sating network topology shown in Figure S13.2.

Figure S13.2 Compensating
network for Problem 13.1 (P13.10). & . R, = 5kQ

] |
a] | PR

"

v, V5,

This network has a short-circuit transfer admittance of

R,C\C,s?
RR,C,Cys* + [R,Cy + RAC, + C)ls + 1

Now, we can solve for element values by equating S13.4 and S13.3.
Because we’ve already found the value of R, = 5 kQ, this gives only
two independent equations, that is,

R,C\C;, = 1079 (S13.5)
R]C2 + R2(C| -+ C;:_) = 6 X 10_6 (813-6)

These two equations are in three unknowns, implying an extra-
neous degree of freedom. This degree of freedom is eliminated by
choosing R, = 1kQ. (There is no real solution if R, = R,.) Even
with this constraint, as the equations are quadratic in form, there
are still two sets of solutions. They are

Y(s) =

(S13.4)

Solution A Solution B
C, = 1269 pF C, = 4719 pF
C,= 788 pF C, = 212 pF

Either solution set is acceptable. There are also many other param-
eter sets that will yield the same transfer admittance, as well as
other possible network topologies.
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As described in Section 13.3.4, the feedback network of a differ-
entiator adds a loop-transmission pole. The solution is to apply
minor-loop compensation to create an open-loop zero that will
partially offset the negative phase shift of the pole in the vicinity
of crossover. From Equation 13.45, with a series R, — C. compen-
sating network,

_K(RCs + 1)

a(s) Cos (S13.7)

The pole resulting from the feedback network isat s = —1/RC =
—10 sec”'. Thus, the approximate loop transmission is

L(s) =~ — KRCes + 1) (S13.8)

C.5(0.1s + 1)

Crossover is specified at 10° rad/sec. To achieve 60° of phase
margin, we set the zero at w, = 5.8 X 10° rad/sec. Thus, R.C, =
1/w, = 1.7 X 107 sec. (Because no phase margin requirement is
specified in the problem, other solutions are also acceptable.) Now,
we can use C. to set w. = 10* rad/sec by requiring that | L(;10%)|
= 1. Because crossover occurs well above the pole at 10 rad/sec,
the resulting equation is

_ | K(1.7 X 107%w + 1)
=104 0.1 C.o

| L(w)| =1 (S13.9)

w=10H

This is solved by C. = 40 pF. Then, because R.C, = 1.7 X 10°*
sec, we find that R, = 4.3 MQ.

The 3 pF shunt guarantees that the compensating network is
capacitive in the vicinity of minor-loop crossover. Note that this
topology is slightly different than that of Figure 13.29 in the text-
book. That is, for this problem, the compensating network is as
shown in Figure S13.3, with 3 pF shunting the entire compensating
network. With this network, the loop transmission becomes

Solution 13.2 (P13.11)

—— ()

pF
I
I

4.3 MQ 40 pF

Figure S13.3 Modified
compensation network for Problem
13.2 (P13.11).
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B 2 X 107%1.7 X 1074 + 1)
4.3 X 107"s(0.1s + 1)(1.2 X 107%s + 1)

There are two effects of the shunt. First the loop-transmission
magnitude is lowered by about 8% across all frequencies. This is
due to the additional admittance of the 3 pF cap. Secondly, a loop-
transmission pole is introduced at 8.3 X 10* rad/sec. These two
effects combine to reduce the loop-transmission crossover to w, =
9.3 X 10’ rad/sec with a phase margin of about 51°. This will have
only a minor effect on closed-loop performance.

L(s) == (S13.10)




S O L U T I O N S

Linearized Analysis 1 4
of Nonlinear Systems

Note: All references to Figures and Equations whose numbers are
not preceded by an “S” refer to the textbook.

When the elements are cascaded in the order ab, the overall output Solution 14.1 (P6.1)
is zero for all inputs, as shown in Figure S14.1a. When they are

cascaded in the order ba, the transfer characteristic shown in Fig-

ure S14.15 results.

Vo Figure S14.1 Transfer
characteristics for system of Problem
14.1 (P6.1). (a) Cascaded in order ab.
T! (b) Cascaded in order ba.
! ;
=] 1 v
T =1
(a)
Vo
T1
L _-!. 1 l UI
g 1 1 1
-3 —2 1 2 3
+—1

(b)
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Solution 14.2 (P6.2) (a) At each of the equilibria, §; = nr. The incremental gain at
each equilibrium is %‘;—5 , and is given by
E
dog _ [ 1 0p=2nr _
&, - i_—l g, = G T n=01... (S14.1)
At equilibrium, then, the linearized loop transmission is
—10
—, =2
sO.1s + 1)° E=
LT = n=01,...
10
—— 0 =(02n 4+ D=
s(0.1s +1)> °F ( ) (S14.2)

We see that the loop transmission is positive for odd multiples
of =, which leads one to suspect that the loop will be unstable
in this case. From a root locus perspective, for any positive
d-c loop-transmission magnitude, the open-loop pole at
s = 0 will move into the right-half plane, resulting in an un-
stable system. Solving for the closed-loop poles as the roots
of 1 — L.T. confirms this, as there is a right-half-plane pole at
s = 6.2 sec”' for the equilibria at 6; = 2n + Dm, n = 0,
1, ..., whereas both poles are in the left-half plane for 6, =
nw, n = 0, 1, .... Thus, the equilibria are unstable when 4,
= (2n + 1)r and stable when 8, = nw, for all integers n.

(b) In the steady state, the output will also ramp at 7 rad/sec. That
is, we will have 6, = 7 rad/sec. From the block diagram, 8, is
related to vy as

5 _ 10
® = 0ls+1°F

Steady-state conditions are evaluated by setting s = 0, to find
v = 0.1 0, = 0.7. Then, the steady-state 0, is 0; = sin 'v, =
0.78 radians. Note that this is an exact value for the operating
point, but because 6 is small, it is close to the error predicted
by the model linearized about zero, which would be 0.7 radi-
ans. However, the slope of the sine function at 0.78 radians is
quite different from unity, so we should linearize about 6, =
0.78 radians to maintain accuracy in the incremental analysis.

(S14.3)




Linear Analysis of Nonlinear Systems

(c) The incremental gain of the resolver at this operating point is
dvg
db;! o8
closed-loop poles, which are located at s = —5.0 + j6.7. Thus,
the angle error 6 will take a positive step of about 0.01 radians,
and the output angle will settle down to a ramp of 7.1 rad/sec.
Both of these changes occur with an initial second-order tran-
sient characterized by w, = 8.4 rad/sec, and { = 0.6.

= (.71. Using this incremental gain, we solve for the

Applying Equation 6.10 from the textbook, the closed-loop poles
are located at the roots of 1 + Va(s)/20. Here we are given a(s)
_ 33X 10°

(s + D07%s + 1)
closed-loop poles remain in the left-half plane. A Routh analysis
indicates that two closed-loop poles lie in the right-half plane for
V, > 13.3, and a single pole lies in the right-half plane for V; <
—6.7 X 1073 = 0. Between these values, all poles are in the left-
half plane. Thus, the loop is stable for the specified input ranges.

and look for the range of V; for which the

For the square-root circuit, the ideal input-output relation-
ship is found by applying the virtual ground method, as in Section
6.2.2. This yields

vy+uvs=0 (S14.4)
and
_U_ v
s =10~ To (S14.5)

Solving Equations S14.4 and S14.5 for v, in terms of v, yields the
ideal relationship

vo= V—10v, v, <0 (S14.6)

Note that v, must be negative for a real solution to exist. Applying
Equation 6.3 to Equation S14.5 shows that

Vo , Vo
The incremental portion of this equation is
V.
v, = ?0 v, (S14.8)

Then, the incremental dependence of V, on V; is given by

Solution 14.3 (P6.3)

S14-3



i

S14-4 | Electronic Feedback Systems

Vs) _  —%a(s)
ZOZ0 (5149
10

With the given a(s), a Routh analysis indicates that the poles of

this expression are in the left-half plane for 0 < V,< 6.67. Thus,
2
Vo

~10° the system will be stable

because by Equation S14.6, v, =
for —4.44 < V, < 0.
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This problem is most readily solved by recognizing that the given Solution 15.1 (P6.6)
nonlinearity can be represented by combining two elements as
shown in Figure S15.1.

Figure S15.1 Decomposition of

Vo given nonlinearity into two
\/:ope nonlinearities.
=K
= A 0,

Uy

Vo

+ E e

The describing function for the upper element of Figure S15.1 is

simply its linear gain K with zero phase. The describing function

for the lower element of Figure S15.1 is tabulated in Table 6.1 of

the textbook as i% < 0°. Then, the overall describing function is
.

the sum of the two individual describing functions, and is given by

GH(E) = (K e %) < 0° (S15.1)
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e e e e —
Solution 15.2 (P6.7) Following the analysis of Chapter 6 in the textbook, stable oscil-

Gp(E) .

form shown in Figure 6.9. The nonlinear oscillator of Figure

6.26 is in the appropriate form, with a(s) =
10

(s + 1)O0.1s + 1)(0.01s + 1) °

= % <X 0°, as tabulated in Table 6.1. Thus, oscillations of fre-
.

quency w can exist where

lations may exist where a(jw) = when the system is in the

For the given nonlinearity, G,(E)

10 mE

= — — 5.2

(Jo + 1)0.1jw + 1)(0.0jw + 1) 4 I

Notice that the phase of the right-hand side of Equation S15.2 is
—180° for all w.

A rough sketch of the Bode plot of a(s) shows that the phase
of the left-hand side is —180° at about the geometric mean of the
breakpoints at 10 and 100 rad/sec, which is w =~ 32 rad/sec. An
exact solution indicates that equality in S15.2 occurs for w = 33
rad/sec. At this frequency, the magnitude of a(s) is 8.3 X 1072

Thus to satisfy S15.2, we must have 8.3 X 107% = %E , which is
solved by E = 0.11 volts. This is the amplitude of the signal into
the nonlinearity. (Note that the peak-to-peak value of the signal

into the nonlinearity is 2E or 0.22 volts.)

The above analysis can also be carried out graphically in the
gain-phase plane. Such a graphical analysis will appear very similar
to the plot in Figure 6.13 of the textbook. This analysis will also
verify that the oscillation at 33 rad/sec is stable, because following
the discussion in Section 6.3.2, increasing £ moves the point on

the —

1
curve upwards, and thus to the left of the a(jw) curve.
Gp(E)




We have seen that the signal v, is a 33 rad/sec sinusoid with
an amplitude of 0.11 volts. Thus, v, is a square wave in phase with
v, and with an amplitude of 1 volt (2 volts peak to peak). Now,
consider the level of the third harmonic at the output of the non-
linearity. By the usual Fourier series calculations we find that the
amplitude of the third harmonic is % that of the fundamental.
Thus, because the fundamental of v; has an amplitude of 4/ =
1.27 volts, the third harmonic of v, has an amplitude of 0.42 volts.
Of course, this third harmonic is at a frequency of 3 X 33 =~ 100
rad/sec, and is thus attenuated by a factor of about 0.007 by the
third-order transfer function that filters v, Thus, the amplitude of
the third harmonic in v, is 0.42 volts X 0.007 = 0.0029 volts. The
ratio in v, of the amplitude of the third harmonic to the funda-

0.0029 volts

mental, then, is given by 001 volis. = 0.027.

Describing Functions | S15-3
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16

(cont.)

Here, the describing function for the nonlinear element can be con-
structed as the sum of a linear gain of unity, and a nonlinear ele-
ment of the form of the third entry in Table 6.1, with E,, = 1, and
K = 1. Thus, for the overall nonlinear element, the describing
function is

Gp(E)=190 E<I (S16.1a)

Go(E)=1+[1 — %(sin"R +RVI—R)] < 0° E> 1

(S16.1b)
where R = 1
er =E
The loop of Figure 6.27 is of the form in Figure 6.9, with a(s)
5

= (s_+l—)3 . Thus, oscillations may be possible if particular values
T

E, and w, exist such that

a(jw,)) = — GDEE.)

Because the phase of G,(E) is zero for all E, the only solution of
Equation S16.2 occurs where < a(jw,) = —180°. For the given
a(s), this requires that —3 tan™'7w, = —180°, which is satisfied by

1.7 . . .
W = 73 . At this frequency, the magnitude of a(s) is given by

(S16.2)

5 . .
a(j = —————— = %, Thus, to satisfy Equation S16.2, we
|a(jw)| (m)s fy Eq

must have G,(E,) = % for oscillations to exist. Note that in a
describing function sense, the gain of the nonlinearity is 1 for sig-
nals less than 1 volt in amplitude. For signals of greater than 1 volt
amplitude the gain varies monotonically from 1 to 2 as the signal
amplitude varies from 1 to infinity. The above statement fits our
intuitive view of the behavior of the nonlinearity and is stated
mathematically in Equation S16.1.

Solution 16.1 (P6.8)
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With the above information, we can plot — and a(jw)

1
Gp(E)
on a gain-phase plane, without solving explicitly for numerical val-
ues of Gp(E). This plot is shown in Figure S16.1, and the intersec-
tion of the two curves indicates that oscillations may exist. How-
ever, they are not stable, as the following analysis shows. Consider

o ; = 4
the system to be oscillating with frequency w = LB and an ampli-
T

tude E such that G,(E) = %. A slight increase in E will move the

Ge(E)
tude oscillations. Similarly, if £ decreases, decreasing amplitude
oscillations result. Thus, a stable amplitude limit cycle is not pos-
sible, even though the curves intersect.

point to the right of the a(jw) curve implying growing ampli-

This result can be verified by performing a linearized analysis
about operating points V,. For | V,| < 1, the incremental gain of
the nonlinearity is 1, and the linearized system can be shown to be
stable. For all operating points with | ¥,| > 1, the incremental gain
of the nonlinearity is 2 and the system can be shown to be unstable.
Thus, there is no operating point that is marginally stable (poles
on jw axis), and no stable amplitude oscillations can exist.

Figure S16.1 Describing function
analysis for Problem 16.1 (P6.8).

st Gy(E)
LT gn E<I : Increasing w
S \,\ 4
o
& 1T - 1
= e w s e e e e %
Increasing £ > 1| 2

0.1 | = 0.1

I
-270° —180° —90°

< aljw) and <t [GD(E)]__—"
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The limiter characteristics are shown in the first entry of Table 6.1. Solution 17.1 (P6.9)
For the purposes of this problem, let K = E,, = 1. Then, from
Table 6.1,

GyE)=1<0 E<]I (S17.1a)

Gy(E) = E(sin"R +RV1I —R)<0° E>1 (S17.1b)
m

1
where R = —.
E
We want to combine this nonlinearity with a transfer function
a(s) in a loop of the form shown in Figure 6.9. Given this topology,
|
Gp(E)
and a(jw) that will yield stable amplitude limit cycles at two dif-
ferent frequencies is shown in Figure S17.1. The two intersections
with positive slope of the a(jw) curve represent stable oscillation
points, as shown.

and the G,(E) in Equation S17.1, a gain-phase plot of —

An a(jw) that realizes the curve indicated in Figure S17.1 is

_ K(0.05s + 1)}
T os(s + DH(1073s + 1)

There are many possible a(jw) that will result in two stable oscil-
lation points, and the a(jw) indicated in Equation S17.2 is just one
of them. They all have the common characteristic of two distinct
regions of the a(jw) curve where <t a(jw) < —180°. These regions
are separated by a region where < a(jw) > —180°. This is one of
those problems where there will be as many different solutions as
there are students.

a(s) ($17.2)

Given the a(s) of Equation S17.2, we notice that it combines
an integrator, two identical lag networks with « = 20 formed by
the poles at s = —1 and the zeros at s = —20, and a pair of poles
at s = —10°. The constant X is used to adjust the amplitude of the
oscillations.
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Figure S17.1 Describing function 108 I '
analysis for system of Problem 17.1 1 SN
(P6.9) with two stable amplitude limit = )
cycles. 10" + GalE) \\an) 1
A “\ Stable amplitude
10° T limit cycle o
3
o
=
10° T § L Tlncreasing E B
— g
~|R =
= 10*1 i
S T
©
c
® 10t L
3
=
=
10° T i
10T ~~_ Stable amplitude T
limit cycle
-
| ‘E = ;
—270° —180° —90° 0°

2 =1
< a(jw) and <L [G—p(_;j]

The circuit shown in Figure S17.2 realizes the integration and

RC
plies the inversion indicated in Figure 6.9.

provides a gain constant G = The negative sign of G sup-

Figure S17.2 Integration for C
Problem 17.1 (P6.9). I I
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Using the results of Section 5.2.3, we can design a lag network

with its pole at s = —1 and its zero at s = —20. That is, ar = 1,
and 7 = 0.05, « = 20. This network appears as shown in Figure
S17.3.
R, Figure S17.3 Lag network for
v v, Problem 17.1 (P6.9).
R,

Now, if we cascade two such networks, and arrange to have the
input impedance of the second network much larger than the out-
put impedance of the first network, loading will be insignificant.
R'R%R% and r = R,C, let

2
R, = 100 kQ. Then to set « = 20, R, = 5.26 kQ. Then, because
= (.05, we have C = 9.5 uF. For the second network, to reduce
loading, we multiply the resistances of the first network by 20 and
divide the capacitance by 20, to maintain the same « and 7. (An
operational amplifier acting as a buffer between the two sections
could be used to reduce loading further.) With this impedance scal-
ing, the second lag network uses R, = 2 MQ, R, = 105k, and C
= (.48 uF. The cascaded lag networks form the center section of
the circuit shown in Figure S17.4.

Thus, for the first network, because a =

0.013 uF Figure S17.4 Circuit
11 implementing a(s) for Problem 17.1
I (P6.9).

2 M@Q

100 kQ UouTt

0.01 uF
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We follow the lag networks with a gain of 100 connected oper-
ational amplifier to act as a buffer and provide gain. Finally, the
two poles at s = — 10’ must be implemented. As shown in Figure
S17.4, we choose to implement these poles with the cascade of two
first-order sections with RC = 107°, Again, the impedance of the
second section is scaled up relative to the first section (in this case
by a factor of 100) to minimize loading, and make our calculations
easier.

Finally, the integrator gain constant G must be adjusted to
ensure that the |a(jw)| > 1 when < a(jw) crosses through —180°
for the last time. Calculations show that this occurs for @ = 10°
rad/sec, and if G is chosen as G = —8 X 10° (recall that we also
have a gain of 100 from the second amp, thus K = 100 G), this
crossing will occur with |a(jw)| = 10. This ensures an intersection

with the —

: . 1
curve, which does not continue below
Gp(E)

R_,—é, , we have R’C’ = 1.25 X 107",

which can be satisfied by R’ = 1 kQ, and ’ = 0.013 uF. The com-
plete circuit is shown in Figure S17.4.

1
Go(E)

= 1. Then, because G =
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From Equation 12.1, with & = R—IC’ Solution 18.1 (P12.1)

Sy 4 1
V“(Rc) P+3+1_ 3 (S18.1)

Thus, at w = , the feedback path to the noninverting terminal

1
RC
has the same transfer function as the feedback path to the inverting
terminal. Thus, the voltages at both terminals are equal.

The modified topology will not function as an oscillator
because in this case, the resistive positive feedback makes the op-
amp connection unstable.

To make the example specific let the parallel leg resistance increase Solution 18.2 (P12.2)
by 5% to 1.05 R. Then,

Vi(s) 1.05 RCs

VAs) 1.05 R*C’*’ + 3.1 RCs + 1
Now, let the closed-loop gain of the noninverting connection equal
k. (In Section 12.1.1, k = 3.) Then, the characteristic equation is:
B 1.05 kRCs

1.05 R’C** + 3.1 RCs + 1 (S18.3)
_ 1.05 R*C?*? + (3.1 — 1.05k) RCs + 1
1.05 R*C*s’+ 3.1 RCs + 1

(S18.2)

1 — L(s) = 1

i
V1.05RC
the component values in the resistive network must satisfy
R, + R,

R,
inverting input, and R, is connected between the inverting input
and ground. This is satisfied by R, = 1.95 R,, a 2.5% change in R,.
(In Section 12.1.1, R, = 2R,.)

This has imaginary zeros at s = when k = 2.95. Thus,

= 2.95 where R, connects the amplifier output to the
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Solution 18.3 (P12.4)

Consider the double integrator of Figure 11.12 with the R/2 valued
resistor replaced by a resistance of g (1 + A), where A is the frac-

tional change in resistance. Then, Equation 11.21 becomes

(1 + A)RC?s?
= V. 4
L) =0+ mrG + 1y 9 (3A8:A)
Then, using Equation 11.20, and applying the constraint I, = —J,
yields
Vis) _ (1 + A)RCs + 1

V(s)  (RCs + 1)1 + A)RCs) (S18.5)

Note that if A = 0 this reduces to the original Equation 11.22, as
expected.

Then, with the output of the double integrator connected back
to its input, the loop transmission L(s) is given by Equation S18.5.
The characteristic equation then is

(1 + A)RCs + 1
(RCs + 1)(1 + A)RCs)?
_RC(1 4 A)s* + RCY(1+ A)s* + RC(1 + A)s + 1
B (RCs + 1)(1 + A)(RCs)?

1 — L(s) =1+

(S18.6)

This is identical with Equation 12.9, and thus for small A, Equa-
tion 12.10 applies. Therefore, the performance of the oscillator is
dominated by a complex-conjugate root pair with w, =~ EIE' , and
¢ = A/4. The closed-loop poles can be made to lie in either the left
half or the right half of the s plane according to the sign of A. Thus,
by adjusting A, the envelope of the sinusoidal output may be made
exponentially increasing (A < 0) or exponentially decreasing (A >
0). By this mechanism the amplitude can be controlled.

Now, because Equation 12.10 applies, following the analysis
on pp. 490-91 of the textbook, the linearized transfer function
relating envelope amplitude to A is

Ea(s) o EA
A(s) 4 RCs
as given by Equation 12.17. Note that we are letting v () be equal

to the double integrator output voltage v,(7) in order to conform to
the notation of Section 12.1.4.

(S18.7)
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Double integrator

Figure S18.1 Amplitude
stabilized oscillator

‘5
4

Vi = 10 volts
R, = 196 kQ
3 % Oscillator
£ £ output
20 kQ 20 k2 _Tl'—\ —— —= +o Uy E
0.008 uF 0.008 uF (1 /=
I

f,,T = 1 ;.LFI ii(_

= 50 kQ
Controller . AN‘,_
R\/2
‘5"!" R, = 125kQ =

sinusoid w/

9.5 kQ 20 V p-p)

50 k@

Precision rectifier

Now, as shown in Figure S18.1, we use the same FET circuit as
in Figure 12.4, including the 9.5 kQ resistor, so that nominally
R/2 = 10 kQ. (Thus, R = 20 k.) Then, all the equations describ-
ing the FET in Section 12.1.4 apply. Specifically, from Equation
12.23

8A

OV po=—av

= —0.0125 V™! (S18.8)

Now, to set the operating frequency to 1 kHz, we require that

o )
@ = pC = 2 X 10 (S18.9)
Because we have already determined that R = 20 k€, this is solved
by C =~ 0.008 pF. Thus, the components of the double-integrator
loop are chosen as shown in Figure S18.1.
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Also, for 20 volts peak-to-peak output, £, = 10. With these
values, Equation S18.7 becomes

E(s) _ _ 1.57 X 10*
A(S) s

Combining this with Equation S18.8 yields the linearized incre-
mental relation between E,(s) and V.(s).

Efs) _ 196
Vis) s

Now, we turn our attention to the amplitude-measuring cir-
cuit and the controller circuit. As shown in Figure S18.1, we use a
precision full-wave rectifier to provide an amplitude measurement.
The controller amplifier provides a ground potential current-sum-
ming node, so only one additional amplifier is required to realize
the precision rectifier. This is the same connection as is used in the
precision phase shifter of Figure 12.32. The precision rectifier is
discussed in more detail in Section 11.5.1.

(S18.10)

(S18.11)

The controller circuit has the same topology as in Figure 12.6.
Note, however, that the R, and R,/2 valued resistors of the preci-
sion rectifier replace the 312.5 kQ input resistor of Figure 12.6.
Because the loop in Figure 12.4 is very similar to the loop in Figure
S18.1, we can use the same controller. That is, because they are
oscillating at similar frequencies we can set crossover for both
loops at 100 rad/sec. Further, the incremental relations between
V(s) and E,(s) (Equations 12.24 and S18.11) differ only in the gain
constant. Thus, by simply scaling the gain constant of a(s) (i.e., by
varying the controller input resistor), the two loops can be made
to have identical amplitude-control loop transmissions.

The only remaining subtlety is in determining the incremental
relation between E, (s) and V(s). With w, set to 100 rad/sec, the
controller a(s) effectively filters out all signal components at the
oscillator frequency (1 kHz) and above. Thus, we can effectively
ignore these harmonics, and focus on the propagation of the ampli-
tude signal around the loop. That is, the amplitude-control loop is
really feeding back on the amplitude parameter e,(¢), and not on
the detailed waveform v ().

Because it is full-wave rectified, the current into the controller
summing junction i,(¢) is always greater than or equal to zero and
o | . Y
is given by R e,(?) sin wt|. For slowly varying e,(f), the low fre-

1
quency portion of this signal is given by finding the d-¢ Fourier
component under the assumption that e,(¢) is fixed. That is, the
low-frequency current i,,-(#) into the summing junction is




ﬂ’wu
Lir(f) = _Rw:-r L e(?) sin wt dt
1
(S18.12)

3
G e4?)

Now, the transfer function from this low-frequency current to
voltage v, is given by
VA(s) _ O.1s + 1)
L(s) 107%s(107°s + 1)?

Then, combining Equations S18.11, S18.12, and S18.13 yields the
amplitude-control loop transmission

_(196)\( 2 0.1s + 1
s R/ | 107%s(1073s + 1)?
_ —1.25 X 10%0.1s + 1)
T RsS(1073s 4 1) (S19.49)
Equating this with the negative of Equation 12.26, so the loop
transmissions are identical, yields R, = 125 kQ. The system cross-
over frequency is 100 rad/sec and the phase margin exceeds 70°.

(S18.13)

L(s)

One consequence of the chosen topology is that the amplitude
reference signal is negative. That is, when the loop is in equilib-
rium, the average current drawn by the reference (ER = %) will

R
be equal to the average current i, supplied by the precision rec-
tifier. We choose Ry so that the steady-state amplitude of v ,(¢) will
be equal to V;. That is, equating i,, with i, and setting V, = e,
gives
2 Ve _ &

R]Tr eA = RR - RR

Given R, = 125 kQ, this is solved by R; = 196 kQ. Then, for an
output amplitude of 10 volts, V; = 10 volts.

(S18.15)

Oscillators (Intentional)

S18-5
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