
MIT OpenCourseWare 
http://ocw.mit.edu 

Electromechanical Dynamics 

For any use or distribution of this textbook, please cite as follows: 

Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics. 
3 vols. (Massachusetts Institute of Technology: MIT OpenCourseWare). 
http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons 
Attribution-NonCommercial-Share Alike 

For more information about citing these materials or 
our Terms of Use, visit: http://ocw.mit.edu/terms 

http://ocw.mit.edu
http://ocw.mit.edu
http://ocw.mit.edu/terms


ELECTROMECHANICAL DYNAMICS

Part I: Discrete Systems





__ 

ELECTROMECHANICAL

DYNAMICS

Part I: Discrete Systems

HERBERT H. WOODSON

Philip Sporn Professor of Energy Processing
Departments of Electrical and Mechanical Engineering

JAMES R. MELCHER

Associate Professor of Electrical Engineering
Department of Electrical Engineering

both of Massachusetts Institute of Technology

JOHN WILEY & SONS, INC., NEW YORK - LONDON . SYDNEY

~__





To our parents

I_





__ ___

PREFACE

Part I: Discrete Systems

In the early 1950's the option structure was abandoned and a common core
curriculum was instituted for all electrical engineering students at M.I.T.
The objective of the core curriculum was then, and is now, to provide a
foundation in mathematics and science on which a student can build in his
professional growth, regardless of the many opportunities in electrical
engineering from which he may choose. In meeting this objective, core
curriculum subjects cannot serve the needs of any professional area with
respect to nomenclature, techniques, and problems unique to that area.
Specialization comes in elective subjects, graduate study, and professional
activities.

To be effective a core curriculum subject must be broad enough to be
germane to the many directions an electrical engineer may go professionally,
yet it must have adequate depth to be of lasting value. At the same time, the
subject must be related to the real world by examples of application. This
is true because students learn by seeing material in a familiar context, and
engineering students are motivated largely by the relevance of the material
to the realities of the world around them.

In the organization of the core curriculum in electrical engineering at
M.I.T. electromechanics is one major component. As our core curriculum
has evolved, there have been changes in emphasis and a broadening of the
topic. The basic text in electromechanics until 1954, when a new departure
was made, was Electric Machinery by Fitzgerald and Kingsley. This change
produced ElectromechanicalEnergy Conversion by White and Woodson,
which was used until 1961. At that time we started the revision that resulted
in the present book. During this period we went through many versions of
notes while teaching the material three semesters a year.

Our objective has always been to teach a subject that combines classical
mechanics with the fundamentals of electricity and magnetism. Thus the
subject offers the opportunity to teach both mechanics and electromagnetic
theory in a context vital to much of the electrical engineering community.

Our choice of material was to some extent determined by a desire to give
the student a breadth of background sufficient for further study of almost
any type of electromechanical interaction, whether in rotating machinery,
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plasma dynamics, the electromechanics of biological systems, or magneto-
elasticity. It was also chosen to achieve adequate depth while maintaining
suitable unity, but, most important, examples were chosen that could be
enlivened for the engineering student interested in the interplay of physical
reality and the analytical model. There were many examples from which to
choose, but only a few satisfied the requirement of being both mathe-
matically lucid and physically demonstrable, so that the student could "push
it or see it" and directly associate his observations with symbolic models.
Among the areas of electrical engineering, electromechanics excels in offering
the opportunity to establish that all-important "feel" for a physical phe-
nomenon. Properly selected electromechanical examples can be the basis for
discerning phenomena that are remote from human abilities to observe.

Before discussing how the material can be used to achieve these ends, a
review of the contents is in order. The student who uses this book is assumed
to have a background in electrostatics and magnetostatics. Consequently,
Chapter 1 and Appendix B are essentially a review to define our starting
point.

Chapter 2 is a generalization of the concepts of inductance and capacitance
that are necessary to the treatment of electromechanical systems; it also
provides a brief introduction to rigid-body mechanics. This treatment is
included because many curricula no longer cover mechanics, other than
particle mechanics in freshman physics. The basic ideas of Chapter 2 are
repeated in Chapter 3 to establish some properties of electromechanical
coupling in lumped-parameter systems and to obtain differential equations
that describe the dynamics of lumped-parameter systems.

Next, the techniques of Chapters 2 and 3 are used to study rotating
machines in Chapter 4. Physical models are defined, differential equations
are written, machine types are classified, and steady-state characteristics are
obtained and discussed. A separate chapter on rotating machines has been
included not only because of the technological importance of machines but
also because rotating machines are rich in examples of the kinds of phe-
nomena that can be found in lumped-parameter electromechanical systems.

Chapter 5 is devoted to the study, with examples, of the dynamic behavior
of lumped-parameter systems. Virtually all electromechanical systems are
mathematically nonlinear; nonetheless, linear incremental models are useful
for studying the stability of equilibria and the nature of the dynamical
behavior in the vicinity of an equilibrium. The second half of this chapter
develops the classic potential-well motions and loss-dominated dynamics in
the context of electromechanics. These studies of nonlinear dynamics afford
an opportunity to place linear models in perspective while forming further
insights on the physical significance of, for example, flux conservation and
state functions.
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Chapter 6 represents our first departure from lumped-parameter systems
into continuum systems with a discussion of how observers in relative motion
will define and measure field quantities and the related effects of material
motion on electromagnetic fields. It is our belief that de rotating machines
are most easily understood in this context. Certainly they are a good demon-
stration of field transformations at work.

As part of any continuum electromechanics problem, one must know how
the electric and magnetic fields are influenced by excitations and motion. In
quasi-static systems the distribution of charge and current are controlled by
magnetic diffusion and charge relaxation, the subjects of Chapter 7. In
Chapter 7 simple examples isolate significant cases of magnetic diffusion or
charge relaxation, so that the physical processes involved can be better
understood.

Chapters 6 and 7 describe the electrical side of a continuum electro-
mechanical system with the material motion predetermined. The mechanical
side of the subject is undertaken in Chapter 8 in a study of force densities of
electric and magnetic origin. Because it is a useful concept in the analysis of
many systems, we introduce the Maxwell stress tensor. The study of useful
properties of tensors sets the stage for later use of mechanical stress tensors
in elastic and fluid media.

At this point the additional ingredient necessary to the study of continuum
electromechanics is the mechanical medium. In Chapter 9 we introduce
simple elastic continua-longitudinal motion of a thin rod and transverse
motion of wires and membranes. These models are used to study simple
continuum mechanical motions (nondispersive waves) as excited electro-
mechanically at boundaries.

Next, in Chapter 10 a string or membrane is coupled on a continuum
basis to electric and magnetic fields and the variety of resulting dynamic
behavior is studied. The unifying thread of this treatment is the dispersion
equation that relates complex frequency w with complex wavenumber k.
Without material convection there can be simple nondispersive waves, cut
off or evanescent waves, absolute instabilities, and diffusion waves. The
effect of material convection on evanescent waves and oscillations and on
wave amplification are topics that make a strong connection with electron
beam and plasma dynamics. The method of characteristics is introduced as a
convenient tool in the study of wave propagation.

In Chapter 11 the concepts and techniques of Chapters 9 and 10 are
extended to three-dimensional systems. Strain displacement and stress-strain
relations are introduced, with tensor concepts, and simple electromechanical
examples of three-dimensional elasticity are given.

In Chapter 12 we turn to a different mechanical medium, a fluid. We
first study electromechanical interactions with inviscid, incompressible

__·_ I_·
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fluids to establish essential phenomena in the simplest context. It is here that
we introduce the basic notions of MHD energy conversion that can result
when a conducting fluid flows through a transverse magnetic field. We also
bring in electric-field interactions with fluids, in which ion drag phenomena
are used as an example. In addition to these basically conducting processes,
we treat the electromechanical consequences of polarization and magnetiza-
tion in fluids. We demonstrate how highly conducting fluids immersed in
magnetic fields can propagate Alfvyn waves.

In Chapter 13 we introduce compressibility to the fluid model. This can
have a marked effect on electromechanical behavior, as demonstrated with
the MHD conduction machine. With compressibility, a fluid will propagate
longitudinal disturbances (acoustic waves). A transverse magnetic field and
high electrical conductivity modify these disturbances to magnetoacoustic
waves.

Finally, in Chapter 14 we add viscosity to the fluid model and study the
consequences in electromechanical interactions with steady flow. Hartmann
flow demonstrates the effect of viscosity on the dc magnetohydrodynamic
machine.

To be successful a text must have a theme; the material must be inter-
related. Our philosophy has been to get into the subject where the student
is most comfortable, with lumped-parameter (circuit) concepts. Thus many
of the subtle approximations associated with quasi-statics are made naturally,
and the student is faced with the implications of what he has assumed only
after having become thoroughly familiar with the physical significance and
usefulness of his approximations. By the time he reaches Chapter 4 he will
have drawn a circle around at least a class of problems in which electro-
magnetic fields interact usefully with media in motion.

In dealing with physical and mathematical subjects, as we are here, in
which the job is incomplete unless the student sees the physical laws put to
work in some kind of physical embodiment, it is necessary for the thread of
continuity to be woven into the material in diverse and subtle ways. A
number of attempts have been made, to which we can add our early versions
of notes, to write texts with one obvious, pedagogically logical basis for
evolving the material; for example, it can be recognized that classes of
physical phenomena could be grouped according to the differential equation
that describes the pertinent dynamics. Thus we could treat magnetic diffusion,
diffusion waves on elastic continua, and viscous diffusion waves in one
chapter, even though the physical embodiments are entirely different.
Alternatively, we could devise a subject limited to certain technological
applications or cover superficially a wide range of basically unrelated topics
such as "energy conversion" under one heading. This was the preva-
lent approach in engineering education a decade or so ago, even at the
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undergraduate level. It seems clear to us that organizing material in a teach-
able and meaningful fashion is far more demanding than this. To confess our
own mistakes, our material went originally from the general to the specific; it
began with the relativistic form of Maxwell's equations, including the effects
of motion, and ended with lumped-parameter devices as special cases. Even
if this were a pedagogically tenable approach, which we found it was not,
what a bad example to set for students who should be learning to distinguish
between the essential and the superfluous! Ideas connected with the propaga-
tion of electromagnetic waves (relativistic ideas) must be included in the
curriculum, but their connection with media in motion should be made after
the student is aware of the first-order issues.

A meaningful presentation to engineers must interweave and interrelate
mathematical concepts, physical characteristics, the modeling process, and
the establishment of a physical "feel" for the world of reality. Our approach
is to come to grips with each of these goals as quickly as possible (let the
student "get wet" within the first two weeks) and then, while reinforcing what
he has learned, continually add something new. Thus, if one looks, he will
see the same ideas coming into the flow of material over and over again.

For the organization of this book one should look for many threads of
different types. We can list here only a few, in the hope that the subtle
reinforcing interplay of mathematical and physical threads will be made
evident. Probably the essential theme is Maxwell's equations and the ideas of
quasi-statics. The material introduced in Chapter 1 is completely abstract,
but it is reinforced in the first few chapters with material that is close to home
for the student. By the time he reaches Chapter 10 he will have learned that
waves exist which intimately involve electric and magnetic fields that are
altogether quasistatic. (This is something that comes as a surprise to many
late in life.) Lumped-parameter ideas are based on the integral forms of
Maxwell's equations, so that the dynamical effects found with lumped-
parameter time constants LIR and RC in Chapter 5 are easily associated with
the subjects of magnetic diffusion and charge relaxation. A close tie is made
between the "speed voltage" of Chapter 5 and the effects of motion on
magnetic fields, as described by field transformations in Chapters 6 to 14.
Constant flux dynamics of a lumped coil in Chapter 5 are strongly associated
with the dynamics of perfectly conducting continuous media; for example,
Alfv6n waves in Chapter 12.

Consider another thread of continuity. The book begins with the mathe-
matics of circuit theory. The machines of Chapter 4 are essentially circuits in
the sinusoidal steady state. In Chapter 5 we linearize to pursue lumped-
parameter ideas of stability and other transient responses and then proceed
to nonlinear dynamics, potential-well theory, and other approaches that
should form a part of any engineer's mathematical background. By the time
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the end of Chapter 10 is reached these ideas will have been carried into the
continuum with the addition of tensor concepts, simple cases of the method
of characteristics, and eigenvalue theory. The o-k plot and its implication
for all sorts of subjects in modern electrical engineering can be considered as
a mathematical or a physical objective. The ideas of stability introduced
with ordinary differential equations (exp st) in Chapter 5 evolve into the
continuum stability studies of Chapter 10 [expj(wt - kx)] and can be
regarded as a mathematical or a physical thread in our treatment. We could
list many other threads: witness the evolution of energy and thermodynamic
notions from Chapters 3 to 5, 5 to 8, and 8 to 13.

We hope that this book is not just one more in the mathematics of elec-
trical engineering or the technical aspects of rotating machines, transducers,
delay lines, MHD converters, and so on, but rather that it is the mathe-
matics, the physics, and, most of all, the engineering combined into one.

The material brought together here can be used in a variety of ways. It has
been used by Professors C. N. Weygandt and F. D. Ketterer at the University
of Pennsylvania for two subjects. The first restricts attention to Chapters
1 to 6 and Appendix B for a course in lumped-parameter electromechanics
that both supplants the traditional one on rotating machines in the electrical
engineering curriculum and gives the background required for further study
in a second term (elective) covering Chapter 7 and beyond. Professors C. D.
Hendricks and J. M. Crowley at the University of Illinois have used the
material to follow a format that covers up through Chapter 10 in one term
but omits much of the material in Chapter 7. Professor W. D. Getty at the
University of Michigan has used the material to follow a one-term subject in
lumped-parameter electromechanics taught from a different set of notes.
Thus he has been able to use the early chapters as a review and to get well
into the later chapters in a one-term subject.

At M.I.T. our curriculum seems always to be in a state of change. It is clear
that much of the material, Chapters 1 to 10, will be part of our required
(core) curriculum for the forseeable future, but the manner in which it is
packaged is continually changing. During the fall term, 1967, we covered
Chapters 1 to 10 in a one-semester subject taught to juniors and seniors.
The material from Chapters 4 and 6 on rotating machines was used selectively,
so that students had "a foot solidly in the door" on this important subject
but also that the coverage could retain an orientation toward the needs of all
the diverse areas found in electrical engineering today. We have found the
material useful as the basis for early graduate work and as a starting point
in several courses related to electromechanics.

Finally, to those who open this book and then close it with the benediction,
"good material but unteachable," we apologize because to them we have
not made our point. Perhaps not as presented here, but certainly as it is
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represented here, this material is rich in teaching possibilities. The demands
on the teacher to see the subject in its total context, especially the related
problems that lie between the lines, are significant. We have taught this
subject many times to undergraduates, yet each term has been more enjoyable
than the last. There are so many ways in which drama can be added to the
material, and we do not need to ask the students (bless them) when we have
been successful in doing so.

In developing this material we have found lecture demonstrations and
demonstration films to be most helpful, both for motivation and for develop-
ing understanding. We have learned that when we want a student to see a
particular phenomenon it is far better for us to do the experiment and let
the student focus his attention on what he should see rather than on the
wrong connections and blown fuses that result when he tries to do the
experiment himself. The most successful experiments are often the simplest--
those that give the student an opportunity to handle the apparatus himself.
Every student should "chop up some magnetic field lines" with a copper
"axe" or he will never really appreciate the subject. We have also found that
some of the more complex demonstrations that are difficult and expensive
to store and resurrect each semester come through very well in films. In
addition to our own short films, three films have been produced professionally
in connection with this material for the National Committee on Electrical
Engineering Films, under a grant from the National Science Foundation, by
the Education Development Center, Newton, Mass.

Synchronous Machines: Electromechanical Dynamics by H. H. Woodson
Complex Waves I: Propagation, Evanescence and Instability by J. R.

Melcher
Complex Waves II: Instability, Convection and Amplification by J. R.

Melcher

An additional film is in the early stages of production. Other films that
are useful have been produced by the Education Development Center for
the National Committee on Fluid Mechanics Films and for the College
Physics Film Program. Of particular interest, from the former series, is
Magnetohydrodynamics by Arthur Shercliff.

A book like this can be produced only with plenty of assistance. We
gratefully acknowledge the help we received from many directions and hope
we have forgotten no one after seven years of work. First of all we want
to acknowledge our students with whom we worked as the material developed.
They are the one most essential ingredient in an effort of this sort. Next we
want to thank Dr. S. I. Freedman, Professor H. H. Richardson, and Dr.
C. V. Smith, Jr., for their assistance in framing worthwhile approaches to
several of our key topics. In seven years we have had the help of many able
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teachers in presenting this material to students. Their discussions and advice
have been most useful. In this category we want particularly to mention
Professors H. A. Haus, P. L. Penfield, D. C. White, G. L. Wilson, R. Gal-
lager, and E. Pierson and Doctors J. Reynolds, W. H. Heiser, and A. Kusko.
Professor Ketterer, who has taught this material at M.I.T. and the University
of Pennsylvania, Professors C. D. Hendricks and J. M. Crowley, who have
taught it at M.I.T. and the University of Illinois, and Professor W. D. Getty,
who has taught it at M.I.T. and the University of Michigan, have been most
generous with their comments. Messrs. Edmund Devitt, John Dressler, and
Dr. Kent Edwards have checked the correctness of many of the mathematical
treatments. Such a task as typing a manuscript repeatedly is enough to try
the patience of anyone. Our young ladies of the keyboard, Miss M. A. Daly,
Mrs. D. S. Figgins, Mrs. B. S. Morton, Mrs. E. M. Holmes, and Mrs. M.
Mazroff, have been gentle and kind with us.

A lengthy undertaking of this sort can be successful only when it has the
backing of a sympathetic administration. This work was started with the
helpful support of Professor P. Elias, who was then head of the Department
of Electrical Engineering at M.I.T. It was finished with the active encourage-
ment of Professor L. D. Smullin, who is presently head of the Department.

Finally, and most sincerely, we want to acknowledge the perseverance of
our families during this effort. Our wives, Blanche S. Woodson and Janet D.
Melcher, have been particularly tolerant of the demands of this work.

This book appears in three separately bound, consecutively paged parts
that can be used individually or in any combination. Flexibility is ensured
by including with each part a complete Table of Contents and Index. In
addition, for convenient reference, Parts LI and II are supplemented by brief
appendices which summarize the relevant material from the preceding chap-
ters. Part I includes Chapters 1 to 6, hence emphasizes lumped-parameter
models while developing background in field concepts for further studies.

H. H. Woodson
J. R. Melcher

Cambridge, Massachusetts
January 1968
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Chapter 1

INTRODUCTION

1.0 INTRODUCTION

The human is first of all a mechanical entity who exists in a mechanical
environment. The day-by-day habits of man are dictated largely by such
considerations as how rapidly he can transport or feed himself. Communica-
tion with his environment is geared to such mechanical operations as the
time required for his eye to scan a page or the speed with which he can speak
or typewrite. Furthermore, his standard of living is very much a function of
his ability to augment human muscle for better transportation and for the
diverse industrial processes needed in an advanced society.

There are two major conclusions to be drawn from these thoughts. First,
the unaided human faculties operate on limited time and size scales. Thus the
mechanical effects of electric and magnetic forces on ponderable bodies were
observed and recorded by the Greeks as early as 500 B.c., and electricity and
magnetism were developed largely as classical sciences in the nineteenth
century, on the basis of unaided human observations. Coulomb enunciated
his inverse square law from measurements taken with an electrical torsion
balance; magnetic forces, as they influenced ponderable objects such as
magnetized needles, were the basis of experiments conducted by Oersted and
Ampere. These electromechanical experiments constituted the origins of the
modern theories of electricity and magnetism. Faraday and Maxwell unified
the subjects of electrostatics and magnetostatics into a dynamical theory that
predicted phenomena largely beyond the powers of direct human observation.
Thus today we recognize that electromagnetic theory encompasses not only
the electromechanical effects that first suggested the existence of electric and
magnetic fields but also numerous radiation effects, whether they involve
radio frequency waves or x-rays. Nonetheless, when man controls these
phenomena, detects their existence, and puts them to good use, he most often
does so by some type of electromechanical interaction-from the simple act of
turning a switch to the remote operation of a computer with a teletypewriter.

____I__
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The second major conclusion to be drawn from our opening remarks is
that man's need for motive power for transportation and industrial processes
is satisfied largely by conversion of electric energy to mechanical energy.
Energy in electric form is virtually useless, yet the largest and fastest growing
segment of our economy is the electric utility industry, whose source of
income is the sale of electric energy. This is eloquent testimony to the fact
that electric energy can be converted easily into a variety of forms to aid man
in his mechanical environment. It is remarkable that the same 60-Hz power
line can supply the energy requirements of a rolling mill, a television station,
a digital computer, a subway train, and many other systems and devices
that provide a fuller and more comfortable life. In the vast majority of these
examples electromechanical energy conversion is required because of man's
basic need for mechanical assistance.

As long as engineers are concerned with making the electrical sciences
serve human needs, they will be involved with electromechanical phenomena.

1.0.1 Scope of Application

Because they serve so many useful functions in everyday situations,
transducers are the most familiar illustration of applied electromechanical
dynamics. These devices are essential to the operation of such diverse
equipment as automatic washing machines, electric typewriters, and power
circuit breakers in which they translate electrical signals into such useful
functions as opening a switch. The switch can be conventional or it can open
a circuit carrying 30,000 A while withstanding 400,000 V 2 msec later. The
telephone receiver and high-fidelity speaker are familiar transducers; less
familiar relatives are the high-power sonar antenna for undetwater communi-
cation or the high-fidelity shake tables capable of vibrating an entire space
vehicle in accordance with a recording of rocket noise.

Electromechanical transducers play an essential role in the automatic con-
trol of industrial processes and transportation systems, where the ultimate
goal is to control a mechanical variable such as the thickness of a steel
sheet or the speed of a train. Of course, a transducer can also be made to
translate mechanical motion into an electrical signal. The cartridge of a
phonograph pickup is an example in this category, as are such devices as
telephone transmitters, microphones, accelerometers, tachometers and
dynamic pressure gages.

Not all transducers are constructed to provide mechanical input or output.
The (electro)mechanical filter is an example of a signal-processing device
that takes advantage of the extremely high Q of mechanical circuits at
relatively low frequencies. Filters, delay lines, and logic devices capable of
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performing even above 30 MHz are currently the object of research on
electromechanical effects found in piezoelectric and piezomagnetic materials.

Primary sources of energy are often found in mechanical form in the
kinetic energy of an expanding heated gas and in the potential energy of
water at an elevation. Electromechanics has always played a vital role in
obtaining large amounts of electric power from primary sources. This is
accomplished by using large magnetic field-type devices called rotating
machines. Today a single generator can produce 1000 MW (at a retail price
of 2 cents/kWh this unit produces an income of $20,000/h), and as electric
utility systems grow larger generating units (with attendant problems of an
unprecedented nature) will be needed. This need is illustrated by the fact that
in 1960 the national peak load in the United States was 138,000 MW, whereas
it is expected that in 1980 it will be 493,000 MW, an increase of more than
250 per cent in 20 years.

A large part of this electric power will be used to drive electric motors of
immense variety to do a multitude of useful tasks, from moving the hands of
an electric clock at a fraction of a watt to operating a steel rolling mill at
20 MW.

Because of our need for great amounts of energy, it is in the national
interest to seek ways of producing it more efficiently (to conserve natural
resources) and with less costly equipment (to conserve capital). The magneto-
hydrodynamic generator, which employs an expanding heated gas as the
moving conductor, shows some promise of meeting one or both of these
objectives. Another possibility is the use of the interaction between charged
particles and a flowing, nonconducting gas to achieve electrohydrodynamic
power generation. Versions of this machine are similar in principle to the
Van de Graaffgeneratorwhich is currently producing extremely high voltages
(20 million volts) for a variety of purposes, including medical treatment,
physical research, and irradiation of various substances.

The efficient and economical conversion of mechanical energy to electrical
form is not only of great interest to the rapidly expanding utility industry
but is also of extreme importance to the space program, in which sources of
electric power must satisfy new engineering requirements imposed by the
environment, with obvious limitations on weight and size and with stringent
requirements on reliability.

Electromechanical devices provide power amplification of signals for
purposes similar to those involving electronic amplifiers; for example, in
control systems in which large amounts of power (up to about 20 MW) must
be produced with high fidelity over a bandwidth from zero to a few Hertz
dc rotating machines are used. From this the impression is obtained that
electromechanical amplifiers function only at low frequencies; but there are
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electromechanical devices that provide amplification in the gigacycle-per-
second range-electron beam devices which, like other physical electronic
devices, depend on the small mass of the electron for high-frequency
operation.

In current research concerned with controlled thermonuclear fusion the
plasma can be regarded for some purposes as a highly conducting gas elevated
to such a high temperature that it cannot be contained by solid boundaries.
Thus proposed thermonuclear devices attempt to contain the plasma in a
magnetic bottle. This illustrates another important application of electro-
mechanical dynamics--the orientation, levitation, or confinement of mechan-
ical media. More conventional examples in this category are those that use
magnetic or electric fields to levitate the rotor of a gyroscope, to suspend the
moving member of an accelerometer, or to position a model in a wind tunnel.
Metallurgists employ ac magnetic fields to form a crucible for molten metals
that must be free of contamination, and electric fields are proposed for
orienting cyrogenic propellants in the zero-gravity environment of space.
The use of electric and magnetic fields in shaping malleable metals and
solidifying liquids has just begun.

The propulsion of vehicles represents still another application of electro-
mechanics. Even when the primary source of energy is a rotating shaft from
a reciprocating engine or a turbine, as in a locomotive or ship, the problem of
transmitting and controlling the power to the wheels or propeller is simplified
by converting the power to electrical form with a generator and installing
electric motors to propel the vehicle. An important addition to this class of
vehicles would be the electric car in which energy is stored in batteries and
the wheels are driven by electric motors. Less familiar electromechanical
propulsion schemes are being developed, largely for space applications,
which make use of magnetohydrodynamic or electrohydrodynamic accelera-
tion of matter to provide thrust. In this regard the particle accelerators
required in high-energy physics research should be recognized as electro-
mechanical devices.

1.0.2 Objectives

It should be apparent from the discussion of the preceding section that
electromechanical dynamics covers a broad range of applications, many of
which represent highly developed technologies, whereas others are the
subject of research or development. In either case a single application could
be the subject of an entire book and in many cases books already exist.
Our objective here is to lay a cohesive and unified foundation by treating
those concepts and techniques that are fundamental to an understanding of a
wide range of electromechanical phenomena. As a consequence, we do not
dwell at length on any area of application.
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With our basic unified approach it is often difficult to distinguish between
those aspects of electromechanics that may be considered research in the
scientific sense and those that represent engineering applications. Forexample,
there are many practical uses for a magnetohydrodynamic flow meter, yet the
type of theoretical model needed in its study is also pertinent to an under-
standing of the origin of the earth's magnetic field as it is generated by motion
of the molten interior of the earth. In fact, a study of magnetohydrodynamics
involves models that are germane to an engineering problem such as the
levitation of a molten metal, an applied physics problem such as plasma
confinement, or a problem of astrophysical interest such as the dynamics of
stellar structures.

The subject of electromechanical dynamics, as we approach it in the
following chapters, provides a foundation for a range of interests that extends
from the purely scientific to engineering applications and from interactions
that occur in systems that can be represented by lumped parameters to those
that need continuum representations.

The selection of appropriate mathematical models for electromechanical
systems is a process that requires the maturity and insight that can result
only from experience with electromechanical phenomena. Of course, the
model chosen depends on the nature of the system being studied and the
accuracy required. We shall not try to develop a formalism for the largely
intuitive process of modeling but rather shall study representative systems
with a variety of mathematical models to illustrate the principal phenomena
that result from electromechanical interactions. In the course of this study
the student should develop facility with the basic models and the mathematical
tools used in their analysis and should acquire the insight into the interrelations
among the physical phenomena that is necessary for him to be able to
develop mathematical models on his own.

1.1 ELECTROMAGNETIC THEORY

The mathematical description of the electrical part of any electromechan-
ical system is based on electromagnetic theory. We therefore assume that the
reader is familiar with the basic theory and in particular with magnetostatics
and electrostatics.

The subject of electromechanics necessarily includes the behavior of
electromagnetic fields in the presence of moving media. In this introductory
chapter it therefore seems appropriate to review the laws of electricity and
magnetism and to include a discussion of those extensions of the theory
required to account for the effects of moving media. This review, however,
would represent a digression from our main purpose--the study of electro-
mechanical dynamics. Consequently a discussion is presented in Appendix B



Introduction

for completeness. We can get well into the study of electromechanical
dynamics with a few simple extensions of magnetostatic and electrostatic
theory. Therefore we cite the electromagnetic equations that form the basis
for our study and start to use them immediately. The equations can be
accepted as postulates, justified by their relation to ordinary magnetostatic
and electrostatic theory and by the fact that they give adequate representation
of the electromechanical systems we shall study. As our work progresses
from the lumped-parameter models in Chapters 2 to 5to situations requiring
continuum models, the physical significance of the field equations in electro-
mechanical interactions will be more apparent. It is at that point that a
meaningful discussion can be made.of the most significant effects of moving
media on electromagnetic fields, and the reader may find that a study of
Appendix B will be most helpful at that time.

1.1.1 Differential Equations

The symbols and units of electromagnetic quantities are defined in Table
1.1. At the outset, we consider two limiting cases of the electromagnetic field
equations, which define the dynamics of quasi-static (almost static) magnetic
and electric field systems. In spite of the restrictions implied by these limits,
our models are adequate for virtually all electromechanical systems of
technical importance. A discussion of the quasi-static approximations, which
shows how both limiting cases come from the more general electromagnetic
theory, is given in Appendix B.

1.1.1a Magnetic Field Systems

The electromagnetic field and source quantities in a magnetic field system
are related by the following partial differential equations:

Vx H = J,, (1.1.1)

V. B = 0, (1.1.2)
V J, = 0, (1.1.3)

B = Po(H + M), (1.1.4)

aBVx E = (1.1.5)
at

Thus in our magnetic field system, even with time-varying sources and
deforming media, the magnetic field intensity H and flux density B are
determined as if the system were magnetostatic. Then the electric field
intensity E is found from the resulting flux density by using (1.1.5). This is
the origin of the term quasi-static magnetic field system. In addition to these
equations, we need constituent relations that describe how the physical



Electromagnetic Theory

Symbols and Units of Electromagnetic Quantities

Field Variable Name

Magnetic field intensity
Free current density
Free surface current density
Magnetic flux density
Magnetization density
Electric field intensity
Electric displacement
Free charge density
Free surface charge density
Polarization density
Force density
Permeability of free space
Permittivity of free space

MKS Rationalized Units

A/im
A/m

2

A/im
Wb/m2
A/m
V/m
C/m 2

C/m 3

C/m2

C/m2
N/m3

47r x 10- 7 H/m
8.854 x 10- 1

2 F/m

properties of the materials affect the field and source quantities. The magneti-
zation density M is introduced to account for the effects of magnetizable
materials. The most common constitutive law for M takes the form

M = XmH, (1.1.6)

where Z, is the magnetic susceptibility. An alternative way of expressing this
relation is to define the permeability ~ = u,(l + X,,), where 1o is the perme-
ability of free space

ou,= 47r x 10- 7 H/m, (1.1.7)

in which case it follows from (1.1.4) that the constitutive law of (1.1.6) can
also be written as

B = uH. (1.1.8)

We shall make considerable use of this simple linear model for magnetizable
materials.

Free currents in a stationary material most often arise from conduction
induced by the electric field according to Ohm's law:

Jf = oE, (1.1.9)

where a is the conductivity (mhos/m). A similar constitutive law relates the
surface current density K, to the electric field intensity E, tangential to the
surface

K, = rsEt, (1.1.10)

where ar is the surface conductivity (mhos). These constitutive laws for the

Table 1.1

Symbol

H

Jf
K,
B
M
E
D
Pf
af

P
F

Eo0
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conduction process represent macroscopic models for the migration of
charges in materials under the influence of an electric field.

Ideally, quasi-static magnetic field systems are characterized by perfectly
conducting (a --* oo) current loops, in which case static conditions (a/at = 0)
result in zero electric field intensity. All practical conductors (except super-
conductors) have finite conductivity; consequently, a system is modeled as a
magnetic field system when the electrical conductivity a for a current loop is
high enough to cause only small departures from the ideal. Thus in Chapter 2
iron structures with coils of wire wound around them are represented as
ideal (electrically lossless) magnetic field systems in which the winding
resistance is included as an external resistance in series with the winding
terminals.

1.1.16 Electric Field Systems

The electromagnetic field and source quantities in an electric field system
are related by the following partial differential equations:

V x E = 0, (1.1.11)

V - D = py, (1.1.12)

D = EoE + P, (1.1.13)

V Jf= a, (1.1.14)at
aD

Vx H = J, + (1.1.15)

Equations 1.1.11 to 1.1.13 describe the fields in an electrostatic system.
Hence in our electric field system, even with time-varying sources and
geometry, the electric field intensity E and electric displacement D are
determined as though the system were static. Then the current density J, is
determined by (1.1.14), which expresses conservation of charge. In turn, the
magnetic field intensity H (if it is of interest) is found from (1.1.15). It is
because of the basically electrostatic relationship between the electric field
intensity and the free charge density that these equations define the dynamics
of a quasi-static electric field system.

Ideally, a quasi-static electric field system is characterized by a set of
perfectly conducting (a - co) equipotentials separated by perfectly insulating
(a - 0) dielectrics, in which case static conditions (alat = 0) result in no
current density J,, hence no magnetic field intensity H. Of course, real di-
electrics have finite conductivity; thus a system is representable as an electric
field system when the electrical conductivity is low enough to cause only a
small departure from the ideal. In terms of the lumped-parameter representa-
tion to be introduced in Chapter 2, an electric field system is modeled as an
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ideal circuit consisting of equipotentials separated by perfect insulators with
resistances connected externally between terminals to account for the finite
conductivity of the dielectric.

In this book the constituent relation for the conduction process usually
takes the form of (1.1.9) or (1.1.10). In electric field systems, however, there
can be appreciable net charge density, and we must be careful to distinguish
between a netflow of charge, which occurs in electrically neutral conductors
such as metals, and aflow ofnet charge,which occurs in situations such as the
drift of negative charge in a vacuum tube. To allow for this differentiation
when it is needed a more general form of the conduction constituent relation
is used:

J, = (p,p++ + p,-u-_)E, (1.1.16)

where pf+ and p,- are the densities of the two species of moving charges
and p+ and I- are the respective mobilities in the field intensity E. When the
charge densities and mobilities are constants, (1.1.16) reduces to (1.1.9).
In some electric field systems p,+ and p,- are not constant, and (1.1.16)
allows us to include the variable charge densities in our conduction model.
As questions appear in this regard, it will be helpful to refer to Sections
B.1.2 and B.3.3.

To account for the polarization density P of a dielectric material, we most
often use the linear relation

P = EOX•E, (1.1.17)

where eo is the permittivity of free space

co = 8.854 x 10-12 F/m (1.1.18)

and X. is the electric susceptibility. In terms of the material permittivity,
S= E(1 + X,) (1.1.17) can also be written

D = EE, (1.1.19)
where (1.1.13) has been used.

1.1.2 Integral Equations

It is often necessary to have the electromagnetic equations in integral form;
for example, boundary conditions are found from integral equations and
terminal quantities-voltage and current-are found by integrating field
quantities.

In stationary systems the contours, surfaces, and volumes are all fixed in
space and the transition from differential to integral equations is simply a
matter of using the appropriate integral theorems. In electromechanical
dynamics we need integral equations for contours, surfaces, and volumes
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that are deforming, and the resulting integral equations are different from
those found in stationary systems. The formalism of integrating differential
equations in the presence of motion is presented in Section B.4. The results
are presented here essentially as postulates.

1.1.2a Magnetic Field Systems

The integral forms of (1.1.1) to (1.1.3) and (1.1.5) are

fH. dl = JJ n da,

B -n da = 0,

fJf -n da = 0,

E'" dl = - dd B - n da.

(1.1.20)

(1.1.21)

(1.1.22)

(1.1.23)

The contours C, surfaces S, and unit normal vectors n are defined in the
conventional manner, as shown in Fig. 1.1.1. The surfaces of integration S

Fig. 1.1.1 (a) Surface S enclosed by the contour C, showing the right-handed relationship
between the normal vector n and the line element dl; (b) surface S enclosing a volume V.
The normal vector n is directed outward, as shown.
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for (1.1.21) and (1.1.22) enclose a volume V, whereas those of (1.1.20) and
(1.1.23) are enclosed by a contour C.

Equations 1.1.20 to 1.1.23 are valid even when the contours and surfaces
are deforming, as demonstrated in Appendix B. Note that in (1.1.23) the
electric field intensity is written as E', and it is this value that would be
measured by an observer attached to the deforming contour at the point in
question. As demonstrated in Section B.4. 1, when E' = E x (v x B), where v
is the local velocity of the contour, (1.1.23) results from (1.1.5). More is said
about the relation between quantities measured by observers in relative
motion in Chapter 6.

In describing magnetic field systems, in addition to (1.1.20) to (1.1.23),
we need constituent relations such as (1.1.8) and (1.1.9). We must keep in
mind that these constituent relations are defined for stationary media. When
there is motion, these equations still hold, but only for an observer moving
with the medium. Thus we know that a perfect conductor can support no
electric field intensity E'. When the contour of (1.1.23) is fixed to a perfect
conductor, the contribution to the contour integral from that portion in the
conductor is zero, whether the conductor is moving or not. This is because
E' is the quantity measured by an observer moving with the contour
(conductor).

1.1.2b Electric Field Systems

The integral forms of (1.1.11) to (1.1.15) are

SE. dl = 0, (1.1.24)

sD .nda = pf dV, (1.1.25)

Jf nda = p dV, (1.1.26)

H' - di = J1 - n da + Df n da. (1.1.27)

These equations are valid for moving and deforming contours C, surfaces S,
and volumes V (see Fig. 1.1.1).

Equations 1.1.24 and 1.1.25 are the same as those used to find E and D
in an electrostatics problem. The current density and magnetic field intensity
have been written in (1.1.26) and (1.1.27) as J; and H' to indicate that they
are the values that would be measured by an observer moving with the
contour or surface at the point in question. It is shown in Section B.4.2 that

1.1.2
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(1.1.26) and (1.1.27) result from integrating (1.1.14) and (1.1.15) when
Jf = J, - pv and H' = H - v x D, where v is the local velocity of the
contour or surface.

1.1.3 Electromagnetic Forces

The force experienced by a test charge q moving with velocity v is

f = qE + qv x B. (1.1.28)

This is referred to as the Lorentz force and provides a definition of the fields
E and B. For this case of a single moving charge the quantity qv constitutes a
current. Hence the first term in (1.1.28) is the force on a static charge, whereas
the second is the force on a current.

In a continuum theory in which we are concerned with a charge density p,
and a current density J, forces are stated in terms of a force density

F = pfE + J, x B. (1.1.29)

Free charge and free current densities are used in (1.1.29) to make it clear
that this expression does not account for forces due to polarization and
magnetization. The terms in (1.1.29) provide a continuum representation of
the terms in (1.1.28). The averaging process required to relate the force
density of (1.1.29) to the Lorentz force is discussed in Sections B.1.1 and
B.1.3. For our present purposes we accept these relations as equivalent
and reserve discussion of the conditions under which this assumption is
valid for Chapter 8.

In the class of problems undertaken in this book one or the other of the
force densities in (1.1.29) is negligible. Hence in the magnetic field systems
to be considered the force density is

F = J, x B, (1.1.30)

whereas in the electric field systems

F = pE. (1.1.31)

In any particular example the validity of these approximations can be tested
after the analysis has been completed by evaluating the force that has been
ignored and comparing it with the force used in the model.

1.2 DISCUSSION

The equations summarized in Table 1.2 are those needed to describe the
electrical side of electromechanical dynamics as presented here. We find that
they are of far-reaching physical significance. Nonetheless, they are approxi-
mate and their regions of validity should be understood. Furthermore, their



Table 1.2 Summary of Quasi-Static Electromagnetic Equations

Differential Equations Integral Equations

Magnetic field system V x H = J, (1.1.1) cH.di =fJ.nda (1.1.20)

V.B=0 (1.1.2) B n da = 0 (1.1.21)

V. Jf = 0 (1.1.3) J. n da = 0 (1.1.22)

aB dtVx E = (1.1.5) E'. dl = -- B. nda (1.1.23)at dt

where E' = E + v x B

Electric field system V x E = 0 (1.1.11) E . dl = 0 (1.1.24)

V. D = p, (1.1.12) S Onda = f,l dV (1.1.25)

V. J- = - -- (1.1.14) J" n da= - pdV (1.1.26)

VX H = J + (1.1.15) H'dl = J n da + D.nda (1.1.27)

where J' = Jf - pv

H'=H- v x D
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relation to more general electromagnetic theory should also be known. Both
topics are discussed in Appendix B. A study of that material may be more
appropriate as questions are raised in the course of the developments to
follow.

With the equations in Table 1.2 accepted on a postulational basis, we
can--and should--proceed forthwith to study electromechanical dynamics.



Chapter 2

LUMPED ELECTROMECHANICAL
ELEMENTS

2.0 INTRODUCTION

The purpose of this chapter is to present the techniques of making mathe-
matical models (writing differential equations) for lumped-parameter
electromechanical systems. In the context used here lumped-parameter
systems are defined as follows: the electromagnetic fields are quasi-static
and electrical terminal properties can be described as functions of a finite
number of electrical variables. Also, the mechanical effects can be described
by a finite number of mechanical variables. Thus the general feature of
lumped-parameter electromechanical systems is that field equations can be
integrated throughout space to obtain ordinary differential equations.

Electrical parts of the systems are treated by circuit theory generalized to
include the effects of electromechanical coupling; the mechanical parts of
the systems are treated by the techniques of rigid body mechanics with
electromechanical forces included.

The approach followed here is best illustrated by considering the block
diagram in Fig. 2.0.1 in which an electromechanical system is separated for
analytical purposes into a purely electrical part, a purely mechanical part,
and a coupling part. The equations that describe the electrical part of the
system are based on Kirchhoff's laws; the equations for the mechanical
part of the system are obtained from Newton's laws and the continuity of
space. Both sets of equations contain electromechanical coupling terms that
arise from the interconnection of the coupling system.

Electrical rme ccal s t Mechanical
network couplingsystem

Fig. 2.0.1 An electromechanical system.

1_1_
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In what follows we review concepts of circuit theory and derive lumped
parameters in a general way to include electromechanical coupling terms.
We then review the concepts of rigid-body mechanics. Electromechanical
coupling is discussed in Chapter 3.

2.1 CIRCUIT THEORY

The mathematical description of a circuit essentially involves two steps.
First, we must be able to describe mathematically the physical properties
of each element in the circuit in order to produce expressions for the terminal
properties of the elements. Second, we must combine the equations for the
elements in a manner prescribed by the interconnections of the elements.
This step is performed by using Kirchhoff's laws and the topology of the
circuit.* Thus we need only to generalize the description of circuit elements
to include the effects of electromechanical interactions.

Conventional circuit theory is the special case of stationary systems in
which quasi-static electromagnetic field theory applies. All the concepts of
circuit theory can be derived from field theoryt; for example, Kirchhoff's
current law is derived from the conservation of charge. When we postulate a
node that is an interconnection of wires at which no charge can accumulate,
the conservation of charge [see (1.1.22) or (1.1.26) with p, = 0] becomes

sJf- n da = 0, (2.1.1)

where the surface S encloses the node. Because current is restricted to the
wires, (2.1.1) yields Kirchhoff's current law

)' i, = 0, (2.1.2)

where ik is the current flowing away from the node on the kth wire.
Kirchhoff's voltage law is obtained by recognizing that a voltage is uniquely

defined only in a region in which the time rate of change of magnetic flux
density is negligible. Thus either (1.1.23) or (1.1.24) becomes

E - dl = 0. (2.1.3)

This leads to the Kirchhoff voltage equation which requires that the sum of
the voltage drops around a closed loop (contour C) be zero,

Iv k = 0, (2.1.4)

* E. A. Guillemin, Introductory CircuitTheory, Wiley, New York, 1953, Chapters 2 and 4.

t Electrical Engineering Staff, M.I.T., Electric Circuits, Technology Press and Wiley, New
York, 1943, Chapters 1 and 2.
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where vk is the voltage drop across the kth element in the loop taken in the
direction of summation.*

In conventional circuit theory there are three basic types of passive
elements: (a) resistances that dissipate electric energy as heat; (b) inductances
that store magnetic energy; and (c) capacitances that store electric energy.
It is a fact of life that electromechanical coupling of practical significance
occurs in elements with appreciable electric or magnetic energy storage.
Consequently, we shall consider electromechanical effects in circuit elements
that are generalizations of the inductances and capacitances of circuit theory.
To be sure, our systems have resistances, but they are treated as purely
electrical circuit elements and considered as external to the coupling network.

We proceed now to generalize the concepts of inductance and capacitance
to include electromechanical effects. As stated before, we wish to obtain
terminal equations suitable for inclusion in a Kirchhoff-law description of a
circuit.

2.1.1 Generalized Inductance

From a field point of view an inductor is a quasi-static magnetic field
system, as defined in Section 1.1.1a. Thus westart with the field description
of a quasi-static magnetic field system and derive the terminal characteristics
when parts of the system are in motion.

First it is essential to recognize that in an ideal, lossless magnetic field
system there is a perfectly conducting path between the two terminals of each
terminal pair, as illustrated schematically in Fig. 2.1.1. We assume that the

magnetic flux

Fig. 2.1.1 Configuration for defining terminal voltage.

* For a discussion of the definition and use of the concept of voltage see Section B.1.4.
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terminal pair is excited by the current source i and that the terminal pair is
in a region of space in which the time rate of change of magnetic flux density
is negligible. This restriction is necessary if we are to be able to describe a
terminal voltage unambiguously. The perfect conductor that connects the
two terminals is often wound into a coil and the coil may encircle an iron
core. The drawing in Fig. 2.1.1 is simplified to illustrate the principles
involved.

We must include the possibility that the perfect conductor in Fig. 2.1.1
is moving. We define a contour C that passes through and is fixed to the
perfect conductor. That portion of the contour which goes from b to a
outside the perfect conductor is fixed and in a region of negligible magnetic
flux density. The terminal voltage v (see Fig. 2.1.1) is defined in the usual
way* as

v = - E dl; (2.1.5)

it is understood that this line integral is evaluated along the path from b to a
that is external to the perfect conductor. We now consider the line integral

E'- dl

around the contour of Fig. 2.1.1. The electric field intensity E' is the field that
an observer will measure when he is fixed with respect to the contour. The
contour is fixed to the perfect conductor, and, by definition, a perfect
conductor can support no electric field.t Consequently, we reach the conclu-
sion that

fE'.dl =fE.dl= -v. (2.1.6)

Thus Faraday's law, (1.1.23) of Table 1.2, yields the terminal voltage

v - B.n da, (2.1.7)
--dt s

where the surface S is enclosed by the contour C in Fig. 2.1.1 and the positive
direction of the normal vector n is defined by the usual right-hand rule, as
shown.

Equation 2.1.7 indicates why the external path from b to a in Fig. 2.1.1
must be in a region of negligible time rate of change of magnetic flux density.
If it is not, the terminal voltage will depend on the location of the external

* See Section B.1.4.
t A more complete discussion of conductors in motion is given in Chapter 6.
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(2.1.8)

and rewrite (2.1.7) as

contour and will not be defined unambiguously. For convenience we define
the flux linkage Aof the circuit as

A= LB.nda

(2.1.9)dJ.
v=-.

dt

In a quasi-static magnetic-field system the magnetic flux density is deter­
mined by (1.1.20) to (1.1.22) of Table 1.2 and a constitutive law,

fcH· dl = f/f· n da, (1.1.20)

fsB. n da = 0, (1.1.21)

f/f. n da = 0, (1.1.22)

B = ,uo(H + M). (1.1.4)

(The differential forms of these equations can also be employed.) In the
solution of any problem the usual procedure is to use (1.1.22) first to relate
the terminal current to current density in the system and then (1.1.20),
(1.1.21), and (1.1.4) to solve for the flux density B. The resulting flux density
is a function of terminal current, material properties (1.1.4), and system
geometry. The use of this result in (2.1.8) shows that the flux linkage A is
also a function only of terminal current, material properties, and system
geometry.

We are interested in evaluating terminal voltage by using (2.1.9); thus we
are interested in time variations of flux linkage A. If we assume that the
system geometry is fixed, except for one movable part whose position can be
described instantaneously by a displacement x with respect to a fixed refer­
ence, and we further assume that M is a function of field quantities alone
(and therefore a function of current), we can write

A = AU, x). (2.1.10)

(2.1.11)

In this expression we have indicated explicit functional dependence only on
those variables (i and x) that may be functions of time.

We can now use (2.1.10) in (2.1.9) and expand the time derivative to obtain

v = dJ, = 0), di + OA dx .
dt oi dt ox dt

This expression illustrates some general terminal properties of magnetic
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field systems. We note that the first term on the right of (2.1.11) is proportional
to di/dt and is the result of changing current. This term can exist when the
system is mechanically stationary and is often referred to as a transformer
voltage. The second term on the right of (2.1.11) is proportional to dx/dt,
which is a mechanical speed. This term exists only when there is relative
motion in the system and is conventionally referred to as a speed voltage.
No matter how many terminal pairs or mechanical displacements a system
may have, the voltage at each terminal pair will have terms of the two types
contained in (2.1.11).

If we now restrict our system (with one electrical terminal pair and one
mechanical displacement) to materials whose magnetization densities are
linear with field quantities, we have an electrically linear system whose flux
linkage can be expressed in terms of an inductance L as

A. = L(x)i. (2.1.12)

(2.1.13)

(2.1.14)

This system is electrically linear because the flux linkage is a .linear function
of current. The variation of flux linkage with geometry, as indicated in
general in (2.1.10), is included in (2.1.12) in the function L(x). When the
flux linkage is written in the form of (2.1.12), the terminal voltage becomes

di . dL dx
v = L(x) - + z - -.

dt dx dt

Once again the first term on the right is the transformer voltage and the
second term is the speed voltage.

In the special case of fixed geometry (x constant) the second term on the
right of (2.1.13) goes to zero and we obtain

di
v=L­

dt'

which is the terminal relation of an inductance that is conventional in linear
circuit theory.

Electromechanical systems often have more than one electrical terminal
pair and more than one mechanical displacement. For such a situation the
process described is still valid. To illustrate this generalization assume a
quasi-static magnetic field system with N electrical terminal pairs and M
mechanical variables that are functions of time. There are N electrical
currents,

and M mechanical displacements,



Because this is a quasi-static magnetic field system, there is a perfectly
conducting path between the two terminals of each terminal pair, as illus-
trated in Fig. 2.1.1. Thus the voltage for any terminal pair is determined by
using the contour for that terminal pair with (2.1.6). Then the flux linkage
for any terminal pair (say the kth) is given by (2.1.8):

k = B - n da, (2.1.15)

where S, is the surface enclosed by the contour used with (2.1.6) to evaluate
voltage v, at the kth terminal pair. The voltage vk is then given by (2.1.7) as

d4
vk - -d (2.1.16)

dt

The fields in this more general situation are again described by (1.1.20) to
(1.1.22) and (1.1.4). Consequently, the generalization of (2.1.10) is

Lk = A 1k(il 1, . .. iN; x 1, 2 . .. XM), (2.1.17)

k= 1,2,..., N.

We can now write the generalization of (2.1.11) by using (2.1.17) in (2.1.16)
to obtain

N a8 di. + a8, dxj
v, =1 1- -, (2.1.18)

J=1 aij dt i=l ax, dt

k=1,2,...,N.

Once again the terms in the first summation are referred to as transformer
voltages and the terms in the second summation are referred to as speed
voltages.

The preceding development has indicated the formalism by which we
obtain lumped-parameter descriptions of quasi-static magnetic field systems.
We have treated ideal lossless systems. In real systems losses are primarily
resistive losses in wires and losses in magnetic materials.* Even though they
may be quite important in system design and operation (efficiency, thermal
limitations, etc.), they usually have little effect on the electromechanical
interactions. Consequently, the effects of losses are accounted for by electrical
resistances external to the lossless electromechanical coupling system.

* Losses in magnetic materials result from hysteresis and eddy currents. For a discussion
of these effects and their mathematical models see Electrical Engineering Staff, M.I.T.,
Magnetic Circuits and Transformers, Technology Press and Wiley, New York, 1943,
Chapters 5, 6, and 13. Eddy currents are discussed in Chapter 7 of this book.

Il~-·---~-·-L
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Example 2.1.1. As an example of the calculation of lumped parameters, consider the
magnetic field system of Fig. 2.1.2. It consists of a fixed structure made of highly permeable
magnetic material with an excitation winding of N turns. A movable plunger, also made of
highly permeable magnetic material, is constrained by a nonmagnetic sleeve to move in
the x-direction. This is the basic configuration used for tripping circuit breakers, operating
valves, and other applications in which a relatively large force is applied to a member that
moves a relatively small distance.*

We wish to calculate the flux linkage Aat the electrical terminal pair (as a function of
current i and displacement x) and the terminal voltage v for specified time variation of i
and x.

To make the analysis of the system of Fig. 2.1.2 more tractable but still quite accurate it
is conventional to make the following assumptions:

1. The permeability of the magnetic material is high enough to be assumed infinite.
2. The air-gap lengths g and x are assumed small compared with transverse dimensions

g << w, x << 2w, so that fringing at the gap edges can be ignored.
3. Leakage flux is assumed negligible; that is, the only appreciable flux passes through

the magnetic material except for gaps g and x.

Needed to solve this problem are the quasi-static magnetic field equations (1.1.20)
through (1.1.22) and (1.1.4).

We first assume that the terminal current is i. Then by using (1.1.22) we establish that
the current at each point along the winding is i. Next, we recognize that the specification
of infinitely permeable magnetic material implies that we can write (1.1.4) as

B = uH

with u --+ o. Thus with finite flux density B the field intensity H is zero inside the magnetic

Depth d
perpendicular

to page

w

Fig. 2.1.2 A magnetic field system.

* A. E. Knowlton, ed., StandardHandbookfor ElectricalEngineers, 9th ed. McGraw-Hill,
New York, 1957, Section 5-39 through 5-52.

N
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material. Thus the only nonzero H occurs in the air gaps g and x, where M = 0, and
(1.1.4) becomes

B = pH.

The use of (1.1.20) with contour (2) in Fig. 2.1.2 shows that the field intensities in the
two gaps g are equal in magnitude and opposite in direction. This is expected from the
symmetry of the system. Denoting the magnitude of the field intensity in the gaps g as H1
and the field intensity in gap x by H2, we can integrate (1.1.20) around contour (1) in Fig.
2.1.2 to obtain

Hig + Hx = Ni, (a)

where H2 is taken positive upward and H1 is taken positive to the right. We now use (1.1.21)
with a surface that encloses the plunger and passes through the gaps to obtain

poH,(2wd) -- p0H(2wd) = 0. (b)

We combine (a) and (b) to obtain

Ni
H, = H = - .g+x

The flux through the center leg of the core is simply the flux crossing the air gap x and is

S= oH2(2wd) = 2wdoNi
g+z

In the absence of leakage flux this same flux links the N-turn winding N times; that is,
when we evaluate

SB-nda

over a surface enclosed by the wire of the N-turn winding, we obtain the flux linkage A as

aN = ~2w (c)g+x

Note that because A is a linear function of i the system is electrically linear and we can
write (c) as

A = L(x)i, (d)
where

L(x) 2wdp°N 2  (e)
g+x

When we assume that the current i and displacement x are specified functions of time,
we can use (d) with (2.1.13) to evaluate the terminal voltage as

2wdpoN 2 di 2wdPoN2i dx
g+z dt (g +x)2 dt

The first term is the transformer voltage that will exist if z is fixed and i is varying. The
second term is the speed voltage that will exist if i is constant and x is varying.

Example 2.1.2. As a second example, consider the system in Fig. 2.1.3 which has two
electrical terminal pairs and the mechanical displacement is rotational. This system consists

~I· ____~1_1_
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Fig. 2.1.3 Doubly excited magnetic field system.

of a fixed annular section of highly permeable magnetic material that is concentric with a
cylindrical piece of the same material of the same axial length. Mounted in axial slots in
the material are coils labeled with the numbers of turns and current directions. The
angular position of the inner structure (rotor) relative to the outer structure (stator) is
indicated by an angle 0 which can vary with time. Current is fed to the coil on the rotor
through sliding contacts (brushes that make contact with slip rings).

The system in Fig. 2.1.3 represents the basic method of construction of many rotating
machines. In our solution we discuss how this configuration is used with some variations
to achieve the lumped parameters desired for rotating-machine operation.

We wish to calculate the two flux linkages Atand A2 as functions of the currents i s and i2
and the angular displacement 0. The voltages at the two terminal pairs are also to be found,
assuming that il, i2,and 0 are specified functions of time.

Electromechanical systems of the type illustrated in Fig. 2.1.3 are normally constructed
with relative dimensions and materials that allow reasonably accurate calculation of lumped
parameters when the following assumptions are made:

1. The permeability of the magnetic material is high enough to be assumed infinite.
2. The radial air-gap length g is small enough compared with the radius R and axial

length I to allow the neglect of fringing fields at the ends and of radial variation of magnetic
field intensity in the air gap.

3. The slots containing the windings are small enough both radially and circumferentially
to perturb the fields a negligible amount; that is, the coils are considered to be infinitely
thin.

Equations 1.1.20 and 1.1.21 are used to write the radial fields in the air gap in terms of the
angular variable # defined in Fig. 2.1.3. If we define the magnetic field as positive when
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directed radially outward and consider 0 < 0 < 7r,

H, - N il - N 2 2 for 0 < < 0,

Nzi1 ± Nzi,H r = N i N 2 , for 0 < < 7,2g

Nji, - N 2 i
Hr = - 2g , for n < <7r +O,

Nji, + N2iH,= - N2 i for 7r + 0 < < 2 r.

The flux linkages with the two windings can be found from the integrals

, =fNIoH,.R do,

A2 = N2PoHrlR do.

Evaluation of these integrals yields

I1= Lli1 + Lmi 2,

A, = Lmi1 + Lzi2 ,
where

L, = N1
2

Lo, L 2 = N2
2Lo,

Lm = LN,N2 ( I--2), for 0< < T,

iPolRp
L 2g

Similar arguments show that for -rT < < 0 the terminal relations have the same form
except that

Lm = LoNiN 2 I + -

Note that only the mutual inductance Lm is a function of angular displacement 0 because
the geometry seen by each coil individually does not change with 0; thus the self-inductances
are constants. The mutual inductance is sketched as a function of 0 in Fig. 2.1.4.

-L oN1 N2

Fig. 2.1.4 Mutual inductance Lm as a function of 0.
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In the design of rotating machines, especially for operation on alternating currents, it is
desirable to have a system similar to that in Fig. 2.1.3 but to modify it in such a way that the
mutual inductance varies cosinusoidally with O(L, = Mcos 0). This is accomplished by
putting additional slots and windings at different positions around the periphery of both
members. By using a proper distribution of slots and numbers of turns the dependence of
L, can be made the cosinusoidal function shown by the dashed curve in Fig. 2.1.4. In many
later examples we assume that this design process has been followed.

When the two currents i. and i, and the angular position 0 are functions of time and the
mutual inductance is expressed as Lm = M cos 0, we can write the terminal voltages as

dir dil di- di
V1 = = L 1 "- + M cos d - i-M sin 0

dt dt dt dt
d)a, di di de

v= L, - + M cos 0 - - ilM sin - .
dt dt dt dt

Note that the first term in each expression is a derivative with a constant coefficient,
whereas the last two terms are derivatives with time-varying coefficients.

So far we have described lumped-parameter magnetic field systems by
expressing the flux linkages as functions of the currents and displacements.
Although this is a natural form for deriving lumped parameters, we shall
find it convenient later to express lumped parameters in different forms. For
example, we often use the lumped parameters in a form that expresses the
current as a function of flux linkages and displacements. Assuming that the
flux linkages are known as functions of currents and displacements, we are
merely required to solve a set of simultaneous algebraic equations.

Consider the situation of an electrically linear system with one electrical
terminal pair and one displacement. The flux linkage for this system has been
described in (2.1.12) and it is a simple matter to solve this expression for i to
obtain

i - (2.1.19)
L(x)

For an electrically linear system with two electrical terminal pairs we can
write the expressions for the two flux linkages as

2x = Lli, + Lmi 2, (2.1.20)

As = Lmii + Lsi2 . (2.1.21)

It is assumed that the three inductances are functions of the mechanical

displacements. Solutions of these equations for i1 and i2 are

, - A, L. 2 A, (2.1.22)
L 1L 2 - Lm. L 1L 2 - Lm2

Lm L,
i2 = Ai+ 2A;. (2.1.23)

LL2 - L.s LIL,- L,
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Fig. 2.1.5 Hard magnetic material magnetized and then demagnetized by the current I.

For the more general (and possibly not electrically linear) case for which
flux linkages are expressed by (2.1.17) we can, at least in theory, solve these
N simultaneous equations to obtain the general functional form

ik = ik(Al, 12,... I AN; X1, X2 , ... .M),

k = 1, 2, ... , N. (2.1.24)

Although we have generalized the concept of inductance to the point
at which we can describe an electrically nonlinear system, the full, nonlinear
expressions are rarely used in the analysis of electromechanical devices.
This is so because devices that involve mechanical motion normally have air
gaps (where the material is electrically linear) and the fields in the air gaps
predominate (see the last two examples). It is worthwhile, however, to
understand the origins of lumped parameters and how to describe nonlinear
systems because there are some devices in which nonlinearities predominate.

In our examples of magnetic field systems we have considered only a
"soft" magnetic material with a flux density (or more accurately a magnetiza-
tion density M) that is ideally a linear function of a magnetic field intensity.
A different type of magnetic material often used in electromechanical systems
is the "hard" or permanent magnet material. In these materials the flux
density is, in general, not given by B = uH. Figure 2.1.5 shows the type of
curve that would result if a hard magnetic material were subjected to a field
intensity H by means of an extremely large current applied as shown.*
When the current (i.e., H) is removed, there is a residual flux density Br.
Then, if the sample is removed from the magnetic circuit and subjected to
other magnetic fields (of limited strength), the B-H curve settles down to
operate about some point such as A in Fig. 2.1.5. To a good approximation
we can often model this relation by the straight line shown in Fig. 2.1.5.

B = pH + Bo. (2.1.25)

* See, for example, Electrical Engineering Staff, M.I.T., op. cit., Chapter 4.

I_ ___~



Lumped Electromechanical Elements

The calculation of terminal relations is now the same as described, except
that in the permanent magnet (2.1.25) is used rather than (1.1.8).

Example 2.1.3. The system shown in Fig. 2.1.2 is excited electrically by removing the
N turns and placing a permanent magnet of length f in the magnetic circuit. Then the
analysis of Example 2.1.1 is altered by the integration of (1.1.20) around the contour 1.
If, in the section of lengthf, the material is characterized by (2.1.25), (a) of Example 2.1.1
is replaced by

fB _ fBHg + H2 ++o, (a)

where B is the flux density in the magnet. Equation 1.1.21, however, again shows that B is
the same in the magnet as it is in each of the air gaps. Hence

B = oHM= oH,2 (b)
and (a) shows that

B-- fB0B fBo (c)(•/lo)(g + X)+f (
Note from (a) that we can replace the permanent magnet with an equivalent current source
I driving N turns, as shown in Fig. 2.1.2, but in which

fB,
NIi=

and in the magnetic circuit there is a magnetic material of permeability p and length f.
This model allows us to compute forces of electrical origin for systems involving permanent
magnets on the same basis as those excited by currents through electrical terminal pairs.

2.1.2 Generalized Capacitance

To derive the terminal characteristics of lumped-parameter electric field
systems we start with the quasi-static equations given in Table 1.2. The
equations we need are (1.1.24) to (1.1.26) and (1.1.13):

E - dl = 0, (1.1.24)

SD.nda = p, dV, (1.1.25)

D = eE + P, (1.1.13)

fJ - n da = - p, dV. (1.1.26)

We can use the differential forms of these equations alternatively, although
the integral forms are more appropriate for the formalism of this section.

It is essential to recognize that an ideal, lossless electric field system consists
of a set of equipotential bodies with no conducting paths between them.



Sq \ Surface S
I/ enclosing
SL / volume V

- Equipotential
bodies

Fig. 2.1.6 A simple electric field system.

Terminals are brought out so that excitation may be applied to the equi-
potential bodies. It is conventional to select one equipotential body as a
reference and designate its voltage as zero. The potentials of the other bodies
are then specified with respect to the reference.

As a simple example of finding the terminal relations for an electric field
system, consider the two equipotential bodies in Fig. 2.1.6. We assume that
the voltage v is impressed between the two equipotential bodies and wish to
find the current i. We choose a surface S (see Fig. 2.1.6) which encloses only
the upper equipotential body and apply the conservation of charge (1.1.26).
The only current density on the surface S occurs where the wire cuts through
it. At this surface there is no free charge density p,, hence J,= JX, so that

J' -n da -i. (2.1.26)

The minus sign results because the normal vector n is directed outward from
the surface.

The total charge q on the upper equipotential body in Fig. 2.1.6 is

q = vp dV, (2.1.27)

where V is a volume that includes the body and is enclosed by the surface S.
Use of the conservation of charge (1.1.26) with (2.1.26) and (2.1.27) yields
the terminal current

dq
S- dq (2.1.28)
dt

Equation 2.1.28 simply expresses the fact that a current i leads to an
accumulation of charge on the body. For a quasi-static system in which we
impose voltage constraints the field quantities and the charge density p,
are determined by (1.1.24), (1.1.25) and (1.1.13), and all are functions of the

_.^____
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applied voltages, the material properties (polarization), and the geometry.
Thus, because (2.1.27) is an integral over space, the charge q is a function of
the applied voltages, material properties, and geometry.

If we again consider the system in Fig. 2.1.6 and specify that the time
variation of the geometry is uniquely specified by a mechanical displacement
x with respect to a fixed reference, we can write the charge in the general
functional form

q = q(v, x). (2.1.29)

In writing the charge in this way we have indicated explicit functional
dependence on only those variables (v and x) that may be functions of time.

We can now use (2.1.29) in (2.1.28) to obtain the terminal current as

iq dv + q dx (2.1.30)
av dt ax dt

The first term exists only when the voltage is changing with time and the
second term exists only when there is relative mechanical motion.

If we consider a system whose polarization density P is a linear function
of field quantities, the system is electricallylinear and the functional depend-
ence of (2.1.29) can be written in the form

q = C(x)v. (2.1.31)

The capacitance C contains the dependence on geometry. For a system whose

charge is expressible by (2.1.31) the terminal current is

dv dC dx
dv + dC dx (2.1.32)i= C(z) + v -- (2.1.32)
dt dx dt

In the special case in which the geometry does not vary with time (x is
constant), (2.1.32) reduces to

i= C dv (2.1.33)
dt

which is the terminal equation used for a capacitance in linear circuit theory.
Now that we have established the formalism for calculating the terminal

properties of lumped-parameter electric field systems by treating the simplest
case, we can, as we did for the magnetic field system in the preceding section,
generalize the equations to describe systems with any number of electrical
terminal pairs and mechanical displacements. We assume a system with
N + 1 equipotential bodies. We select one of them as a reference (zero)
potential and apply voltages to the other N terminals. There are then N
terminal voltages,

V1, v 2, •", UN"
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We assume that there are M mechanical displacements that uniquely specify
the time variation of the geometry

X1, X2, •••, XM"

Although we write these displacements as if they were translational, they can
equally well be rotational (angular).

For the integration of (2.1.26) we select a surface S, that encloses the kth
equipotential body. Then (2.1.27) is integrated over the enclosed volume V,
and the conservation of charge expression (1.1.26) is used to express the
current into the terminal connected to the kth equipotential as

It = d , (2.1.34)
dt

where

qk = p dV. (2.1.35)

Because the system is quasi-static, the fields are functions only of the
applied voltages, the material properties, and the displacements. Thus
we can generalize the functional form of (2.1.29) for our multivariable
problem to

q = qk(vl, v2 ,• . , VN; xx, x2, ... XM), (2.1.36)

k= 1,2,..., N.

From (2.1.36) and (2.1.34), the k'th terminal current follows as

N aqk dv1 m aqk dx1
ik = a+ . d , (2.1.37)

-1 avj dt j=1 ax dt

k=1,2,..., N.

If we specify that our multivariable system is electrically linear (a situation
that occurs when polarization P is a linear function of electric field intensity)
we can write the function of (2.1.36) in the form

N

qk CkJx 1,• 2,..... XM)Vf, (2.1.38)
$=1

k=1,2,... N.

Equations 2.1.36 and 2.1.38 can be inverted to express the voltages as
functions of the charges and displacements. This process was illustrated for
magnetic field systems by (2.1.19) through (2.1.24).

2.1.2
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Volume for relating fields in
S"vacuum and in dielectric-"

Dielectric of _" Conducting plates
permittivity e of area A

Fig. 2.1.7 A parallel-plate capacitor.

Example 2.1.4. Consider the simple parallel-plate capacitor of Fig. 2.1.7. It consists
of two rectangular, parallel highly conducting plates of area A. Between the plates is a
rectangular slab of dielectric material with constant permittivity e,

D = EE.

The lower plate and the dielectric are fixed and the upper plate can move and has the
instantaneous position x with respect to the top of the dielectric. The transverse dimensions
are large compared with the plate separation. Thus fringing fields can be neglected. The
terminal voltage is constrained by the source v which is specified as a function of time.

We wish to calculate the instantaneous charge on the upper plate and the current to
the upper plate.

To solve this problem we need the given relation between D and E, (1.1.24) and (1.1.25),
and the definition of the voltage of point a with respect to point b

v = -jE dl

With the neglect of fringing fields, the field quantities D and E will have only vertical
components. We take them both as being positive upward. In the vacuum space

D, = EOE,
and in the dielectric

Da = EEd.

We assume that the dielectric has no free charge; consequently, we use (1.1.25) with a
rectangular box enclosing the dielectric-vacuum interface as illustrated in Fig. 2.1.7 to
obtain

.oE, = eE .

We now use the expression for the voltage to write

v== Ed' -'f+dE, da'.

Integration of these expressions yields the vacuum electric field intensity

V
E, + (Eo/e)d



We now use (1.1.25) with a rectangular surface enclosing the upper plate to obtain

q = AcoE =-- eAv
x + (eo/)d

As would be expected from the linear constitutive law used in the derivation, the system
is electrically linear. The charge can be expressed as

q = C(x)v,
where

C(X) =
S+ (/e)d"

When voltage v and displacement x are specified functions of time, we can write the
terminal current as

dq E0A dv e0Av dz

dt x + (co%/)d dt [x + (ofe)d] dt '

Note that the first term will exist when the geometry (x) is fixed and the voltage is varying
and that the second term will exist when the voltage is constant and the geometry is varying.
This illustrates once again how mechanical motion can generate a time-varying current.

Example 2.1.5. As an example of a multiply excited electric field system, consider the
system in Fig. 2.1.8 which is essentially a set of three parallel-plate capacitors immersed in
vacuum. Of the three plates, one is fixed and two are movable, as indicated. The dimensions
and variables are defined in Fig. 2.1.8.

We wish to calculate the charges ql and q2 on the two movable plates and the currents i,
and 12to those plates. We neglect fringing at the edges of the plates and assume that the
voltages v1 and v2 are specified.

We designate the electric field intensities in the three regions as EL, E2, and E., with the
positive directions as indicated in Fig. 2.1.8. The electric field intensities have constant

1,91

Fixed plate-

tiq2

Fig. 2.1.8 A multiply excited electric field system.

2.1.2 Circuit Theory
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magnitudes in the three regions; consequently, our definition of voltage applied in the
three regions yields

V1

v 2E2 = - -V

Em V2 - V1
X
1

We now use (1.1.25) with a rectangular surface enclosing the top plate to obtain

ql = -- IwEE 1 - (I,. - x2)weOE,

and with a rectangular box enclosing the right-hand movable plate to obtain

q2 = -l12 •wE2 + (I, - X2)w•OEm.

These two expressions are electrically linear and can be written in the forms

q,= Cjv1 - CmV2, (a)

q2 = -CmV1 + C2v2, (b)
where

Sow[Ill + (1, - x)J
C = (c)x 1

C2 = CEO + ,X2) (d)

CoW(V, - X2)
c, X (e)

x 1

With vj, v2, x 1, and x 2 given as specified functions of time, we can write the terminal
currents as

dv 1 dv 2+ 8C =dVx1 C,CC X acd, d Cm dx,2
il = C, Cm x'+ _-_ t)dt dt a8z dt ar,dt v x( dt X dt'

VdC d+v (Cm dX1 8Cm dC•2 •2 1C2 dx1 C 2 dx 2 \is= -C, + C, - vlV + ,+dt dt ax, dt x 2 dt ) x dt ax2 dt

A comparison of these results with those of the preceding example illustrates how
quickly the expressions become longer and more complex as the numbers of electrical
terminal pairs and mechanical displacements are increased.

2.1.3 Discussion

In the last two sections we specified the process by which we can obtain the
electrical terminal properties of lumped-parameter, magnetic field and
electric field systems. The general forms of the principal equations are
summarized in Table 2.1. The primary purpose of obtaining terminal relations
is to be able to include electromechanical coupling terms when writing circuit
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Table 2.1 Summary of Terminal Variables and Terminal Relations

Magnetic field system Electric field system

Definition of Terminal Variables

Charge

qk = pdV

Voltage

v k = E dl

Terminal Conditions

dt

Ak = 40(i ... iN; geometry)

ik = ik(; ... -• ~N; geometry)

dqk
i dt

qk = qk(vl " VN ; geometry)
Vk = v .(ql " .. qN; geometry)

equations. After a review of rigid-body mechanics and a look at some energy
considerations, we shall address ourselves to the problem of writing coupled
equations of motion for electromechanical systems.

2.2 MECHANICS

We now discuss lumped-parameter modeling of the mechanical parts of
systems. In essence, we shall consider the basic notions of rigid-body me-
chanics, including the forces of electric origin.

Just as in circuit theory, there are two steps in the formulation of equations
of motion for rigid-body mechanical systems. First, we must specify the
kinds of elements and their mathematical descriptions. This is analogous to
defining terminal relations for circuit elements in circuit theory. Next, we
must specify the laws that are used for combining the mathematical descrip-
tions of elements into equations of motion. In mechanics these are Newton's
second law and the continuity of space (often called geometrical compati-
bility) and they are analogous to Kirchhoff's laws in circuit theory.

Ak=f B*nda
Jak

Current

i k f JB"'da

_I__ ·
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In the two sections to follow we first define mechanical elements and then
specify the laws and illustrate the formulation of equations of motion.

2.2.1 Mechanical Elements

In general, a mechanical system, which, for the moment, we define as an
interconnected system of ponderable bodies in relative motion, will exhibit
kinetic energy storage in moving masses, potential energy storage due to
gravitational fields or elastic deformations, and mechanical losses due to
friction of various types. Any component of a system will exhibit all three
effects to varying degrees; as a practical matter of analysis and design,
however, we can often represent mechanical systems as interconnections of
ideal elements, each of which exhibits only one of these effects. This process
is analogous to that of defining ideal circuit elements in circuit theory and
has its justification in derivations from continuum mechanics. These deriva-
tions are not made in a formal way; however, in our treatment of continuum
mechanics in later chapters the connections between the continuum theory
and ideal, lumped-parameter, mechanical elements will become clear.

We consider three types of ideal mechanical elements: (a) elements that
store kinetic energy-for translational systems these are masses and for
rotational systems they are moments of inertia; (b) elements that store
potential energy-for both translational and rotational systems these are
springs; (c) elements that dissipate mechanical energy as heat-for both
translational and rotational systems these are mechanical dampers. We
define the nomenclature by which we describe each element before we
combine them into systems. In the process we introduce the qoncept of
mechanical circuits and mechanical circuit elements, which are simply
pictorial representations of mathematical relations somewhat analogous to
the circuits of electrical systems.* Mechanical circuits are of value for two
reasons: they provide a formalism for writing the equations of motion and
they emphasize the concept of mechanical terminal pairs.

The mechanical variables used in describing mechanical elements and
systems are force and displacement. The displacement is always measured
with respect to a reference position. In a way analogous to that used in circuit
theory, we define ideal mechanical sources.

First, we define a position source as in Fig. 2.2.1. Here we represent a
a simple physical situation in which the motion of the two objects (Fig.
2.2.1a) is restricted to the vertical. Thus there are two mechanical nodes
whose positions x, and x2 are measured with respect to a fixed reference. The

* M. F. Gardner, and J. L. Barnes, Transientsin Linear Systems, Vol. I, Wiley, New York,
1942, Chapter 2. (Various conventions are used for drawing mechanical circuits. One
alternative is given in the above.)
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X2 - X1 = X(t)

Fig. 2.2.1 A position source: (a) physical; (b) schematic.

position source z(t) constrains the relative positions of the two nodes to

X2 - X1 = X(t); (2.2.1)

the sign is determined by the + and - signs associated with the source.
In Fig. 2.2.1b we give the circuit representation of the position source. The
circuit is a pictorial representation of the scalar equation (2.2.1) and as such
is completely analogous to the representations in circuit theory. Because
(2.2.1) is valid regardless of other mechanical elements attached to the nodes,
the ideal position source can supply an arbitrary amount of force.

In a similar way we can define a velocity source v(t) that constrains the
relative velocity of the two nodes to

dx2  dl = v(t). (2.2.2)
dt dt

The circuit is as shown in Fig. 2.2.1b with x replaced by v.
A different kind of ideal mechanical source is a force source for which

nomenclature is given in Fig. 2.2.2. In the physical representation of Fig.
2.2.2a motion is constrained to the vertical and the forcef(t) is vertical. The
position of the arrow indicates the direction of positive force, and the
convention we use here is that, with the arrow as shown and a positivef(t),
the force tends to push the two mechanical nodes apart exactly as if one were
standing on node ax and pushing upward on node X, with the hands. The
circuit representation of this force source is given in Fig. 2.2.2b. In the circuit
our convention is that with the arrow as shown [f(t) positive] the force
tends to increase z 2 and decrease x1.

The sources of Figs. 2.2.1 and 2.2.2 have been specified for translational
systems. We can also specify analogous sources and circuits for rotational

I_
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ft)
4. +

X2 21

-- i•////////////////////// - -

(b)

Fig. 2.2.2 A force source: (a) physical; (b) schematic.

systems. These extensions of our definitions should be clear from Figs. 2.2.3
and 2.2.4, in which 0, and 02 measure the angular displacements of the two
disks, with respect to fixed references, and the torque T is applied between
them.

In the examples we shall consider we shall encounter either pure translation
or rotation about a fixed axis. Consequently, the geometry of motion as
described so far is adequate for our purposes. We now describe ideal, passive,
lumped-parameter, mechanical elements.

2.2.1a The Spring*

An ideal spring is a device with negligible mass and mechanical losses
whose deformation is a single-valued function of the applied force. A linear

1\ •0 = 0

02 - 01= O(t)
0(t)

+ +

02 01

(b)

Fig. 2.2.3 An angular position source: (a) physical; (b) schematic.

* For a comprehensive treatise on the subject see A. M. Wahl, Mechanical Springs, 2nd
ed., McGraw-Hill, New York, 1963.

i
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T(t)
+ +

(b)

Fig. 2.2.4 A torque source: (a) physical; (b)schematic.

ideal spring has deformation proportionalto force. In our treatment we are
concerned almost exclusively with linear springs. We represent a spring
physically as in Fig. 2.2.5a and in mechanical circuits as the symbol of
Fig. 2.2.5b. The forcef at one end of the spring must always be balanced by
an equal and opposite force fat the other end. The force is thus transmitted
through the spring much as current is transmitted through an inductance.
In the circuit of Fig. 2.2.5b the applied forcef is represented as a force source.

The spring of Fig. 2.2.5 has a spring constant K and the force is a linear
function of the relative displacement of the two ends of the spring. Thus

f= K(x2 - 1 - 1), (2.2.3)

where I is the value of the relative displacement for which the force is zero.

I

K, I
X2 x1

(b)

(a)

Fig. 2.2.5 A linear ideal spring for translational motion held in equilibrium by a forcef:
(a) physical system; (b)circuit.
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Fig. 2.2.6 A linear ideal torsional spring: (a) physical system; (b)circuit.

It is always possible, although in many cases not convenient, to define
reference positions for measuring xz and xa such that 1= 0.

We can also have linear ideal torsional springs in rotational systems. The
mathematical and circuit representations are analogous to those of a transla-
tional spring and are evident in Fig. 2.2.6. The torque is a linear function of
the relative angular displacement of the two ends

T = K(02 - 01 - 4). (2.2.4)

Note that the K in (2.2.3) has different dimensions than the K in (2.2.4).

2.2.1b The Mechanical Damper

The mechanical damper is analogous to electrical resistance in that it
dissipates energy as heat. An ideal damper is a device that exhibits no mass
or spring effect and exerts a force that is a function of the relative velocity
between its two nodes. A linear ideal damper has a force proportional to the
relative velocity of the two nodes. In all cases a damper produces a force
that opposes the relative motion of the two nodes.

A linear damper (often called a viscous damper) is usually constructed
in such a way that friction forces result from the viscous drag of a fluid
under laminar flow conditions.* Two examples of viscous dampers, one for
linear and one for rotary motion, are shown in Fig. 2.2.7 along with the
mechanical circuits. Note that the forcef (or torque T) is the force (or torque)
that must be applied by an external agent to produce a positive relative
velocity of the two nodes. For the linear-motion damper the terminal
relation is

d
f = B - (x, - x) (2.2.5)

dt

* For more detail on viscous laminar flow see Chapter 14.
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and for the rotary-motion damper it is analogous (Fig. 2.2.7):

d
T = B - (02 - 00). (2.2.6)

dt

Note that the damping constant B has different dimensions for the two
systems. In each case both displacements are measured with respect to
references that are fixed.

Mechanical friction occurs in a variety of situations under many different
physical conditions. Sometimes friction is unwanted but must be tolerated
and accounted for analytically, as, for example, in bearings, sliding electrical
contacts, and the aerodynamic drag on a moving body. In other cases
friction is desired and is designed into equipment. Examples are vibration
dampers and shock absorbers. Although in some cases a linear model is a
useful approximation, in many others it is inadequate. The subject of friction

VIscous-

2- ")

Equivalent circuit

(a)

Fig. 2.2.7 Mechanical dampers: (a) translational system; (b) rotational system.
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Refer
displi

Fig. 2.2.8 Coulomb friction between members in contact.

is lengthy and complex*; most practical devices, however, can be modeled
as described or by one of two nonlinear models that we now discuss.

The first of these additional models is coulomb friction which is character-
istic of sliding contacts between dry materials. See Fig. 2.2.8 in which the
blocks are assumed to have negligible mass. If we apply constant, equal and
opposite, normal forces f,, as shown, and then apply equal and opposite
forces f, as shown, the blocks may or may not move relatively, depending
on the friction coefficient of the surface. If we vary the force f, which must
be balanced by the friction force f, for steady motion, and measure the
resultant steady relative velocity, we can plot the friction coefficient (f,/f,)
as a function of relative velocity (see Fig. 2.2.9). The quantity z, is the coeffi-
cient of static friction and ,p is the coefficient of sliding friction. When we

Friction coefficient= -
fn

- Ms

10 d(X2 - 1) = relative velocitydt

Fig. 2.2.9 Typical coulomb friction characteristic.

* See, for example, G. W. Van Stanten, Introduction to a Study of Mechanical Vibration,
3rd ed., Macmillan, New York, 1961, Chapter 14.
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- st t~ st
approxunate this curve oy me piecewise
linear dashed line of Fig. 2.2.9, we can
represent coulomb friction mathematically
by the relation

f.Pd(d/dt)(X2 - Xx)f= (d d t) (  
- (2.2.7)

j(d/dt)(zx, - x,)(

It is important to remember that coulomb
friction, like all other forms of friction,
produces a force that tends to oppose the
relative motion of the nodes in the system.

Coulomb friction can also occur in rota-
tional systems, in which case an expression
analogous to (2.2.7) can be used for a math-
ematical description.

The final model of friction that we shall
consider is that resulting primarily from the

ard of a viscous 
flui

*This type of friction can be represented
with fair accuracy by a model that makes
the force (or torque) proportional to the
square of relative velocity (or relative
angular velocity). Such an expression is

f = B,[ (x 2 - x x) . (2.2.8)

Once again the force produced by the
friction opposes the relative mechanical
motion. Two examples in which square-law relative rotation

damping occurs are given in Fig. 2.2.10. (b)
The linear motion damper of Fig. 2.2.10a Fig. 2.2.10 Typical square-law damp-
has the configuration characteristic of ers: (a) orifice and piston damper;
dashpots for making time-delay relays and (b) damping due to rotation.

for automobile shock absorbers. The
square-law rotational damping of Fig. 2.2.10b occurs frequently in high-speed
rotating machines in which the fluid is air or some other gaseous coolant.

2.2.1c The Mass

The final ideal mechanical element we need to consider is the element that
stores kinetic energy but has no spring or damping effects. For translational
* See, for example, H. Schlichting, Boundary Layer Theory, 4th ed., McGraw-Hill, New
York, 1960, Chapter 21.

___·___ _·
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systems this is a mass and for rotational systems a moment of inertia.
After we have reviewed the plane motion of a point mass, we shall generalize
to translation of a rigid body of finite size and to rotation of a rigid body
about a fixed axis.

The motion of a point that has associated with it a constant amount of
mass M is described by Newton's second law*:

f = M dv, (2.2.9)
dt

where f is the force vector acting on the mass point and v is the absolute
vector velocity of the point. It should be clearly recognized that v must be
measured in relation to a fixed or nonaccelerating point or frame of reference.
Such a reference system is called an inertialreference.

In motion occurring on the surface of the earth the earth is often
considered to be approximately an inertial reference and v is measured in
relation to the earth. When dealing with the motion of long-range missiles,
orbital vehicles, and spacecraft, the earth cannot be considered to be a
nonaccelerating reference and velocities are then measured with respect to
the fixed stars.

When the velocity of a mass begins to approach the velocity of light, the
Newtonian equation of motion in the form of (2.2.9) becomes invalid because
the mass of a given particle of matter increases with velocity, according to the
theory of relativity.t The present considerations are limited to velocity levels
small compared with the velocity of light, so that Newton's law (2.2.9) will
apply. This is consistent with the approximations we have made in defining
the quasi-static electromagnetic field equations.

If we now consider the two-dimensional motion of a point mass M, we can
define an orthogonal inertial reference system as in Fig. 2.2.11a and write
Newton's second law in component form as

d2xf,=M (2.2.10)

f= M d (2.2.11)
dt

2 '

We can also represent these two equations by the mechanical circuit of
Fig. 2.2.11b. Each degree of freedom of a point mass M is represented by a
node with mass M. A force that tends to increase the displacement of a

* For a review of the fundamental concepts involved in Newton's laws, see for example
R. R. Long, EngineeringScience Mechanics, Prentice-Hall, Englewood Cliffs, N.J., 1963,
Chapter 2.
t Long, ibid., Chapter 10.
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Inertial reference
(a) (b)

Fig. 2.2.11 Plane motion of a point mass: (a) physical; (b) circuit representation.

node is represented by an arrow pointing toward the node. The extension of
these representations to three-dimensional motion is straightforward.

In order to obtain a representation for a mass element more general than a
point mass, we need to review briefly the dynamics of rigid bodies. We
consider first the translational motion of a rigid body.

A rigid body, by definition, is one in which any line drawn in or on the
body remains constant in length and all angles drawn in or on the body
remain constant. In Fig. 2.2.12 we represent a rigid body with a mass density
p (kilograms per cubic meter) that may vary from point to point in the body
but remains constant in time at any point in the body. We define an inertial
coordinate system (z, y, z) and specify the position vector r of an arbitrary
point p that is fixed in the body.

The instantaneous acceleration of the point p is

d(r
a, - .. (2.2.12)

dt

Fig. 2.2.12 Geometry for analyzing the translation of a rigid body.

2.2.1 Mechanics

- X -
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Thus the infinitesimal element of mass p dV at point p will have an accelera-
tion force

d ' r
df, = p dV . (2.2.13)

dt2

The force df, consists of two components: df from sources external to the
body and dfT from sources within the body. Thus (2.2.13) can be written as

dar
df + df = p dV d • (2.2.14)

dt 2

The mass density associated with each point p in the rigid body is constant.
Hence, when we integrate this expression throughout the volume of the body
and recognize that the internal forces integrate to zero,* we obtain the result

f = M d (2.2.15)
dt

2

where f is the total external force applied to the body,

M = f p dV is a constant and is the total mass of the body,

_ prdV
rm, = is the position vector of the center ofmass ofthe body.

M

From the result of (2.2.15) it is clear that the translational motion of a
rigid body can be described completely by treating the body as if all the mass
were concentrated at the center of mass. Consequently, (2.2.10) and (2.2.11)

* To illustrate that the internal forces integrate to zero consider an ensemble of N inter-
acting particles. An internal force is applied between two particles: fij = -fii, where ft
is the force on the ith particle due to the source connected between the ith and jth particles.
The total internal force on the ith particle is

N

fi= fij'5=1
i-i

The total internal force on the ensemble is

N NN

i=1 i=1 1=1

Because f,, = --fi, we conclude that each term in this summation is canceled by an equal
and opposite term and the net internal force is zero. If we let N - oo, the nature of the
result is unchanged; thus we conclude that the integral of internal forces over the volume of
a rigid body must be zero.
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and rig. Z.2.11, wnicn were aennea tor a point
mass, hold equally well for describing the motion
of the center of mass of a rigid body.

Our rotational examples involve rotation
about a fixed axis only. Thus we treat only the
mechanics of rigid bodies rotating about fixed
axes.* For this purpose we consider the system
of Fig. 2.2.13. The body has mass density p that
may vary with space in the body but at a point
p fixed in the material is constant. We select a
rectangular coordinate system whose z-axis co-
incides with the axis of rotation. The instan-
taneous angular velocity of the body is

dO Fig. 2.2.13 Rigid-body rota-

-= i dt . (2.2.16) tion.

At the point p with coordinates (x, y, z) the element of mass p dV will have
the instantaneous velocity

v = w x r, (2.2.17)

where r = ixx + iy + izz is the radius vector from the origin to the mass
element.

The acceleration force on this mass element is

dfdt V pdVdw x r + x ( xr) , (2.2.18)
dt dt II

where df, contains both internal and external forces [see (2.2.14)] and the
last term has been written by using (2.2.17). We use the identity for the triple
vector product

a x (b x c) = b(a - c) - c(a - b) (2.2.19)

to write (2.2.18) in the form

df, = p dV - x r +± (o . r) - r(t - w) . (2.2.20)
Ldtd

To find the acceleration torque on this mass element we write

dT, = r x df,. (2.2.21)

* For a treatment of the general case of simultaneous translation and rotation in three
dimensions, see, for example, Long, op. cit., Chapter 6.

2.2.1 Mechanics
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Using (2.2.20) in (2.2.21) and simplifying, we find that

dT+dTA = p dV i,(x2 + y2) i[, z 2 d -dt dt' dt)

F d2O d02  1
i t2 zzdz ( L, (2.2.22)

where dT the torque from external sources,

where dT = the torque from external sources,
dT, = the torque from internal sources.

To find the total acceleration torque on the body we must integrate (2.2.22)
throughout the volume V of the body. For this purpose we find it convenient
to define the moment of inertia about the z-axis as

J.= f(z2 + y2)p dV (2.2.23)

and the products of inertia*

J., = xzp dV, (2.2.24)

J,ý = yzp dV. (2.2.25)

When we use these parameters and integrate (2.2.22) throughout the volume
V of the body, the internal torque integrates to zero [see (2.2.14) and (2.2.15)
and the associated footnote for arguments similar to those required here],
and we obtain for the total acceleration torque T applied by external sources

d 20 ix[J d2-2 dO 2 . d20 9 dO\ 2
l

T dt2, -is d) + J, . (2.2.26)

With the restriction to rotation about a fixed axis, only the first term in this
exoression affects the dynamics of the
body. Thus we write the z component of
(2.2.26) as

d2O
T,= Jd (2.2.27)

dt2

and represent this element in a mechanical
circuit as in Fig. 2.2.14. Note that this

Inertial reference circuit has exactly the same form as that
Fig. 2.2.14 Circuit representation adopted earlier for representing mass in a
of a moment of inertia, translational system (see Fig. 2.2.11).

* See, for example, I. H. Shames, Engineering Mechanics, Prentice-Hall, Englewood Cliffs,
N.J., 1960, pp. 187-188.
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The last two terms on the right of (2.2.26) (the x- and y-components)
represent a torque that must be applied by bearings and support structure
to maintain the axis of rotation fixed. It should be clear from the definitions
of the products of inertia in (2.2.24) and (2.2.25) that certain axes of symmetry
make these products of inertia zero. Such axes are called principal axes.*
When rotation occurs about a principal axis (the body is dynamically
balanced), no bearing torque is necessary to maintain the axis of rotation
fixed.

Now that we have completed the definitions of the elements that will make
up the mechanical parts of our electromechanical systems, we have only to
describe how we combine elements to obtain complete equations of motion.

2.2.2 Mechanical Equations of Motion

When electrical circuit elements are interconnected, Kirchhoff's loop and
node relations must be satisfied. The sum of the voltage differences around
any loop must be zero and the sum of all currents into any node must be zero.

Similar relations must hold in networks composed of interconnected ideal
mechanical elements. Consider first a mechanical node. A mechanical node
is a location in a mechanical system which has a certain position relative to a
reference position and a particular mass associated with it. A node appears
in the mechanical circuit as a circle in which two or more terminals of ideal
elements are connected. Figure 2.2.15 shows a simple mechanical system with
one node p having mass M connected to two springs, a damper, and a force
source. The motion of this system is completely specified by one coordinate
x which is the instantaneous position of node p. The system is said to have
one degree of freedom. In general, the number of degrees of freedom in a
mechanical system equals the number of nodes it has.

The forces acting in the passive elements of Fig. 2.2.15a are all vertical
and may be described by the scalar quantities f,, f,, and f 3 and shown also
in the free-body diagram of the mass shown in Fig. 2.2.15b and in the circuit
of Fig. 2.2.15c. The convention used here is that forces are drawn as applied
to the node. The arrow directions on f, f 2, and f 3 are such that when they
are positive they tend to decrease the displacement of the node. Hence they
act out of the node in the circuit. This convention is adopted because we can
express f andf, [see (2.2.3)] as

f, = K1 (x - li) (2.2.28)

f2 = K2( x - 12) (2.2.29)

and can express f [see (2.2.5)] as
dx

f = B d (2.2.30)
dt

* Ibid., pp. 195-197.
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SFixed

t:1flt)
KI

11 1B

fi f3

Mass M

f2 f(t)

(b) (C)

Fig. 2.2.15 System showing forces at a node: (a) system; (b) free body diagram of mass
M; (c) circuit.

Newton's second law (2.2.10) requires that the algebraicsum of allforces
applied to a node in the positive x-direction must equal the accelerationforce
for the mass of the node. For the example in Fig. 2.2.15 this requires that

f(t) - fi - S -f3 M . (2.2.31)
dt2

Note that forces acting in the +x-direction "flow" into the node in Fig.
2.2.15c. Substitution from (2.2.28) through (2.2.30) into (2.2.31) yields the
differential equation

dx d2 x
f(t) - K1(x - 11) - K 2(x - 12) - B = M - . (2.2.32)

dt dt2

Thus, if the system constants are known andf(t) is specified, this differential
equation can be solved to find x(t); (2.2.32) is the equation of motion for the
system in Fig. 2.2.15.
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We can generalize (2.2.31) to describe any mechanical node with mass M
and displacement x and with n forces applied by sources and passive elements.

d 2 X
X fi = M (2.2.33)
i=1 dt "

We must exercise caution to include the correct sign on each force in the
summation.

In a rotational system the nodes have moments of inertia; thus the summa-
tion of torques applied to a node must equal the acceleration torque of the
moment of inertia associated with the node. For a node with n torques
applied the expression is

d20
ST = J . (2.2.34)

c=1 dt "

Once again care must be exercised in attaching the correct sign to each torque
in the summation.

As an example of the application of (2.2.34), consider the rotational
system in Fig. 2.2.16a for which the mechanical circuit is shown in Fig.
2.2.16b.

Reference

Fig. 2.2.16 Rotational mechanical system: (a) system; (b) mechanical circuit.

"I,
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We represent the torques applied to the node in the -- 0-direction by the
passive elements as T, and T,. Reference to (2.2.4) and (2.2.6) shows that
these torques can be expressed as

T, = K(O - a), (2.2.35)

dO
T = B dO (2.2.36)

dt

By use of these expressions with the source and arrow directions in Fig.
2.2.16b (2.2.34) yields the equation of motion

dO d20
T(t) - K(O - a) - B - = J . (2.2.37)

dt dt2

Once again, torques acting in the +0-direction "flow" into the node. When
the constants are known and T(t) is specified, this differential equation can
be used to find the response 0(t).

An important point should be made here. In a mechanical system the
reference or "ground" is usually considered fixed; this is necessary if any
masses are involved. If the reference is fixed and elements are attached to the
reference, it implies that forces not usually considered are available to prevent
the ground point from moving. The surface of the earth, for example, is often
taken as a reference, and although the earth will move a certain amount
when a net force is exerted on it this movement is extremely small and can
be neglected.

Equations 2.2.33 and 2.2.34, which are analogous for our forms of me-
chanical equivalent circuits to Kirchhoff's current law, are used almost exclu-
sively for formulating equations of motion for mechanical systems. A second
relation for mechanical systems analogous to Kirchhoff's voltage law is
seldom used in a formal way but must at all times be satisfied. This second
relation is called geometrical compatibility or continuity of space. To
illustrate this concept with an example we use the system in Fig. 2.2.17. This
system has three mechanical nodes (p, q, and r) whose velocities (v1 , v 2, and
v 3) are measured in relation to the fixed point g.

The mechanical circuit of Fig. 2.2.17b has two independent mechanical
loops. From examination of Fig. 2.2.17a it is evident that the velocity of p
must be equal to the velocity of q, plus the velocity of p relative to q.

vI + (v 2 - v) - v2 = 0. (2.2.38)

This condition, which is identically satisfied, states that in the left-hand loop
of Fig. 2.2.17b the sum of the velocity differences around the loop must be
zero. Similarly, for the right-hand loop of Fig. 2.2.17b

v 2 + (v , - v2) - a= 0. (2.2.39)
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Fig. 2.2.17 Mechanical system and its network diagram: (a) system; (b) mechanical
equivalent circuit.

We can generalize from this example to state that for a mechanical loop
with n elements geometrical compatibility requires that

(vi+ I - vi) = 0, (2.2.40)
d=l

where (v+ 1x - vv) is the velocity difference across the ith element taken
positive in the direction of summation. An equivalent relation for rotational
systems can be obtained by summing angular velocity differences around a
loop.

In establishing the loop equations it is preferable to work with velocity
differences as above. If displacements are used, the geometric compatibility
equations will contain constant terms, such as unstretched lengths of springs,
and will be more complicated than (2.2.40).

As stated earlier, the geometric compatibility relation is not often explicitly
used in formulating equations of motion. Nonetheless, it must be satisfied.

Example 2.2.1. Consider the simplified model of an automobile suspension system
shown in Fig. 2.2.18a. The tire surface is excited by variations in the road surface. We wish
to formulate equations suitable for determining the motion of the auto mass M1 and the
force on the tires.

The mechanical circuit is shown in Fig. 2.2.18b. The road acts as a position source
applied to node 1, as shown. We assume that the references for measuring displacements
of the two springs are chosen so that the equilibrium lengths are zero. In the circuit of

___.
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(b)

Fig. 2.2.18 One-dimensional model of auto suspension: (a)system; (b)equivalent circuit.

Fig. 2.2.18b three passive ideal mechanical elements (excluding masses) appear. The equa-
tions for these ideal elements are

fL = K(x - X2 ), (a)

f2 = B _L (b)
= K1( -dtx). (c)

f3 = Kj(X2 - Xa). (c)



Problems

These equations may be combined at nodes 2 and 3 according to (2.2.33) to eliminate
the forces at those nodes (which are not of interest).

(dX2 dx 3 dx 2
K2(xl - x2) = B dt dt ) + K(x 2 - x3) + M 2 dt2 (d)

Bdt( - d) + K 1 (x2 - x 3 ) = 
M

d
2X (e)

With the specified position source
x1 = x(t), (f)

(d) and (e) can be solved for x 2 and x3 . Then the forcef, applied to the tires by the road can
be found from (a) as

f. =f, = K 2(x - 2)- (g)

Note that the forces acting on the reference in the network diagram do not balance but
equal f,. It is presumed that the force transmitted to the earth by the automobile tires will
not move the earth.

2.3 DISCUSSION

In this chapter we have laid the foundation for studying lumped-parameter
electromechanics by reviewing the derivations of lumped electric circuit
elements, by generalizing the derivations to include the effects of mechan-
ical motion, and by reviewing the basic definitions and techniques of rigid-
body mechanics. The stage is now set to include the electromechanical
coupling network of Fig. 2.0.1 and to study some general properties of
electromechanical systems, including the techniques for obtaining complete
equations of motion.

PROBLEMS

2.1. A piece of infinitely permeable magnetic material completes the magnetic circuit in
Fig. 2P.1 in such a way that it is free to move in the x- or y-direction. Under the assumption
that the air gaps are short compared with their cross-sectional dimensions (i.e., that the
fields are as shown), find I(x, y, i). For what range of x and y is this expression valid?

Depth D into
paper

0

-0
+

x

Fig. 2P.1
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Fig. 2P.2

2.2. Three pieces of infinitely conducting material are arranged as shown in Fig. 2P.2.
The two outer pieces are stationary and are separated by a block of insulating material
of permittivity E. The inner piece is free to rotate an angle 0. The gap g is much less than
the average radius R, which implies that the fields are approximately those of a plane-
parallel geometry. Neglect the fringing fields. Find ql(v1 , v2 , 0), q2(v1, v2, 0).

2.3. The cross section of a cylindrical solenoid used to position the valve mechanism of a
hydraulic control system is shown in Fig. 2P.3. When the currents i4 and i2 are equal, the
plunger is centered horizontally (x = 0). When the coil currents are unbalanced, the plunger
moves a distance x. The nonmagnetic sleeves keep the plunger centered radially. The

Fig. 2P.3

_1~ __~^111
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Problems

displacement x is limited to the range -d < x < d. Show that the electrical terminal
relations are

Al = L11 i, + L12 i2,

A2 = L 1 2i1 + L 22i2 ,
where

L = LO [3 - 2 - x

L,=12 , = -LO

8lo[3+(4 -(x)

What is L0 in terms of the system geometry ?

2.4. (a) Write the differential equation governing the motion of mass M acted on by the
force sourcef and the linear damper with coefficient B (Fig. 2P.4).

(b) Calculate and make a dimensioned sketch of dx/dt and x as functions of time for
t > 0 when the force source is the impulse (uO = unit impulse) f = Iouo(t). (This
is like hitting the mass with a hammer.)

Fig. 2P.4

2.5. (a) Find the response x(t) of the system shown in Fig. 2P.5a to a driving force f(t)
which is
(1) an impulse f(t) = IoUo(t) ,
(2) a step f(t) = Fou_1(t).

0

Fig. 2P.5bFig. 2P.5a
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(b) Find the response z(t) of the system shown in Fig. 2P.5b to a driving displacement
y(t) which is

y(t) = Auo(t),
y(t) = You- (t).

2.6. The mechanical system shown in Fig. 2P.6 is set into motion by a forcing function
f(t). This motion is translational only. The masses M2 and M s slip inside the cans as shown.
Note that the upper can is attached to the mass M1.

(a) Draw the mechanical circuit with nodes and parameters designated.
(b) Write three differential equations in zx,x2, and x3 to describe the motion.

K1

K2

t Ms

x i K3
X2 r

I3 f(t)

All springs have
equilibrium
length Lo

Damping coefficient B2

Damping coefficient B3

Fig. 2P.6

2.7. In the system in Fig. 2P.7 the two springs have zero force when both x1 and x2 are zero.
A mechanical force f is applied to node 2 in the direction shown. Write the equations
governing the motion of the nodes 1 and 2. What are the natural frequencies involved?

f

Fig. 2P.7

2.8. The velocity of the point P shown in Fig. 2P.8 is

dr dO
v = it + i

dt 77'

~t2~'C~L ~//~·/~i~/n///~·//////////////u/////////

7///7////7//7/// X/•V/f////////////•///////////////1///////



Problems

P

Fig. 2P.8

Show that the acceleration is

dv rd A/dO 2 dO dr dO\

dt dt dtr2 +2d
where

IdO\
-r = centripetal acceleration,

dr dO
2 w - = Coriolis acceleration.

Hint. Remember in carrying out the time derivatives that ir and i0 are functions of time. In
fact, you will wish to show that

di, dO di dO
'-•=, " -I .



Chapter 3

LUMPED-PARAMETER

ELECTROMECHANICS

3.0 INTRODUCTION

Having reviewed the derivations of lumped electric circuit elements and
rigid-body mechanical elements and generalized these concepts to allow
inclusion of electromechanical coupling, we are now prepared to study some
of the consequences of this coupling.

In the analysis of lumped-parameter electromechanical systems experience
has shown that sufficient accuracy is obtained in most cases by making a
lossless model of the coupling system. Thus energy methods are used to
provide simple and expeditious techniques for studying the coupling process.

After introducing the method of calculating the energy stored in an
electromechanical coupling field, we present energy methods for obtaining
forces of electric origin. We shall then study the energy conversion process in
coupling systems and finally discuss the formalism of writing equations of
motion for complete electromechanical systems. The techniques for analyzing
the dynamic behavior of lumped-parameter electromechanical systems are
introduced and illustrated in Chapter 5.

3.1 ELECTROMECHANICAL COUPLING

There are four technically important forces of electric origin.

1. The force resulting from an electric field acting on free charge.
2. The force resulting from an electric field acting on polarizable material.
3. The force resulting from a magnetic field acting on a moving free

charge (a current).
4. The force resulting from a magnetic field acting on magnetizable

material.
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K,

(b)

Fig. 3.1.1 (a) A magnetic field electromechanical system; (b) its representation in terms
of terminal pairs. Note that the coupling network does not include mechanical energy
storages (M) or electrically dissipative elements (R).

Because of the restriction of our treatment to quasi-static systems, the
fields that give rise to forces in a particular element are electric or magnetic,
but not both. Thus we can consider separately the forces due to electric
fields and the forces due to magnetic fields.

To illustrate how the coupling can be taken into account suppose the
problem to be considered is the magnetic field system shown in Fig. 3.1.1.
The electromechanical coupling occurs between one electrical terminal
pair with the variables i and A and one mechanical terminal pair composed
of the node x acted on by the electrical forcefe. It has been demonstrated in
Sections 2.1.1 and 2.1.2 that the electrical terminal variables are related by an
electrical terminal relation expressible in the form

A = 2(i, x). (3.1.1)

This relation tells us the value of A, given the values of i and x. We can say,
given the state (i, x) of the magnetic field system enclosed in the box, that the
value of A is known.

We now make a crucial assumption, motivated by the form of the electrical
equation: given the current i and position x, the force of electric origin has a
certain single value

---pll~-11__·

fe =f"(i, x); (3.1.2)



Lumped-Parameter Electromechanics

that is, the forcefe exerted by the system in the box on the mechanical node
is a function of the state (i, x). This is reasonable if the box includes only
those elements that store energy in the magnetic field. Hence all purely
electrical elements (inductors that do not involve x, capacitors, and resistors)
and purely mechanical elements (all masses, springs, and dampers) are
connected to the terminals externally.

Note thatfe is defined as the force of electrical origin applied to the
mechanical node in a direction that tends to increase the relative displacement
x. Because (3.1.1) can be solved for i to yield

i= i(0, x), (3.1.3)

the forcef 6 can also be written as

fe =f'(2, x). (3.1.4)

It is well to remember that the functions of (3.1.2) and (3.1.4) are different
because the variables are different; however, for a particular set of i, A, x
the forcefe will have the same numerical value regardless of the equation used.

In a similar way the mechanical force of electric origin for an electric field
system (see Fig. 3.1.2) can be written as

fe fe(q, x) (3.1.5)
or

f" =fe(v, X). (3.1.6)
q -------------- 1

K
I

(b)

Fig. 3.1.2 (a) An electric field electromechanical system; (b) its representation in terms
of terminal pairs. Note that the coupling network does not include mechanical energy
storage elements (M) or electrically dissipative elements (G).

1
(a)



Electromechanical Coupling

When the mechanical motion is rotational, the same ideas apply. We
replace force f by torque T' and displacement x by angular displacement 0.

Although the systems of Figs. 3.1.1 and 3.1.2 have only one electrical and
one mechanical terminal pair, the discussion can be generalized to any
arbitrary number of terminal pairs. For instance, if an electric field system
has N electrical terminal pairs and M mechanical terminal pairs for which the
terminal relations are specified by (2.1.36), then (3.1.6) is generalized to

fie =fie(V1, i21(v *, VN; X1, X 2 .... XM),
(3.1.7)i= 1,2, .. ,M,

where the subscript i denotes the mechanical terminal pair at which f8 is
applied to the external system by the coupling field. The other forms off can
be generalized in the same way.

The next question to be considered is how to determine the forcef" for a
particular system. One method is to solve the field problem, find force
densities, and then perform a volume integration to find the total force. This
process, described in Chapter 8, supports our assumption that f has the
form of (3.1.2) and (3.1.5). It is often impractical, however, to solve the
field problem. A second method of determining f is experimental; that is,
if the device exists, we can measuref" as a function of the variables (i and x,
2 and x, v and x, or q and x) on which it depends, plot the results, and fit
an analytical curve to obtain a function in closed form. This method also
has obvious disadvantages.

It is shown in the next section that when the electrical terminal relations
are known and the coupling system can be represented as lossless the forcef"
can be found analytically. Because electrical lumped parameters are usually
easier to calculate and/or measure than mechanical forces, this often provides
the most convenient way of determining the mechanical forces of electric
origin fe.

3.1.1 Energy Considerations

It will be useful to study some of the general properties of lossless electric
and magnetic field energy storages that are functions of geometry. In these
considerations we use the conservation of energy (first law of thermodynamics)
repeatedly.

As an example, consider again the magnetic field system of Fig. 3.1.1.
The system symbolically enclosed in the box contains only a magnetic field
whose value and therefore energy storage is affected by both electrical and
mechanical variables. This coupling network is assumed to be lossless, which
means that energy put into the system by the electrical and mechanical
terminal pairs is stored in the magnetic field and can be recovered completely

1114^1~111111111~.~1
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through the terminals. Such a system is often called conservative. We use
lossless and conservative as synonyms.

When the total energy stored in the magnetic field is denoted by W,, the
conservation of power for the system can be written as

dWm dA dx
dW i d- _ fe dx (3.1.8)
dt dt dt

The term dW,m/dt is the time rate of increase in magnetic energy stored, the
term i(d2/dt) is the power input at the electrical terminals, and [--f'(dx/dt)] is
the power input at the mechanical terminals. The minus sign on the me-
chanical power results becausef e is defined as acting on (into) the mechanical
node.

Multiplication of (3.1.8) by dt yields an equation for conservation of
energy

dW, = i dA -fe dx. (3.1.9)

From (3.1.3) and (3.1.4), it is evident that only two of the four variables
(i, A,f •f, x) can be set independently without violating the internal physics
of the system. There are further restrictions that the external mechanical
and electrical systems impose on the terminal pairs of the box (mechanical
and electrical circuit equations). If, however, we think of the coupling net-
work as being temporarily disconnected from the electrical and mechanical
circuits, we can choose two independent variables, say (A, x), which through
the terminal relations stipulate i andfe. Our choice of A and x is motivated by
(3.1.9), which shows how incremental changes in these variables are related
to incremental changes in the magnetic stored energy Wi. The evaluation of
the change in W, when A and/or x are varied by finite amounts requires an
integration of (3.1.9). This is a line integration through variable space. For
the example being considered (Fig. 3.1.1) there are two independent variables
(A, x); thus variable space is two-dimensional, as illustrated in Fig. 3.1.3.
Independence of variables is indicated by orthogonality of axes. Suppose it is

Fig. 3.1.3 Two-dimensional variable space.
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desired to find the change in stored energy when the independent variables are
changed from the point (2a, x,) to the point (2,, x,). To evaluate a line integral
we must specify the path of integration; an infinite number of possible paths
exist between the two points. A property of a conservative system, however,
is that its stored energy is a function of its state (i.e., of the particular values
of Aand x that exist) and does not depend on what succession of variable
values or what path through variable space was used to reach that state. A
consequence of this property is that if the system variables are made to change
along path A from (ZA,xa) to (A,, x,) in Fig. 3.1.3 and then along path B back
to (A2,xa), the net change in stored energy W, during the process is zero.

In a conservative system the change in stored energy between any two
points in variable space is independent of the path of integration. Thus we
can select the path that makes the integration easiest. As an example,
consider the evaluation of the change in energy between points (A, xa) and
(A, xb) in Fig. 3.1.3. Along segment 1-2, di = 0; and along segment 2-3,
dx = 0. Thus, using path C, integration of (3.1.9) takes on the particular form

W,(Ab, xb) - W.(Aa,, xa) = -- j ft (A,, x) dx + f i(A,x,)dA. (3.1.10)

If, alternatively, we wish to evaluate the integral along path D in Fig. 3.1.3,
the result is

W.(2b, Xb) - Wm(Aa2, Xa) =--- i(A, X,) d2 -J f.(2Ab, x) dx. (3.1.11)

The energy difference as evaluated by (3.1.10) and (3.1.11) must, of course,
be the same.

The integrations given in (3.1.10) and (3.1.11) have a simple physical
significance. The integrations of (3.1.10) represent putting energy into the
network in two successive steps. First we put the system together mechanically
(integrate on x) while keeping Aconstant. In general, this operation requires
doing work against the force fe, and this is the contribution of the first
integral in (3.1.10) to the energy stored in the coupling network. Then we put
energy in through the electrical terminals, keeping the geometry (x) fixed.
The second integral is the energy supplied by an electrical source which
provides the excitation A. In (3.1.11) these successive steps are reversed in
order.

We always define electrical terminal pairs that account for the excitation
of all electric or magnetic fields in the system. Then, when the electrical ter-
minal variables are zero (A, = 0 in the present example), we can say that
there is no force of electrical origin. The difference between (3.1.10) and
(3.1.11) with •,= 0 is crucial, for in the first the contribution off' to the
integration is zero[f*(0, x) = 0], whereas in the second we must knowf' to

3.1.1
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carry out the integration; that is, by first integrating on the mechanical
variables and then on the electrical variables we can determine W, from the
electrical terminal relations. Physically, this simply means that if we put the
system together mechanically when no force is required we can account for
all the energy stored by putting it in through the electrical terminal pairs.

An example of a system in which there will be energy stored in the network
and a force of electrical origin even with no external electrical excitation is the
permanent magnet device of Example 2.1.3. In that example, however, it
was shown that we could replace the permanent magnet with an externally
excited terminal pair; hence this case imposes no restriction on our develop-
ment.

We can also study electric field systems using the conservation of energy.
For the example in Fig. 3.1.2, with the electrical energy stored in the system
denoted by We, the conservation of power can be written as

dW, dq dz
-= v -- fq dx -(3.1.12)

dt dt dt

and multiplication by dt yields the conservation of energy

dW. = v dq - f dx. (3.1.13)

A comparison of (3.1.9) and (3.1.13) shows that the description of lossless
magnetic field systems can be used directly for electric field systems by
replacing W,. by We, i by v, and A by q. All the mathematical processes are
exactly the same.

These examples are systems with one electrical and one mechanical
terminal pair. The results can be extended to systems with any arbitrary
number of terminal pairs; for example, consider an electric field system with
N electrical terminal pairs and M rotational mechanical terminal pairs. Then
the conservation of energy can be written as

dW "N dq. m' dO,
_ = -' T. - (3.1.14)

dt i=1 d i-i dt

where vi and q, are the voltage and charge associated with the ith electrical
terminal pair, T,' and O8 are the torque and angular displacement at the ith
mechanical terminal pair, and W, represents the total electric energy stored
in the system.

Multiplication of (3.1.14) by dt yields

N ai

dW, = 1 v, dq, - , T4 dOe. (3.1.15)
i=1 i=1

_~



Electromechanical Coupling

For this system there will be N electrical terminal relations of the general
form

vi = vi(ql, q 2 ., .. ,qN; 01, 02, ... OM); i = 1, 2, ... ,N (3.1.16)

and M mechanical terminal relations

T,* = Tje(qi, q2, - , qN; 01, 02,... , OM); i = 1, 2, ... ,M. (3.1.17)

As a result of the use of (3.1.16) and (3.1.17), (3.1.15) is expressed as a
function of (N + M) independent variables, the N charges and M angles.
Thus the stored energy can be written in general as

W, = W.(ql,q 2 ... , qN; 01, 0 ... M) (3.1.18)

and We can be obtained by integrating (3.1.15) along any convenient path
through the (N + M)-dimensional variable space.

Further generalization of these ideas to magnetic field systems and transla-
tional mechanical terminal pairs is straightforward and is not carried out here
(see Table 3.1). Example 3.1.1 illustrates the line integration that has been
described.

3.1.2 Mechanical Forces of Electric Origin

Now that we have specified the formalism by which we calculate stored
energy, we shall derive mechanical forces of electric origin by using the
conservation of energy.

3.1.2a Force-Energy Relations

To start with a simple example, we consider again the magnetic field system
of Fig. 3.1.1 which was described mathematically by (3.1.3), (3.1.4), and
(3.1.9). From these expressions it is clear that the magnetic stored energy
W, is expressible as a function of the two independent variables A and x.

W. = Wm(, x). (3.1.19)

We shall find that if the system is to be conservative the energy must be a
single-valued function of the independent variables (), x) with finite second
partial derivatives. Making this restriction on W, we can formally take the
total differential of (3.1.19) to obtain

dWm = di + d, (3.1.20)
aA ax

where the partial derivatives are taken by using 2 and x as independent
variables. When (3.1.20) is subtracted from (3.1.9), the result is

0 = i - )dA - f + dx. (3.1.21)

oA (f ax] )

_I



Table 3.1 Energy Relations for an Electromechanical Coupling Network with N Electrical

and M Mechanical Terminal Pairs*

Magnetic Field Systems Electric Field Systems

Conservation of Energy

N i1 N 3
dWm = J i dA, - Z fj e d-z (a) dWe = vj dq, - J fe d-x (b)

i=1 i=1 j=1 3=1

N M N M
dWm = I A, di, + I fje dxj (c) dWe = I qj4dvj + I fje d-x (d)

j=1 j=1 j=1 i=1

Forces of Electric Origin, j = 1 ... , M

e aWn(A.. AN; xl ...... XM) eWe(q .... qN; x 1. X) (f)x1
=ax (e) f - xj(f)

= OW(i ... iN; x1.. XM) (g) e = OW•(v ... VN; X1, hx)M)
'fexj (= (h)

Relation of Energy to Coenergy

N N

W. + W. =- A,i,i (i) W e + W e' = vq (j)
J=1 J=1

Energy and Coenergy from Electrical Terminal Relations

Wm= • i(a 1 ... . . -. ,, 0....0;x....x) d, (k) We -j(ql qj- , q,0 ... 0;x ... )dq (1)

W. P j(i ..... . i, 1, A0 ... 0; 10 .. x1 ) d. (i) We = I q(t 1 .... , I, O,0... ,O x 1 ..... x 1 ) du. (n)

j= j=1 0J

* The mechanical variables A and xj can be regarded as thejth force and displacement or thejth torque Tj and angular displacement 04.
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The variables 2 and x are independent. Thus dA and dx can have arbitrary
values, and the equation must be satisfied by requiring the coefficients of
dA and dx to be zero:

i =w,,(2, x)= , x) (3.1.22)

fe x) (3.1.23)
ax

If the stored energy is known, the electrical and mechanical terminal relations
can now be calculated.

Equations 3.1.22 and 3.1.23 can be generalized to describe a system with
arbitrary numbers of electrical and mechanical terminal pairs (see Table 3.1).
To illustrate this generalization we consider again the electric field system of
Nelectrical terminal pairs and Mrotational terminal pairs which was described
mathematically by (3.1.14) to (3.1.18). We now take the total differential of
(3.1.18),

" aw + M aw,
dW, = _- dq, + _1 dO,. (3.1.24)i=1 aq, i=1 a

Subtraction of (3.1.24) from (3.1.15) yields

0 =1 v•-- dq, -1 T e + -] dO,. (3.1.25)

All N of the q,'s and M of the B,'s are independent. Thus each coefficient of
dq, and dOe must be equal to zero:

v = i = 1,2,..., N, (3.1.26)
aqi

Tie= o, i =1, 2,...M. (3.1.27)

These expressions are generalizations of (3.1.22) and (3.1.23) to describe
systems with arbitrary numbers of terminal pairs. They indicate that when
the stored energy W, is known as a function of the independent variables
all terminal relations can be calculated (see Table 3.1).

It is usually easier in practice to determine the electrical terminal relations
by calculation or measurement than it is to determine the mechanical terminal
relations or the stored energy. We have seen that the electrical terminal
relations are sufficient to evaluate the stored energy if we choose a path of
integration in variable space that keeps electrical excitations zero while
mechanical variables are brought to their final values. Once the stored
energy is known, the forcef e can be calculated as a derivative of the stored

·
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of a coupling system can be determined completely
if the electrical terminal relations are known and the
system is represented by a conservative model.

To illustrate these ideas consider the electric field
system of Fig. 3.1.2 for which the electrical ter-
minal relation is

X J
Fig. 3.1.4 Variable space v = v(q, x). (3.1.28)
for system of Fig. 3.1.2.

The path of integration in the q-x plane to be used
in evaluating stored energy W, is shown in Fig. 3.1.4. If we use (3.1.13),
the energy at point (q, x) is

W.(q, x) = - fe (0, x') dx' + v(q', x) dq'. (3.1.29)

In this expression and in Fig. 3.1.4 the primes denote running variables and
(q, x) represents the fixed end point of the line integration. The first term on
the right of (3.1.29) is zero because fe is the force of interaction between
charges and electric fields, and with no charge (q = 0) f" must be zero. Thus
(3.1.29) can be written for this particular path of integration in the simpler
form

W,(q, x) = fv(q', x) dq'. (3.1.30)

This result can be generalized in a straightforward way to magnetic field
coupling systems, rotational mechanical systems, and multiterminal-pair
systems. The generalized force and energy relations are summarized in Table
3.1. This table is intended to illustrate the generality and interrelations of the
equations. These general equations are not intended for use in the solution of
most problems. The concepts and techniques are simple enough that it is
good practice to start from the conservation of energy and derive the forces
in each problem. In this way we can be certain that fundamental physical
laws are satisfied.

Example 3.1.1. To illustrate the use of this technique consider again the electric field
system that was treated earlier in Example 2.1.5 and represented by Fig. 2.1.8. That figure
is reproduced here as Fig. 3.1.5 for convenience. The electrical terminal relations were
derived in Example 2.1.5 and are expressible in the forms

V1 = S 1(X, X)q1 + Sm(X1, XA)q2, (a)

V2 = Sm(,x, x2)q, + S2 (xl, X2)q2,
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Fig. 3.1.5. Multiply excited electric field system.

where we have solved (a) and (b) of Example 2.1.5 for v1 and vs, and therefore have

C 2
S CC 2 - C.2

SC,

c'.S c - c,;

C1, C2 , and C, are the functions of x1 and z2 given by (c), (d), and (e) of Example 2.1.5.
The system is first assembled mechanically with q1 and q2 zero, during which process no

energy is put into the system. Next, charges q, and q2 are brought to their final values with
x1 and x2 fixed. This step requires an integration along a path in the qr-qa plane. The path
chosen for this example is shown in Fig. 3.1.6. Along this path the running variables
are related by

, q;

thus the necessary integral takes the form

W(q.l, q2, XI,x 2 )= J 1v q', q', x1 , x2x dq2 ;
Path of

intergration

+ V2 q', . q', xz, ldqj . (c) Fig. 3.1.6 Illustrating a path)\q /91 J for line integration in variable
Substitution of (a) and (b) into (c) and evaluation of space for Example 3.1.1.
the integral yields

W,(ql, q2 'X1, X2) = jS1(x1,x2 )qi2 + Sm(xl, x2 )qlq2 + $S2(X1 , x2)q22.

3.1.2
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From this expression we can now evaluate the mechanical forces of electric origin fl and
f2e (mechanical terminal relations); thus

8We 2 S1 aS as2fie(ql,q2,x1, x2) = - = --q1
2 

-- q1 q2 S - 1q2
2 

, (e)

w, 2as asa aass
f2e(q1 , q2, x1, x2) = = -q 2 91q2 a - q22 (f)

Because S1 , S2, and S, are known as functions ofzxand x2 for this example, the derivatives
in (e) and (f) can be calculated; this is straightforward differentiation, however, and is not
carried out here.

3.1.2b Force-Coenergy Relations

So far in the magnetic field examples the flux linkage Ahas been used as the
independent variable, with current i described by the terminal relation.
Similarly, in electric field examples charge q has been used as the independent
variable, with voltage v described by the terminal relation. These choices
were natural because of the form of the conservation of energy equations
(3.1.9) and (3.1.13). Note that in Example 3.1.1 we were required to find
vI(ql, q2) and v,(ql, q2). It would have been more convenient if we had been
able to use ql(v,, v2) and q2(vI, v2 ), for this is the form these equations took in
Example 2.1.5. We consider next how this can be done.

It should be possible to analyze systems using current as the independent
electrical variable for magnetic field systems and voltage as the independent
variable for electric field systems. In fact, it is often more convenient to make
this choice. Alternatively, it is sometimes convenient to use a hybrid set of
variables consisting of both currents and flux linkages in magnetic field
systems and voltages and charges in electric field systems. Such hybrid sets of
variables are used in Chapter 5.

To illustrate this change of independent variables consider once again the
magnetic field system described in Fig. 3.1.1, with the restriction that the
current i is to be used as the independent variable. The conservation of energy
as expressed by (3.1.9) is still a fundamental relation:

dWm = i dA - fe dx. (3.1.9)

The electrical terminal relation is (3.1.1),

A = 2(i, z), (3.1.1)

and the mechanical terminal relation is (3.1.2),

fe =fe(i, X). (3.1.2)

Equation 3.1.9 can be written in a form that involves di and dx by first
using the rule of differentiation,

idA = d(Ai) - Adi. (3.1.31)
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Then the energy equation (3.1.9) is

dW,' = Adi + f" dx, (3.1.32)
where

W, = Ai - W,,. (3.1.33)

The energy equation (3.1.32) now has the required form in which changes
in the function W, are accounted for by changes in the independent variables
(i, x). The function W'(i, x) is called the coenergy and is defined in terms of
the energy Wj,(i, x) and terminal relations A(i, x) by (3.1.33).*

Remember that (3.1.32) physically represents conservation of energy for
the coupling network. The form of this equation is similar to that of (3.1.9)
and our arguments now parallel those of Section 3.1.2a. Because W' =
WA.(i, x),

dW' = W di + W" dx. (3.1.34)
di az

We subtract (3.1.34) from (3.1.32) to obtain

0= - ) d f - dx. (3.1.35)
ai dx' ax

Because di and dx are independent (arbitrary),

A= ', (3.1.36)

f = aW"(i, x) (3.1.37)
ax

If the stored energy (hence coenergy) is known, the electrical and mechanical
terminal relations can be calculated. Comparison of (3.1.37) and (3.1.23)
shows the change in the form of the force expression when the electrical
variable chosen as independent is changed from 2 to i.

The result of (3.1.37) can be generalized to a system with any number of
terminal pairs in a straightforward manner (see Table 3.1). For a magnetic
field system with N electrical terminal pairs and M translational mechanical
terminal pairs the conservation of energy equation becomes

NM

dW, = , i, dij - , fj" dzj. (3.1.38)
1=1 j=1

We now use the generalization of (3.1.31),
N N N

Zij dA, = Xd(ijA) - A2, di1, (3.1.39)
=1 j=i1 I t

* This manipulation, which represents conservation of energy in terms of new independent
variables, is called a Legendre transformation in classical mechanics and thermodynamics.

· _____I
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to replace the first term on the right-hand side of (3.1.38). Rearranging terms,
we obtain

N M

dW~ = As di, + If," dx,, (3.1.40)
1=1 $=1

where
N

W,' = ji - W• (3.1.41)
j=1

and W,' is the coenergy. The independent variables are (iQ,i, .. . N;

x,, x,,.. . ,~Ux). We assume that the A's and W, in (3.1.41) are written in
terms of these variables, hence that W' is a function of these variables. Then

N aw' Maw'dW. = - di, + dx,, (3.1.42)
J=1 ai, -=1 ax,

and when we subtract (3.1.42) from (3.1.40) and require that the coefficient
of each di, and each dxj be zero

aw'
A i= ; j = 1, 2,. N, (3.1.43)ai1

f" = - ' ; j = 1, 2, ... , M. (3.1.44)
axj

This same process of generalization can be carried out for an electric field
system (see Table 3.1); for instance, for the system of N electrical terminal
pairs and M rotational mechanical terminal pairs for which the torque was
found in (3.1.27) the use of the voltage as the independent variable instead
of charge leads to the result

Te = awe'(V',V2, .... VN; 01, 02..... )M)aoi , (3.1.45)a0,
where

N

We' = ,v1 q - We. (3.1.46)
1=1

This expression is obtained by a straightforward process of exactly the same
form as that used for the general magnetic field system (3.1.38) to (3.1.44).

It is not necessary to find the coenergy by first determining the energy;
for example, we can integrate (3.1.32) to find W' just as we integrated
(3.1.9) to find W,. In general, we evaluate W, by selecting a path of integra-
tion through variable space for (3.1.40) that changes the xz's with all electrical
excitations zero and then changes electrical excitations with mechanical
displacements held fixed.

For a better understanding of the meaning of coenergy consider the
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Fig. 3.1.7 Paths of integration in variable space: (a) for evaluating coenergy; (b) for
evaluating energy.

simple electric field system presented earlier in Fig. 3.1.2. The coenergy is
evaluated by the integration of

dW' = q dv + f' dx. (3.1.47)

[This is the energy equation (3.1.13) with v dq = d(vq) - q dv and W' =
qv - W,.] We use the path of integration defined in Fig. 3.1.7a to reduce this
integration to

We' = q(v', x) dv'.

In the case of electrical linearity

and (3.1.48) becomes

It follows that

q(v, x) = C(x)v,

W, = ½Cv2.

(3.1.48)

(3.1.49)

(3.1.50)

(3.1.51)fe -aw(v, x) 2 dC
ax dx

r r

-- - --- --3 X

.. ........ 
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(a) (b)

Fig. 3.1.8 Illustration of energy and coenergy: (a)electrically linear system; (b) electrically
nonlinear system.

We can compare this result with what we find if we integrate (3.1.13)
along the path of Fig. 3.1.7b to find the energy

W~ = v(q', x) dq', (3.1.52)

which from (3.1.49) is
q2

W =(q,2) 2 ) (3.1.53)

Now, when we use (3.1.49) to eliminate q from this expression, we see that
the coenergy and energy are numerically equal. This is a consequence of the
electrical linearity, as may be seen by observing Fig. 3.1.8a, in which (3.1.48)
and (3.1.52) are the areas in the q'-v' plane indicated. (Remember that,
by definition, in our system with one electrical terminal pair W,' + W, = qv.)
When the areas are separated by a straight line (3.1.49), the integrals are
obviously equal. On the other hand, when the areas are not separated by a
straight line, the system is electrically nonlinear and energy and coenergy are
not equal. An example of electrical nonlinearity is shown in Fig. 3.1.8b.

Energy and coenergy have the same numerical values in an electrically
linear system. We have, however, consistently made use of the energy expressed
as a function of (q, x) or (A, x) and the coenergy expressed as a function of
(v, x) or (i, x). These functions are quite different in mathematical form, even
when the system is electrically linear [compare (3.1.50) and (3.1.53)].

A word of caution is called for at this point. A partial derivative is taken
with respect to one independent variable holding the other independent
variables fixed. In order for this process to be correct, it is easiest to perform
the differentiation when the function to be differentiated is written without
explicit dependence on dependent variables. To be more specific, consider

,X)
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the capacitance C(x) of plane parallel plates with area A and spacing x
(Fig. 3.1.2). Then

C(x) - A (3.1.54)

and (3.1.51) gives

f" - .A (3.1.55)
2x

2

The minus sign tells us that fO acts on the upper plate (node) in the (-x)
direction. This we expect, for positive charges on the top plate are attracted
by negative charges on the bottom plate. We can obtain the same result by
using the energy and the translational form of (3.1.27).

f = W(q, x) (3.1.56)
ax

From (3.1.53) and (3.1.54)

f" = (3.1.57)
2Ae

In view of (3.1.49) and (3.1.54) this result and (3.1.55) are identical. Suppose,
however, that we blindly apply (3.1.56) to the energy of (3.1.53) with q
replaced by Cv. The magnitude of the resulting force will be correct, but the
sign will be wrong. For electrically nonlinear systems the magnitude of the
force will also be wrong if the partial differentiation is not carried out
correctly.

The generalized force and coenergy equations are summarized in Table 3.1.
This table is intended to illustrate the generality of the equations and their
interrelations. The general equations are not recommended for use in solving
problems. It is better to rederive the equations in each case to make certain
that fundamental physical laws are satisfied. Equations (k) to (n) in Table
3.1 for evaluating energy and coenergy are written by using a path of integra-
tion that brings each electrical variable from zero to its final value in sequence
j = 1 toj = N.

3.1.2c Reciprocity

The mathematical description of a conservative electromechanical coupling
system must satisfy a reciprocity condition that is a generalization of the
reciprocity conventionally discussed in electric circuit theory.* To illustrate
reciprocity for a simple example, consider the magnetic field system of Fig.
3.1.1 for which the terminal relations are expressed as derivatives of stored

* E. A. Guillemin, Introductory Circuit Theory, Wiley, New York, 1953, pp. 148-150 and
429.

_____·
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energy in (3.1.22) and (3.1.23):

i W(aw , z)a , X) (3.1.22)

f" = w ) (3.1.23)
ax

We now differentiate (3.1.22) with respect to x and (3.1.23) with respect to L.
Then, because

aja. 8xMa2w, a2wa

the reciprocity relation results:

ai(, X) _ af(, x) (3.1.58)
ax N

The process used in obtaining the reciprocity condition (3,1.58) shows that
the condition is necessary for the system to be conservative. This same
condition can also be shown to be sufficient to ensure that the system is
conservative. The proof requires a straightforward but involved integration
and is not carried out here primarily because it is a standard inclusion in some
thermodynamics texts.*

The reciprocity condition of (3.1.58) can be generalized to describe a
conservative system with any number of terminal pairs. Consider again the
electric-field system with N electrical terminal pairs and M rotational me-
chanical terminal pairs whose terminal relations are described by (3.1.26)
and (3.1.27):

vi = (- ; i = 1, 2, . . . , N, (3.1.26)
aq,

T" = -W i = 1, 2 ... , M. (3.1.27)
ao,

When we take appropriate partial derivatives of these equations and recognize
that the order of differentiation is immaterial, we obtain the general reci-
procity conditions:

avi av,v- L i, j = 1, 2, . .. , N, (3.1.59)
aq, aq'

ao, ao,

. . . ., (3.1.61)av M= 1,2,..NMaoi aqj j = 1, 2. M.

See, for instance, W. P. Allis and M. A. Herlin, Thermodynamics and StatisticalMechanics,
McGraw-Hill, 1952, pp. 6-9.

_ ~_ ·
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Note that for an electrically linear system (3.1.59) reduces to Cij = Cji
which is the usual form of the reciprocity relation for linear capacitive
circuits.*

Although the reciprocity conditions must always be satisfied for a con-
servative system, they are not often used in the analysis and design of electro-
mechanical systems. Their primary usefulness is twofold. First, they provide
a rapid check on results to identify certain kinds of mathematical error; and,
second, they provide a mathematical framework for identifying the classes of
nonlinear functions with which we can approximate the terminal relations
of multiterminal-pair, electrically nonlinear, systems. If the reciprocity
conditions are not satisfied, the mathematical description will imply sources
and/or sinks of energy in the coupling field that can lead to nonphysical
results.

3.1.3 Energy Conversion

The fact that in lumped-parameter electromechanics we are dealing with
lossless coupling systems in which stored energy is a state function (single-
valued function of the independent variables) can be quite useful in assessing
energy conversion properties of electromechanical systems. This is especially
true of systems that operate cyclically. For any conservative coupling system
we can write the conservation of energy as

electrical energy] + [mechanical energy] change in (3.1.62)

input input [stored energyi

For a complete cycle of operation, that is, for a situation in which the
independent variables return to the values from which they started, the net
change in stored energy is zero. Thus for a cyclic process (3.1.62) becomesLnetelectrical] net mechanical]

energy input + energy input = 0. (3.1.63)

for one cycle for one cycle

We need to calculate only the electrical or mechanical energy input to find
the net conversion of energy between electrical and mechanical forms.

Example 3.1.2. The device shown schematically in Fig. 3.1.9 is used to illustrate the
energy conversion properties of a cyclically operating system.t It contains a cylindrical
stator of highly permeable magnetic material with polar projections on which coils are
wound. The two coils are connected in series in the polarity shown to form one electrical
terminal pair. This machine also contains a rotor, made of highly permeable magnetic

* Guillemin, loc. cit.
t For more detail on this type of machine (called a two-pole, single-phase, salient-pole
synchronous machine) see Section 4.2.
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ator

Fig. 3.1.9 A rotational magnetic field transducer.

material, which has the shape shown in end view in Fig. 3.1.9 and which can rotate about
the axis with the instantaneous angle 0.

It is determined experimentally that the machine is electrically linear and that the electrical
terminal relation can be approximated by the inductance

L = Lo + L2 sin 20, (a)

where L0 and L, are positive constants and L0 > L2.Note that this inductance is a maximum
at 0 = 7r/4 and 0 = 5 7r/ 4, as we expected, because the air gaps between rotor and stator
iron are smallest for these angles. Also, the inductance is a minimum for 0 = -fr/4 and
0 = 3r/4, in which case the air gaps are largest. In practice, the rotor and stator are shaped
so that the periodic variation of inductance with angle closely approaches the ideal of (a).

With the inductance thus specified, we can write the electrical terminal relation as

A= Li = (Lo + L2 sin 20)i. (b)

We can now use (b) to evaluate the magnetic coenergy by using (m)of Table 3.1,

W =-(L o + L2 sin 20)i2, (c)

and (g) in Table 3.1 to find the torque of electric origin,

aw'
T- i- = L 2i2 cos 20. (d)

We can now represent the electromechanical coupling symbolically, as in Fig. 3.1.10. The
box includes only the magnetic field energy storage of the machine. All purely electrical
properties (winding resistance and losses in the magnetic material) and all purely mechanical
properties (moment of inertia and friction) can be represented as lumped elements connected
externally to the terminals of the coupling system.
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Fig. 3.1.10 Representation of the coupling field of the system in Fig. 3.1.9.

In an actual application there would be lumped electrical and mechanical elements, in
addition to those inherent in the machine, connected to the coupling network. Our purpose
here is to study the energy conversion properties of the coupling system; consequently, we
will excite the terminals with ideal sources and there will be no need to consider passive
elements connected to the terminals.

We now excite the electrical terminal pair of the coupling system with a sinusoidal current
source

i= Icoswt (e)

and the mechanical terminal pair with the position source

0 = cot, (f)
where o is a positive constant. With these terminal constraints and with steady-state
operation, we wish to calculate the electromechanical energy conversion per cycle of
operation.

Because they are constrained independently, current i and angle 0 are the logical choices
as independent variables. We can sketch the path of operation for one cycle in the i-O
plane, as shown in Fig. 3.1.11. Note that 0 = 0 and 0 = 2nrrepresent the same geometry;
thus, although the trajectory in Fig. 3.1.11 does not close on itself, it nonetheless represents
one cycle of operation in which the final physical state is the same as the initial physical
state. The arrows indicate the direction that the operating point travels in the i-O plane.

When we apply (3.1.63) to this system for a complete cycle of operation, we obtain,

-id- T e dO =0, (g)

wherein f indicates an integral around a closed cycle. The first term represents the net

t=0

2Fig.3.1.11Trajectoryofoperatingpointin
Fig. 3.1.11 Trajectory of operating point in i-O plane.

Conservative magnetic field
coupling system

X= (Lo + L sin 20) i
Te= L i2 cos 20

3.1.3
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electrical energy input over a cycle and the second (with the minus sign) represents the net
mechanical energy input. Because there is no net change in stored energy, we need to
calculate only the first or second term to find energy converted. To be thorough in our
study we shall consider both terms.

We first look at the trajectory of the operating point in a A-i plane. We can express it as
two parametric equations (time is the parameter) by using (b) and (e):

A = I(L o + L2 sin 2ot) cos cot,

i = Icos cot.

Alternatively, we can use trigonometric identities* to eliminate t from the two equations
and obtain

A =i[LO -2si (i -1 l2 .

The double-valued character of this equatiofn makes it easier to plot the trajectory by using
the parametric equations (h) and (i). This trajectory is shown in Fig. 3.1.12, plotted for the
relative parameter values

Next, we can look at the trajectory of the operating point in the Te-O plane. We use (d),
(e), and (f) to write

T e = L 21
2 cos2 0 cos 20.

LO1

r 3rtff •,' E

-0.6

-0.8

-1.0

Fig. 3.1.12 Trajectory of operation in the A-i plane for L2 = *L0.

* sin 2ot = 2 sin wt cos wt; sin wt = -/1 - cos2 wt.
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Fig. 3.1.13 Trajectory of operating point in Te-0 plane.

This trajectory is shown in Fig. 3.1.13. Note once again that although the curve does not
close on itself it represents a full cycle of operation because 0 = 0 and 0 = 27r represent the
same state. The direction of travel of the operating point is indicated on the curve.

We can now calculate the energy converted per cycle. First, evaluating

i Ad = net electrical input power,

we can see graphically in Fig. 3.1.12 that the integral of i dA around the trajectory yields the
area enclosed by the loop; furthermore, this area is positive. There is net conversion of
energy from electrical to mechanical form. Under these conditions the machine is operating
as a motor.

We can evaluate the energy converted per cycle by calculating the area enclosed by the
loop in the first quadrant of Fig. 3.1.12 and multiplying the answer by two. This integral
can best be performed parametrically by writing

i -= Icos 0,

A = I(L o + L2 sin 20) cos 0,

dA = (-IL o sin 0 + 2L2 cos 20 cos 0 - L 2I sin 20 sin 0) dO.

Some trigonometric manipulation allows us to put dA in the form

diA = I(-L o sin 6 - 2L2 cos 0 + 4L2 cos3 0 - 2L2 cos 0 sin a 0) dO.

We can now write for the area of the loop in the first quadrant of Fig. 3.1.12

ei/2 r ()/2s s

2= ji(0) dA(O) = 12(-LO sin 0 cos 0 - 2L, cos2 0 + 4L2 cos4 
0

2 -l
- 2L 2 cosO 0 sin2 0) dO,

"" I' -··-

2;

h
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where W. is the energy converted per cycle. Evaluation of this integral yields

W = L212.L2

We can also calculate the mechanical output energy per cycle from

TJ dO = LI
2 cos2 0 cos 20 dO = L21

2
,

which is equal to the electric input energy per cycle as it should be.

The ideas of energy bookkeeping illustrated by Example 3.1.2 can be
extended to systems with arbitrary numbers of terminal pairs. For more than
two variables the graphical representation of operation in variable space
(Fig. 3.1.11) is difficult; it is possible, however, to represent the path of
operation at each terminal pair (Figs. 3.1.12 and 3.1.13). Such techniques
are especially suitable for systems that operate cyclically.

3.2 EQUATIONS OF MOTION

In the preceding sections of this chapter we have described in detail the
various elements that make up lumped-parameter electromechanical systems.
Our approach is to isolate the coupling system (either electric or magnetic
field) and analyze its properties. We can then write Kirchhoff's laws for the
electrical parts of the system by introducing electromechanical coupling
effects through the terminal relations of the coupling system. Similarly, we
write Newton's second law and continuity of space for the mechanical
parts of the system, including electromechanical coupling effects in the
terminal relations of the coupling system. We now present examples in which
our objective is to write the complete equations of motion for electrome-
chanical systems.

Example 3.2.1. We consider again the magnetic field system shown in Fig. 3.2.1. The
electrical terminal relation of the coupling system was calculated in Example 2.1.1. Now we
include the type of electrical and mechanical elements that will normally be present in
applications of this transducer. The resistance R represents the winding resistance plus any
additional series resistance in the external circuit. This system is of the form conventionally
used to actuate relays, valves, etc.; consequently, the source v,(t) is usually a positive or
negative step. The spring K is used to open the gap x to its maximum width when the current
is zero. The linear damper B represents friction between the nonmagnetic sleeve and the
plunger, although in some cases additional damping is added externally either to slow down
the mechanical motion (as in a time-delay relay) or to reduce the bouncing that may occur
when the plunger reaches x = 0.

In Example 2.1.1, with suitable assumptions, the flux linkages of this device were
calculated to be

1 +x ig'
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Fig. 3.2.1 A magnetic field electromechanical system.

where Lo = 2wdioN2 /g is the coil inductance with the variable gap closed (x = 0). We
wish to write the complete equations of motion.

We have a single electrical loop and a single mechanical node; consequently, we can
write two equations in which the current i and displacement x are the dependent variables.

Applying Kirchhoff's voltage law to the electrical loop and using the terminal voltage
of the coupling system as derived in Example 2.1.1, we obtain

Lo di Lo dx
v,(t) = iR + L (b)

1 + xig dt g(1 + xg)2 dt (b)

To write Newton's second law for the mechanical node we need the force of electric
origin. We first write the magnetic coenergy [see (m) in Table 3.1] as

S= A(i', x) di'

and use (a) to write
1 Loi2

W. -I (c)
2 1 + x/g

We now find the force by using (g) in Table 3.1.

1 Loi2

f 2 g= + (d)
2g(1 + x/g)2 "

This is a force source applied to the mechanical node x.
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We can now write Newton's law for the mechanical node as

1 Loi2 dSx dx
1 M + B- + K(x -1). (e)

2g(l + X/g)2 dt2 dt

Equations b and e are the equations of motion for this system. Note that there are two
equations with two dependent variables (unknowns) i and z. The driving function is the
source voltage v,(t). If we specify the explicit variation of v, with time and also specify
initial conditions, we, at least in theory, can solve (b) and (e) for i and x. The dynamic
behavior of this system is studied in Section 5.1.2.

In the above analysis no account has been taken of the two mechanical stops that limit
the mechanical motion. It is easiest to include them as position sources; in practical cases,
however, the stops may also have some elastic effects that result in bouncing of the plunger
at the ends of its travel. If such effects are important, they can be included in a straight-
forward manner.

Example 3.2.2. In this example we wish to consider a system with more than one
electrical terminal pair and more than one mechanical node. For this purpose we use the
basic electric field coupling system of Example 2.1.5, shown in Fig. 3.2.2, along with
suitable external electrical and mechanical elements.

mass M1

Fxced plate

Width w perpendicular
to page

Fig. 3.2.2 Multiply excited electric field-coupled electromechanical system.
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The electrical terminal relations were derived for this system in Example 2.1.5 and are

q = C1V1 - CmV2, (a)

q2 = -Cvi + CAvI, (b)
where

eOW[I1 + (l•m - X2)1
c•=, (c)x 1

C, = C L + 1 ) (d)

C ow(lm - X2)c, w X (e)

We write Kirchhoff's current law for the two electrical nodes as

dqz

i,,(t) = Gav1 + dq. (g)

Using (a) to (e), we express these equations explicitly in terms of the unknowns as

Sow[l1 + (l,. - x2)] dv1  ow(1.r - X2) do2il(t) = Gt + =1 dt X1 dt

Eow[1 + (l, - 4x] dx l  COw dX2 Eow(l - x2) d1  e~ow dx2
, 1- V1 -jl'- +-- Z 2  2 -t + - V2T (h )

X1t2 T1 x , 2  1 1Q X

eow(- - a2) dv, L2 1 -- 2L dv2 + ow(I - X2) d1-
i9(t) = GAvE - + CO 2  X ) d 2

+ow dz2  Eow(lY - ) d 1  ( 1)v d
+ x dt - i  s -- w -+ V , -. (i)

Before we can write equations for the mechanical nodes we must calculate the forces of
electric origin. Because we want the explicit electrical variables to be the voltages, we use
(n) in Table 3.1 to evaluate the coenergy as

W. = Vtj2 + C+VlIeV + C C2 2
2. (j)

We now use (h) in Table 3.1 to evaluate the forces

aw ac. ac, ac,
fo = = JV1

2  +~I-I+1Ua ~~+ l~~2.U;G X vI,
2

1 1--1_11 1
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We carry out the indicated differentiations and include these two forces as sources in
writing Newton's second law for the two mechanical nodes.

O2w[I1 + ('n2A 2•)] eow(l - X2) 2 EOw(I~ - x2)
1X2 1-2 -X 2

d2x, dx,
= M + B, -+ Klz ,s (m)

q%w o._w. io(~ 1\ d2q, dxz-12 %-W 2£ +2 X2 +L (n)
x O 22 1 dt2 dt

Equations (h), (i), (m), and (n) are the four equations of motion for the system in Fig.
3.2.2. Several important aspects of these equations should be examined. First, we note that
all four equations are coupled, that is, each equation contains all four dependent variables.
We also note that there is no external coupling between electrical terminal pairs and between
mechanical terminal pairs; thus all the coupling occurs through the electric fields. We note
further that the coupling between the two mechanical terminal pairs [see (m)and (n)]
results in terms that are functions of mechanical positions and voltages. Thus these
coupling terms appear essentially as nonlinear elements whose properties depend on the
electrical variables (voltages).

3.3 DISCUSSION

In this chapter we have learned some of the general properties of conserva-
tive electromechanical coupling networks. In the process we have indicated
techniques for finding mechanical forces of electric origin once electrical
terminal relations are known. We have also introduced techniques for
studying the energy conversion properties of coupling fields and illustrated
the method of writing complete equations of motion for electromechanical
systems. In Chapter 5 we complete our study of lumped-parameter electro-
mechanical systems by introducing techniques for solving the equations of
motion and by emphasizing some of the more important phenomena that
occur in these systems.

PROBLEMS

3.1. A simple plunger-type solenoid for the operation of relays, valves, etc., is represented
in Fig. 3P.l. Assume that it is a conservative system and that its electrical equation of
state is

1 + x/a

(a) Find the force that must be appliedto the plunger to hold it in equilibrium at a
displacement x and with a current i.
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,-Plunger

ypermeable
iron

Fig. 3P.1

(b) Make a labeled sketch of the force of part (a) as a function of x with constant i.
(c) Make a labeled sketch of the force of part (a) as a function of x with constant A.

3.2. An electrically linear electric field system with two electrical terminal pairs is illustrated
in Fig. 3P.2. The system has the electrical equations of state v1 = S91q1 + S1 92a and

v2 = S21 q + Saq 2 . (See Example 3.1.1 for a physical case of this type.)

(a) Calculate the energy input to the system over each of the three paths A, B, and C
in the q,-q2 plane illustrated in Fig. 3P.2b.

(b) What is the relation between coefficients S1 2 and S21 to make these three values of
energy the same?

(c) Derive the result of (b) by assuming that the system is conservative and applying
reciprocity.

q1 q2

+0- Electric +
vI field V2

-0- system

(a)

Fig. 3P.2

3.3. A slab of dielectric slides between plane parallel electrodes as shown. The dielectric
obeys the constitutive law D = oc(E . E)E + EOE, where Eois the permittivity of free space
and a is a constant. Find the force of electrical origin on the slab. Your answer should take
the formf e =f (v, ).
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Depth d into paper

Fig. 3P.3

3.4. A magnetic circuit, including a movable plunger, is shown in Fig. 3P.4. The circuit is
excited by an N-turn coil and consists of a perfectly permeable yoke and plunger with a
variable air gap x(t) and a fixed nonmagnetic gap d. The system, with the cross section
shown, has a width w into the paper. The following parts lead to a mathematical formulation
of the equations of motion for the mass M, given the excitation I(t).

(a) Find the terminal relation for the flux 2(i, z) linked by the electrical terminal pair.
Ignore fringing in the nonmagnetic gaps. Note that the coil links the flux through
the magnetic material N times.

(b) Find the energy WQ(2, x) stored in the electromechanical coupling. This should
be done by making use of part (a).

(c) Use the energy function Wm(., x) to compute the force of electrical origin f
acting on the plunger.

(d) Write an electrical (circuit) equation of motion involving A and x as the only
dependent variables and I(t) as a driving function.

(e) Write the mechanical equation of motion for the mass. This differential equation
should have Aand x as the only dependent variables, hence taken with the result
of (d) should constitute a mathematical formulation appropriate for analyzing
the system dynamics.

Width w into paper

-Mass M

&

Fig. 3P.4

I

~>lct~ ~RX
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Fig. 3P.5

3.5. A magnetic circuit with a movable element is shown in Fig. 3P.5. With this element
centered, the air gaps have the same length (a). Displacements from this centered position
are denoted by x.

(a) Find the electrical terminal relations Al(il, i2,x) and A2(il, i2,x)in terms of the
parameters defined in the figure.

(b) Compute the coenergy WQ(i1, i2,x) stored in the electromechanical coupling.

3.6. An electrically nonlinear magnetic field coupling network illustrated in Fig. 3P.6 has
the equations of state

_i=I _ _+_,_ f '0Fr)2/P +=J4

o1 + x-a a (1 + x/a)2 j

where I0,Ar,and a are positive constants.

(a) Prove that this system is conservative.
(b) Evaluate the stored energy at the point Ax, x, in variable space.

i fe

+ Magnetic field +
A coupling x

_ system

Fig. 3P.6

+;r-,
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Fig. 3P.7

3.7. The electrical terminal variables of the electromechanical coupling network shown in
Fig. 3P.7 are known to be A2= axi,3 + bxlxpi2 and 22 = bxlx4i 1 + cx2i2 , where a, b, and
c are constants. What is the coenergy Wm(ii, i2 , x1 , x2 ) stored in the coupling network?

3.8. A schematic diagram of a rotating machine with a superconducting rotor (moment of
inertia J) is shown in Fig. 3P.8. Tests have shown that )2 = i1 L1 + izLm cog 0 and A• =
iLm cos 0 + i2L2 , where O(t) is the angular deflection of the shaft to which coil (2) is
attached. The machine is placed in operation as follows:

(a) With the (2) terminals open circuit and the shaft at 0 = 0, I(t) is raised to 10.
(b) Terminals (2) are shorted to conserve the flux 22 regardless of 0(t) or il(t).
(c) I(t) is now made a given driving function.

Write the equation of motion for the shaft. Your answer should be one equation involving
only 0(t) as an unknown. Damping can be ignored.

Normal conducting
stator

Superconducting
rotor

Fig. 3P.8

3.9. The electric terminal variables of the electromechanical coupling system shown in
Fig. 3P.9 are known to be A1 = ax1

2 i,3 + bx 2
2xli2 and 22 = bx2

2 xi + cx2
2 i2

3 , where a,
b, and c are constants.
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coupling
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Fig. 3P.9

+: K (relaxed
xI when xi= 0)

B-0

(a) What is the coenergy W.(il, is,x , x2) stored in the coupling network?
(b) Find the forces f1 and fg.
(c) Write the complete set of equations for the system with the terminal constraints

shown.

3.10. The following equations of state describe the conservative, magnetic field coupling
system of Fig. 3P.10 for the ranges of variables of interest (iQ > 0, is > 0). A~ =
Loi1 + Aili22 and A2 = Ai2i2X + Loi2, where Le and A are positive constants.

(a) Find the force applied by the coupling system on the external mechanical circuit
as a function of i1, is , and x.

(b) Write the complete set of differential equations for the system by using il, i2, and
x as dependent variables.

el (t)

e2(t)

Fig. 3P.10

3.11. Two coils are free to rotate as shown in Fig. 3P.11. Each coil has a moment of inertia
J. Measurements have shown that A, = Lli + Mi, cos 0 cos p and A2 = Mi, cos 0 cos v +
L2i2, where L1 , L2, and Mare constants. Because the system is electrically linear, we know
that the coenergy Wm(iL, is, p, 0) is given by W, = jL/ 1

2 + Mcos 0 cos ryixi + 1L2i4.
The coils are driven by the external circuits, where I, and I. are known functions of time

(a) What are the torques of electrical origin T,' and T2e that the electrical system
exerts on the coils?

(b) Write the complete equations of motion that define 0(t) and i(t).

__·______·
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Fig. 3P.11

3.12. A magnetic field system has three electrical terminal pairs and two mechanical
terminal pairs as shown in Fig. 3P.12. The system is electrically linear and may be described
by the relations A1 = L11i1 + L 12i2 + L1zi3 , )2 = L 21i1 + L,2 i2 + L23i3, and As = L31i1 +
L32'2 + L3 3 3i. Each of the inductances Lj (i = 1, 2, 3; j = 1, 2, 3) may be functions of
the mechanical variables xz and X 2. Prove that if the system is conservative, L1 2 = L2 1,
L1-= Lz1 , and L 2s = L3 2. To do this recall that for a conservative system the energy (or
coenergy) does not depend on the path of integration but only on the end point.

it

+ o-
X1

X2
----

Conservative
magnetic field

coupling system

Fig. 3P.12

---- +

fie x1

f 0e-b

3.13. Electrostatic voltmeters are often constructed as shown in Fig. 3P.13a. N pairs of
pie-shaped plates form the stator and rotor of a variable capacitor (Fig. 3P.13a shows six
pairs of rotor plates and six pairs of stator plates). The rotor plates are attached to a con-
ducting shaft that is free to rotate through an angle 0. In the electrostatic voltmeter a
pointer is attached to this shaft so that the deflection 0 is indicated on a calibrated scale
(not shown).

(a) Determine q(v, 0), where q is the charge on the stator and v is the voltage applied
between the rotor and stator. The device is constructed so that fringing fields
can be ignored and the area of the plates is large compared with the cross section
of the shaft. In addition, it is operated in a region of 0 in which the plates overlap
but not completely.

(b) Find the torque of electrical origin on the rotor.
(c) The shaft is attached to a torsional spring which has the deflection 0 when
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Fig. 3P.13a

subjected to a torque T,, where 0 and T. are related by Tm = K(O - cc). The
shaft has a moment of inertia J and is subject to a damping torque B dO/dt.
Write the torque equation for the shaft.

(d) The circuit of Fig. 3P.13b is attached to the terminals. Write the electrical equation
for the system. [The results of parts (c) and (d) should constitute two equations
in two unknowns.]

V°(t) +••o

Fig. 3P.13b

(e) A "zero adjust" knob on the electrostatic voltmeter is used to set cc in such a
way that a pointer attached to the shaft indicates 0 when 0 = m. A constant
voltage v = Vo is attached to the terminals. What is the static deflection of the
pointer (0 - o ) as a function of Vo?

3.14. A fixed cylindrical capacitor of length L is made of a solid perfectly conducting inner
rod of radius a which is concentric with a perfectly conducting outer shell of radius b.
An annular half cylinder (inner radius a, outer radius b) of dielectric with permittivity e
and length L is free to move along the axis of the capacitor as shown in Fig. 3P.14 (ignore
fringing).

(a) Find the charge on the outer cylinder q = q(v, x), where v is the voltage between
the inner and outer conductors and z is the displacement of the half cylinder of
dielectric (assume L > x > 0).

(b) Write the conservation of power for this system in terms of the terminal voltage
and current, the electric energy stored, the force of electric origin, and the
velocity of the dielectric.

(c) Find the electric energy stored in terms of q and x.
(d) Find the electric coenergy in terms of v and x.
(e) Find the force of electric origin exerted by the fields on the dielectric.

Suppose one end of the dielectric is attached to a spring of constant K, which is relaxed
when x: = 1.

(f) Write the differential equation of motion for the dielectric, assuming that it has
mass M and slides without friction.

(g) If a constant voltage V0 is established between the conductors, find z.

~ _·
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3.15. A magnetic transducer is shown in Fig. 3P.15. A wedge-shaped infinitely permeable
piece of metal is free to rotate through the angle 0 (- (3 - a) < 0 < f3 - a). The angle 0
is the deflection of the wedge center line from the center line of the device. A magnetic
field is produced in regions (1) and (2) by means of the infinitely permeable yoke and the
N-turn winding.

(a) Find A (i, 0). (You may assume that the fringing fields at the radii r = a and
r = b from the origin O are of negligible importance.)

(b) Compute the magnetic coenergy stored in the electromechanical coupling
W' (i, 0).

(c) Use the conservation of energy to find the torque T e exerted by the magnetic
field on the wedge.

(d) The wedge has a moment of inertia J about O and is constrained by a torsion
spring that exerts the torque Tm = KO. Write the equation of motion for the
wedge, assuming that i is a given function of time.

(e) If i = I0 = constant, show that the wedge can be in static equilibrium at 0 = 0.

3.16. A plane electrode is free to move into the region between plane-parallel electrodes,
as shown in Fig. 3P.16. The outer electrodes are at the same potential, whereas the inner
electrode is at a potential determined by the constant voltage source Vo in series with the
output of an amplifier driven by a signal proportional to the displacement of the movable
electrode itself. Hence the voltage of the inner electrode relative to that of the outer
electrodes is v = - Vo + Ax, where A is a given feedback gain. Find the force of electrical
originfe(x). (Note that this force is only a function of position, since the voltage is a known
function of x.)

< a

Amplifier

Fig. 3P.16

3.17. In Fig. 3P.17 we have a slab of magnetic material positioned between three pole

faces. The nonlinear magnetic material is such that the constituent relation is given by
B = ao(H - H)H + p~H, where a is a known constant.

(a) Show that

2 = Lo0 ( + d)I + LoI(1 - )i + Lo i2

and

22 = Lo i1 + L ( I if + Lo I + d) ,

11111_1~~___1_1_1_*~_~*II
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Nturns N turns

A= JMo Nonlinear magnetic material
g << 1,d << I

Depth D into page
Fig. 3P.17

where
tUoN21D

LO= d

and

(b) Determine an expression for the magnetic coenergy W, = W.(ix, iz2x).
(c) What is the force of magnetic originf e acting on the nonlinear magnetic material?

3.18. A slab of dielectric material is positioned between three perfectly conducting plates
shown in Fig. 3P.18. The dielectric is such that the displacement vector D is related to the
electric field E through the relation D = x(E E)E + 0E, where c is a known positive
constant. The slab and adjacent plates have a width (into paper) w.

(a) With the slab at the position x, find the electrical terminal relations. Ignore
fringing fields and assume that the slab is always well within the plates

qr = q,r(vr v, x) and qI = q,(vr, vj, x).

Fig. 3P.18
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(b) Find the electrical coenergy W,(v,, va, T) stored between the plates.
(c) What is the force of electrical origin fO on the slab of dielectric?

3.19. A perfectly conducting plate of length 2ocR and depth D is attached to the end of a
conducting bar that rotates about the axis O, shown in Fig. 3P.19. A pair of conducting
electrodes forms half cylinders, coaxial with the axis O. The gap A << R. We ignore fringing
fields in the present analysis.

Fig. 3P.19

(a) Make a dimensioned plot of the coenergy W(O0, v1 , v) as a function of 0.
(b) Make a dimensioned plot of the torque exerted by the electric fields on the rotor.
(c) In terms of this torque, write a differential equation for O(t). You may assume

that the rotor has an inertia J but is not impeded by a viscous damping force.

3.20. A parallel-plate capacitor has its bottom plate fixed and its top plate free to move
vertically under the influence of the externally applied mechanical force f. A slab of the
dielectric of thickness d is between the plates shown in Fig. 3P.20a. With plate area A and
displacement x, the electrical terminal relation (neglecting fringing fields; see Example
2.1.4) is

eA
q(v, x) = d(+ -I od)v.

(a) The capacitor is charged to a value of charge q = Q and the terminals are open-
circuited. Calculate, sketch, and label the externally applied force f(Q, x)
necessary to hold the plate in equilibrium and the terminal voltage v(Q, x) as
functions of x for the range 0 < z < 2(e/e)d.

(b) A battery of constant voltage V is connected to the terminals of the capacitor.
Calculate, sketch, and label the externally applied force f(V, z) necessary to
hold the plate in equilibrium and the charge q(V, z) as functions of z for the
range 0 < x < 2(%e/e)d.

(c) By the use of suitable electrical and mechanical sources the system of Fig.
3P.20a is made to traverse the closed cycle in q-x plane shown in Fig. 3P.20b in
the direction indicated by the arrows. Calculate the energy converted per cycle
and specify whether the conversion is from electrical to mechanical or vice
versa.

_~L_



(a) (b)
Fig. 3P.20

U X 1 X2

(b)

Fig. 3P.21
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3.21. The magnetic field transducer illustrated schematically in Fig. 3P.21a has a movable
plunger that is constrained to move only in the x-direction. The coupling field is conserv-
ative and electrically linear and has the electrical equation of state

Lei
1 + x/a

where Lo and a are positive constants (see Example 2.1.1).
(a) For any flux linkage A and position x find the external force f (see Fig. 3P.21a),

which must be applied to hold the plunger in static equilibrium.
We now constrain the electrical terminal pair with a voltage source v and the movable
plunger by a position source x in such a way that the system slowly traverses the closed
cycle in the A-x plane illustrated in Fig. 3P.21b.

(b) Sketch and label current i as a function of flux linkage A for the closed cycle of
Fig. 3P.21b.

(c) Sketch and label the force f applied by the position source as a function of x for
closed cycle of Fig. 3P.21b.

(d) Find the energy converted between electrical and mechanical forms for one
traversal of the cycle of Fig. 3P.21b. Specify the direction of flow.

3.22. The system shown in Fig. 3P.22 consists of two thin perfectly conducting plates, one
of which is free to move. The movable plate slides on a perfectly conducting plane. It has
been proposed that energy could be converted from mechanical to electrical form by the
following scheme:
The process is started by holding the plate at x = X b with the switch in position (1). An
external mechanical system moves the plate to x = Xa and holds it there. S is then put in

I2-1
-- ->

Depth D :
movable

h>>x

plate

Xa

Fig. 3P.22

~I__~



102 Lumped-Parameter Electromechanics

position (2) and the mechanical system moves the plate back to x = X, and holds it in
place. S is then reset in position (1) and the cycle is repeated several times.

(a) To convert energyfrom mechanicalto electricalform during each cycle, how must
I, and 12 be related?

(b) Sketch the path of operation in the i-x plane under the conditions of part (a)
and compute the amount of energy converted from mechanical to electrical form
during one cycle.

(c) Sketch carefully the path of operation for one cycle in the A2-plane under the
conditions of part (a). Compute the amount of energy converted from mechanical
to electrical form along each part of the path in the A-x plane.



Chapter 4

ROTATING MACHINES

4.0 INTRODUCTION

The most numerous and the most widely used electromechanical device
in existence is the magnetic field type rotating machine. Rotating machines
occur in many different types, depending on the nature of the electrical and
mechanical systems to be coupled and on the coupling characteristics desired.
The primary purpose of most rotating machines is to convert energy between
electrical and mechanical systems, either for electric power generation or
for the production of mechanical power to do useful tasks. These machines
range in size from motors that consume a fraction of a watt to large generators
that produce 109 W. In spite of the wide variety of types and sizes and of
methods of construction, which vary greatly, most rotating machines fall
into two classes defined by their geometrical structures-namely smooth-air-
gap and salient-pole. The analysis of the electromechanical coupling systems
in rotating machines can thus be reduced to the analysis of two configura-
tions, regardless of the size or type of machine. As is to be expected, some
machines do not fit our classification; they are not numerous, however,
and their analyses can be performed by making simple changes in the models
and techniques presented in this chapter.

After defining the two classes of machine geometry (smooth-air-gap and
salient-pole), we establish the conditions necessary for average power con-
version and use them as a basis for defining different types of machine. We
also derive the equations of motion for the different machine types and solve
them in the steady state to describe the machines' principal characteristics.
The behavior of machines under transient conditions is covered in Chapter 5.

Before starting the treatment of machines it is important to recognize
several significant points. First, as is evident from the treatment, a rotating
machine is but one specific embodiment of a more general class of electro-
mechanical devices defined in Chapter 3, and, as such, is conceptually quite
simple. In a practical configuration, such as a polyphase machine, the



Rotating Machines

number of terminal pairs is great enough to make the mathematical descrip-
tion seem lengthy. In no case should mathematical complexity be mistaken for
conceptual difficulty. The analysis of rotating machines is conceptually simple
and mathematically complex. As our treatment unfolds, it will become clear
that there are geometrical and mathematical symmetries that imply simplifica-
tion techniques. These techniques have been developed to a high degree of
sophistication and are essential in the analysis of machine systems. Because
our interest here is in the basic physical processes, we forego the special
techniques and refer the reader to other texts.*

4.1 SMOOTH-AIR-GAP MACHINES

All rotating machines that fit in the smooth-air-gap classification can be
represented schematically by a physical structure like that shown in end

Stator magnetic axis

slot

rcoil

or tooth
Rotor

Rotor

Rotor to

Fig. 4.1.1a Geometry of smooth-air-gap rotating machine showing distributed windings
on stator and rotor of a single-phase machine.

* See, for example, D. C. White and H. H. Woodson, ElectromechanicalEnergyConversion,
Wiley, New York, 1959, Chapters 4 and 7 to 10.
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view in Fig. 4.1.1a. Pictures of a stator and a rotor Stator axis
that fall into this classification are shown in Figs.
4.1.2 and 4.1.3.

In the structure of Fig. 4.1.1a conductors are laid
in axial slots that face the air gap. The number of
conductors in each slot depends on the type and
size of the machine and varies from 1 in large turbo-
generators to 10 to 12 in small induction machines.
The conductors of one circuit on one member are
in series or series-parallel connection at the ends of
the machine. (Note the end turns in Figs. 4.1.2 and
4.1.3.) The circuits are arranged so that a current
in one winding will produce the antisymmetrical

axis

pattern about an axial plane indicated by the dots
Fig. 4.1.1b Schematic rep-and crosses in Fig. 4.1.1a. This axial plane is the resentation of the induc-

plane of symmetry of the magnetic field produced tors constituting the rotor
by the currents and is therefore called the magnetic and stator windings shown
axis. The stator and rotor magnetic axes are shown in (a).
in Fig. 4.1.1.

The example in Fig. 4.1.1 has only one circuit (winding) on the stator and
one circuit on the rotor. Most machines have more than one circuit on each
member. In this case a slot will usually contain conductors from different
circuits. Nonetheless, the description given fits each circuit on the rotor or
stator.

The rotor is free to rotate and its instantaneous angular position 0 is, by
convention, the displacement of the rotor magnetic axis with respect to the
stator magnetic axis.

The structure of Fig. 4.1. la is called smooth air gap because it can be mod-
eled mathematically with sufficient accuracy by assuming that the magnetic
path seen by each circuit is independent of rotor position. Such a model
neglects the effects of slots and teeth on magnetic path as the angle is changed.
In a real machine (see Figs. 4.1.2 and 4.1.3) the slots and teeth are relatively
smaller than those shown in Fig. 4.1.1a. Moreover, special construction
techniques, such as skewing the slots of one member slightly with respect to
a line parallel to the axis,* minimize these effects. In any case, the essential
properties of a machine can be obtained with good accuracy by using a
smooth-air-gap model, but slot effects are always present as second-order
effects in machine terminal characteristics and as first-order problems to
machine designers.

* For constructional details of rotating machines see, for example, A. E. Knowlton, ed.,
Standard Handbook for Electrical Engineeers, 9th ed., McGraw-Hill, New York, 1957,
Sections 7 and 8. This also includes numerous references to more detailed design treatments.
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Rotating Machines

Fig. 4.1.2 Stator (armature) of an induction motor. This is an example of a smooth-air-
gap stator. (Courtesy of Westinghouse Electric Corporation.)

4.1.1 Differential Equations

In terms of the conventions and nomenclature for lumped-parameter
systems introduced in Chapter 3, the device in Fig. 4.1.1 has magnetic field
electromechanical coupling with two electrical terminal pairs and one
rotational mechanical terminal pair. Thus the coupling system can be
represented symbolically, as in Fig. 4.1.4.

It is conventional practice in machine analysis to assume electrical linearity
(no saturation in stator or rotor magnetic material)*; consequently, the
electrical terminal relations can be written in terms of inductances that can
be functions of the angle 0 (see Section 2.1.1 of Chapter 2). The further
assumption of a smooth air gap indicates that because the field produced by

* Magnetic saturation in machines is quite important, but it is conventionally treated as a
perturbation of the results of an analysis such as we will do. See, for example, White and
Woodson, op. cit., pp. 532-535.
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Fig. 4.1.3 Rotor of a wound-rotor induction machine. This is an example of a smooth-
air-gap rotor. (Courtesy of Westinghouse Electric Corporation.)

each coil is unaffected by rotor position the self-inductances will be inde-
pendent of rotor position and the mutual inductance will depend on rotor
position. Hence the terminal relations for the coupling system of Fig. 4.1.1
as represented symbolically in Fig. 4.1.4 can be written as

2, = L,i, + L,(O)i,, (4.1.1)

2,= L,,(O)i, + Lrir, (4.1.2)

T = i,dL(O) (4.1.3)
dO

where L, and LI are the constant self-inductances, L,,(O) is the angular-
dependent mutual inductance, and the variables (2,, A4,i,, ir, To, 0) are

is

+ 0-

X.

+ 0-.-----
Xr

Lossless magnetic field
system of Fig. 4.1.1

Xs = Lsi, + Lsr(O)ir

Xr = Lar(9)is + Lrir

Teo= Isr dO

Te

------- o++

0

Fig. 4.1.4 Symbolic representation of coupling system in Fig. 4.1.1.

4.1.1



__ 

Rotating Machines

defined in Figs. 4.1.1 and 4.1.4. The torque TO, given by (4.1.3), was derived
by the method of Chapter 3 [(g) in Table 3.1].

From (4.1.1) to (4.1.3) it is clear that we need to know only how the
mutual inductance L,, varies with angle to proceed with an analysis of the
electromechanical coupling in this machine. A similar configuration with
only two slots on the stator and two slots on the rotor was analyzed in
Example 2.1.2 of Chapter 2. With reference to that example and to the
symmetries of the windings in Fig. 4.1.1a, the mutual inductance can be
expressed in the general form

L,,(0) = M1 cos 0 + M3 cos 30 + M. cos 50 + - . (4.1.4)

This is a cosine series containing only odd harmonics. Thus the mutual
inductances at 0 and at -0 are the same, the mutual inductance at (0 + nr)

is the negative of the inductance at 0, and the mutual inductance at (-0 - 1r)
is the negative of the inductance at -0. This symmetry is justified by con-
sidering qualitatively how the flux due to stator current links the rotor
winding as the rotor position is varied.

The winding distribution around the periphery of alternating current
machines is normally designed to enhance the fundamental component of
mutual inductance M1 and to suppress all higher harmonics. The purpose of
this design criterion is to minimize unwanted harmonic current generation
in the machine. On the other hand, in the design of dc machines, other
criteria are used and several of the harmonics of (4.1.4) are present in appreci-
able amounts. Nonetheless, it suffices for the purposes here to assume that
the mutual inductance is represented by the space fundamental term only.
Such an assumption simplifies the analyses, does not eliminate any funda-
mental properties of machines, and can be used as the basis for a complete
analysis, if we assume that all harmonics are present.* Thus for the remainder
of this analysis the mutual inductance L,(0) is specified as

L,(0) = M cos 0. (4.1.5)

and the three terminal relations (4.1.1) to (4.1.3) become

2, = Li, + Mi, cos 0, - (4.1.6)

A, = Mi, cos 0 + L,i,, (4.1.7)

T" = -i,i,M sin 0. (4.1.8)

Before beginning a study of the energy conversion properties of the lossless
coupling part of the machine in Fig. 4.1.1, it would be worthwhile to inquire
into the circuit representation of a machine, including the essential param-
eters of the machine by itself, which are illustrated in the equivalent circuit
of Fig. 4.1.5. On the electrical side the windings have resistances R, and R,

* For the general analysis see White and Woodson, op. cit., Chapter 11.
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Lossless magnetic-field
system of Fig. 4.1.1

X8 = Lsis + Mir cos 0

Xr = Mi, COS 6 + Lrir

T
e

= - isirM sin 0

Jr

+

Br TO,
0 B -1. TmI

iVC

damper damper

Fig. 4.1.5 Equivalent circuit for machine in Fig. 4.1.1.

which are treated as series resistances external to the lossless coupling system.
There are additional losses in the iron (hysteresis and eddy-current losses)
which are not included here because they are usually small enough to be
treated as a simple perturbation.* On the mechanical side the essential

parameters that must be included are the rotor inertia J, and losses that occur
because of friction in bearings and in sliding electrical contacts for exciting
the rotor and because of windage losses due to rotation of the rotor in a gas,
usually air or hydrogen. It is normally sufficient to represent these mechan-
ical losses as a combination of viscous (Br) and coulomb (To,) friction, as
shown in Fig. 4.1.5. The sources included in Fig. 4.1.5, v,, v,, and Tm, are
general. Any or all of them may be independently set or they may be depend-
ent on some variable. They may represent passive loads. In addition, they
can be replaced by other sources, that is, the electrical terminal pairs can be
excited by current sources and the mechanical terminal pair can be excited
by a position or velocity source. The point of including the sources is to
indicate that, in addition to the essential machine parameters, external
circuits must be included before the machine can be made to operate usefully.

Using the equivalent circuit of Fig. 4.1.5, we can write the differential
equations that describe the system:

0, = R i, + - (4.1.9)
dt

vr = Rrir + d (4.1.10)
dt

d20 dO dO/dt
Tm+ Te = Jr d + Br + Tor dOdt (4.1.11)

dt2 dt IdO/dtl

* See, for example, A. E. Fitzgerald and C. Kingsley, Jr., Electric Machinery, 2nd ed.,
McGraw-Hill, New York, 1961, Chapter 7. Although electrical losses can be treated as
perturbations when analyzing the behavior of a machine, these losses are vitally important
in determining the machine's rating because it is set by thermal limitations in transferring
heat generated by losses out of the machine.
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Rotating Machines

Once the sources (or loads) v,, v,, and Tm are defined, these three equations
with the terminal relations (4.1.6) to (4.1.8) form a complete description of
the dynamics of the system, including the machine and the electric and
mechanical circuits connected to it.

4.1.2 Conditions for Conversion of Average Power

We next consider the problem of finding the conditions under which the
electromechanical coupling system of the machine in Fig. 4.1.1 can convert
average power between the electrical and mechanical systems. For this
problem a steady-state analysis of the coupling system in Fig. 4.1.4 with ideal
sources will suffice. Once the conditions are established, the analysis can be
generalized to include nonideal sources and transient conditions.

For this problem the coupling system of Fig. 4.1.4 will be excited by the
ideal sources indicated in Fig. 4.1.6. The specific time dependences of these
sources are

i,(t) = I. sin c,t, (4.1.12)

i,(t) = I,sin ,t, (4.1.13)

0(t) = Wot + y, (4.1.14)

where I,s ,Ir, s, to,, and y are positive constants and t is the time.
We now ask for the conditions under which the machine with the steady-

state excitations of (4.1.12) to (4.1.14) can convert average power between the
electrical and mechanical systems. To find these conditions we evaluate the
instantaneous power p, flowing from the coupling system into the position
source

dO
P. = T - Teom. (4.1.15)

dt

Then substitution from (4.1.12) and (4.1.13) into (4.1.8) and of that result
into (4.1.15) yield

p, = -mosl,M sin o,t sin w,t sin (ot + y). (4.1.16)

is

ii.

ir-)

Lossless coupling system
for machine in Fig. 4.1.1

Te

.+ +

Fig. 4.1.6 Excitations used in derivation of conditions for average power conversion.
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To ascertain under what conditions this power can have an average value,
trigonometric identities* are used to put (4.1.16) in the form

Pm CIIM (sin [(wu + o, - )t + y] + sin [(o - o, + co)t + y]
4

- sin [(cow + co, + w,.)t + y] - sin [((W, - ow,- co,)t + y]}. (4.1.17)

Because a sinusoidal function of time has no average value, (4.1.17) can have
a time-average value only when one of the coefficients of t is zero. These
four conditions, which cannot in general be satisfied simultaneously, can be
written in the compact form

, = +, ± Cv,; (4.1.18)
for example, when

(, = -W(, + W,

wmlsIrM
pm(av) = sin y,

4
and, when

,M= CO, + Or,

pm(av) = sin y.
4

It is evident from these expressions that a necessary condition for average
power conversion is the frequency condition of (4.1.18). Sufficient conditions
for average power conversion are (4.1.18) and sin y # 0.

As a result of this analysis, we can state that the whole field of machine
theory for smooth-air-gap machines is concerned with how to satisfy the
frequency condition of (4.1.18) with the available electrical and/or mechan-
ical sources to obtain the machine characteristics needed for a particular
application. It is just this process that has led to the several different machine
types presently used. The frequency relations provide the starting point in the
invention of new machine types for unusual applications.

4.1.3 Two-Phase Machine

Before describing the different standard machine types, how they are
excited to satisfy (4.1.18), and what their essential characteristics are, the
smooth-air-gap model of Fig. 4.1.1 will be modified to allow a more realistic
portrayal of the energy conversion properties of rotating machines.

It is evident by examination of (4.1.17) that when one of the four possible
conditions of (4.1.18) is satisfied, the corresponding term in (4.1.17) becomes
a constant, but the other three terms are still sinusoidal time functions

* sin x sin y = j[cos ( - y) - cos (x + y)]; sin xcos y = [sin (x - y) + sin (x + y)].
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Stator a-winding
magnetic axis

t

b-winding
etic axis

Fig. 4.1.7a Cross-sectional view of a two-phase machine with distributed windings
represented by single-turn coils.

and each term represents an alternating power flow. These alternating power
flows have no average values and can cause pulsations in speed and vibrations
that are detrimental to machine operation and life. The alternating flow can
be eliminated by adding one additional winding to both rotor and stator,
as illustrated in Fig. 4.1.7a. The windings of Fig. 4.1.7a are represented as
being concentrated in single slots for simplicity of illustration. In actual
machines the windings are distributed like those of Fig. 4.1.1a. and a single
slot can carry conductors from both windings. In Fig. 4.1.7 windings a on
rotor and stator represent the original windings of Fig. 4.1.1. Windings b
on rotor and stator are identical to the windings a in every respect, except
that they are displaced mechanically 900 in the positive 0-direction.

The two additional windings in Fig. 4.1.7a require two additional electrical
terminal pairs and, using the assumptions of constant self-inductances and
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Stator (b) axis

Fig. 4.1.7b Schematic representation of balanced two-phase machine in (a) showing
relative orientations of magnetic axes.

sinusoidally varying mutual inductances discussed before, the terminal
relations are now written as

la. = Loia, + Mia, cos 0 - Mib sin 0, (4.1.19)

Ab, = Lib, + Mi 7, sin 0 + Mi.b cos 0, (4.1.20)

ar = Lia, + Mia, cos 0 + Mia, sin 0, (4.1.21)

Abr = L,4i, - Mia, sin 0 + Mib, cos 0, (4.1.22)

To = M[(i.ib,, - ibria,) cos 0 - (iaria, + ibrib,) sin 0]. (4.1.23)

Study of the relative winding geometry in Fig. 4.1.7a verifies the correctness of
the mutual inductance terms in the electrical terminal relations. Once again,
the torque T e has been found by using the techniques of Chapter 3 [see (g) in
Table 3.1].

The windings of Fig. 4.1.7 are called balanced two-phase windings* because
excitation with balanced two-phase currents will result in constant power
conversion with no alternating components. To show this the terminal
variables of the machine are constrained by the balanced, two-phase, current
sources

ias = I, cos owt, (4.1.24)

iba = I, sin w,t, (4.1.25)

iar = Ir cos &at, (4.1.26)

ibr = I, sin o,t (4.1.27)

* More is said about phases in Section 4.1.7.
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and by the angular position source

S= Cot + y. (4.1.28)

The use of these terminal constraints with the instantaneous power given
by (4.1.15) and the torque To given by (4.1.23) yields, after some trigono-
metric manipulation,*

Pm = -mo,MI,,. sin [(co, - co, + ,)t + y]. (4.1.29)

This power can have an average value only when the coefficient of t is zero,
that is, when

wO = os - To, (4.1.30)

for which condition (4.1.29) reduces to

p,. = - wmMIr,sin y. (4.1.31)

This is still the instantaneous power out of the machine, but it is now constant
in spite of the ac electrical excitation. Note further that (4.1.30) is one of the
four conditions of (4.1.18). Thus the additional windings with proper excita-
tion have produced only a single frequency condition (4.1.30) for average
power conversion, and when this condition is satisfied the instantaneous
power is constant and equal to the average value.

The other three conditions of (4.1.18) can be achieved individually in the
machine of Fig. 4.1.7 with the excitations of (4.1.24) to (4.1.28) by changing
the time phase of one stator current and/or one rotor current by 1800.

When the two stator currents or the two rotor currents are unbalanced in
amplitude or the phase difference is changed from 900, the pulsating power
flow will again occur even when one of the conditions of (4.1.18) is satisfied.
The analysis of these situations is straightforward trigonometry and is not
carried out here.

4.1.4 Air-Gap Magnetic Fields

It is helpful for qualitative physical reasoning and for a more thorough
understanding of the coupling mechanism occurring in rotating machines
to think in terms of the magnetic fields that exist in the air gap. To develop
these ideas consider again the machine in Fig. 4.1.7a but with only the stator
excited by current sources. The assumption that rotor-to-stator mutual
inductance varies sinusoidally with rotor position implies that the flux
density produced in the air gap by a current in a winding varies sinusoidally
with angular position; that is, a current in stator winding a will produce an
air-gap flux density whose radial component is maximum along the magnetic
axis (positive in one direction, negative in the other) and varies sinusoidally

* sin (x - y) = sin x cos y - cos x sin y, cos (x + y) = cos x cosy - sin x sin y.
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between these extremes. We now assume that the stator windings of Fig.
4.1.7a are excited by the two-phase current sources of (4.1.24) and (4.1.25)
and look at the space distribution of radial air-gap flux density produced by
these currents at different instants of time. For this we use the angle y defined
in Fig. 4.1.7a to indicate position in the air gap and we recognize that the air-
gap flux density produced by current in a winding is proportional to the
current producing it. Consequently, with reference to Fig. 4.1.7a, we can write
for the instantaneous radial flux density due to current in stator winding a

Bra = Brm cos ot cos y (4.1.32)
and for stator winding b

Bb = Brm sin wt sin y, (4.1.33)

where B,, is a constant related to the current amplitude I,. These component
flux densities and the resultant air-gap flux density are sketched for five values
of time in Fig. 4.1.8. For the interval shown the resultant flux density (B,) is
sinusoidally distributed in space, has a constant amplitude (Bm), and moves
in the positive u-direction as time progresses. An extension of this process
would show that these facts remain true for all time and that the resultant
flux density makes one revolution in (2nr/olw) sec or it rotates with an angular
speed o, .

A similar argument for the rotor of Fig. 4.1.7a with the excitation of
(4.1.26) and (4.1.27) shows that these rotor currents produce a flux density
in the air gap that is sinusoidally distributed around the periphery, has
constant amplitude, and has an angular velocity ow, with respect to the rotor.

It is to be expected from simple considerations of the tendency of two
magnets to align themselves, that a steady torque and therefore constant
power conversion will occur when the rotor and stator fields are fixed in
space relative to each other and the rotor is turning at constant angular
velocity. To accomplish this a mechanical speed given by (4.1.30) is required.
Thus the condition for average power conversion can be interpreted as
establishing the condition under which the stator and rotor fields, both of
which rotate with respect to the members carrying the excitation currents,
are fixed in space relative to each other. Furthermore, we expect the torque
(and average power) to be a function of the constant angle of separation of
the axes of symmetry of the two fields. This variation with angle is indicated
by the sin y term in (4.1.31). Examination of (4.1.24) to (4.1.28) with the
ideas introduced in Fig. 4.1.8 shows that y is the angle by which the rotor
magnetic field axis precedes the stator magnetic field axis around the air gap
in the positive 0-direction. Thus the torque [or power in (4.1.31)] is propor-
tional to (-sin y).

It must be recognized that this analysis of air-gap magnetic fields is
idealized. With excitation provided by finite-size coils in finite-size slots and
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Fig. 4.1.8 Component (B,a and Bb,) and resultant (B,) flux density distributions in a
balanced two-phase machine due to balanced two-phase stator currents.
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usually with equal numbers of turns in all slots, the air-gap flux density will
not be exactly sinusoidal. Nonetheless, the simple picture presented is a
design objective with ac machines and it yields remarkably accurate results
for practical machines. (See part (c) of Prob. 4.4.)

We now reconsider the machine of Fig. 4.1.1 with the excitations of
(4.1.12) to (4.1.14) and apply the rotating field ideas. Because the rotor-stator
mutual inductance is a sinusoidal function of space, the air-gap flux density
will still have a sinusoidal space distribution around the air gap. But now each
field, rotor and stator, being excited by a sinusoidal current in a single coil
keeps a fixed sinusoidal space distribution with respect to its exciting coil and
varies periodically in amplitude. Such an alternating field can be represented
by two constant-amplitude fields (B,, and Br_) rotating in opposite directions,
as illustrated for one quarter cycle of the stator excitation in Fig. 4.1.9.
Thus the stator excitation produces two such fields rotating with angular
velocity ow, with respect to the stator. Similarly, the rotor excitation
produces two fields rotating with angular velocity -o-, with respect to the
rotor. Thus each of the four conditions of (4.1.18) represents the situation in
which the mechanical speed is adjusted to the proper value to make one
component of rotor field fixed in space relative to one component of stator
field. When one of these conditions is satisfied, the other three conditions
are not, and the interactions of these other field components give rise to
alternating torque and alternating power flow. As a consequence, the
addition of the second set of windings in Fig. 4.1.7 can be interpreted as
being for the purpose of eliminating those field components that do not
produce average power conversion.

4.1.5 Discussion

Although these analyses have been made for special cases, the method is
quite general; for instance, the analytical techniques are the same when the
restriction of a space fundamental mutual inductance variation is removed
and the more general form of (4.1.4) is used. Furthermore, the windings
added to the machine of Fig. 4.1.1 to obtain the machine of Fig. 4.1.7 need
not be identical to the original windings, nor must they be exactly in space
quadrature with them. The only requirement for a correct analysis of the
coupling mechanisms is that the electrical terminal relations be accurate
representations of the physical system under study. The particular restrictions
chosen here are representative of design objectives for practical rotating
machines and of techniques used in their analysis.

The assumption has been made that stator circuits are excited by currents
of the single frequency wco and rotor circuits are excited by currents of the
single frequency o,. This analysis is easily generalized to any number of
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frequencies on each member (rotor and stator). The result is that for a com-
ponent of current at a particular frequency to participate in the average
power conversion process there must be a current on the other member
whose frequency combines with the mechanical velocity and the other
electrical frequency to satisfy one of the four conditions of (4.1.18).

The analyses have been done by assuming a steady-state problem with
electrical current sources and a mechanical position source. The results are
still valid when the sources are changed to voltage and torque sources or to
dependent sources of any type. Moreover, transient problems can be analyzed
by writing the complete differential equations for the machine and the
electrical and mechanical circuits to which it is connected and using
the techniques of Chapter 5. The steady-state analysis is representative of the
final conditions usually reached in machine operation. Transients of interest
include the one necessary to reach steady-state conditions (e.g., starting tran-
sient) and those that occur when something forces the operation away from
steady-state conditions (e.g., a sudden change in load torque on a motor).

The discussion of air-gap magnetic fields was based on the simple model of
a sinusoidal distribution of flux density in space and a sinusoidal variation
of flux density with time. When the space distributions and time variations
are not sinusoidal they can often be represented by Fourier series. Con-
sequently, our discussion of air-gap magnetic fields can be applied to individ-
ual Fourier components to obtain insight into the interactions occurring
in the machine.

In summary, our look at the smooth-air-gap machine in terms of simple
models has a lot more generality than we at first might suspect. These simple
models are building blocks with which we can build understanding of the
behavior of complex machines.

4.1.6 Classification of Machine Types

The results of the steady-state analysis expressed as (4.1.18) for the
configuration of Fig. 4.1.1 and as (4.1.30) for the machine of Fig. 4.1.7 are
used to define conventional machine types. From one viewpoint rotating-
machine theory boils down to the practical ways of satisfying the frequency
conditions for average power conversion, given the available electrical and
mechanical sources and loads and the desired machine characteristics.

In the following sections we indicate how the frequency condition is met
and what the steady-state characteristics are for several conventional machine
types.

4.1.6a Synchronous Machines

Consider the two-phase machine of Fig. 4.1.7 with direct current applied
to the rotor (w, = 0) and balanced, two-phase currents of frequency wc,

~__I·_I_ II
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applied to the stator. The condition of (4.1.30) indicates that the machine can
convert average power only when the rotor is turning with the single value
of speed

W = S,.

These constraints yield a synchronous machine, so named because it can
convert average power only at one mechanical speed--the synchronous
speed co, determined by the stator excitation frequency.

In a similar way we can also make a synchronous machine by applying
direct current to the stator and alternating current to the rotor. In this case
the synchronous speed is determined by the frequency of the rotor currents.

The most common application of a smooth-air-gap, synchronous machine
is as the generator, called alternator or turboalternator, that is driven by a
steam turbine to generate power. In this machine the ac or armaturewindings
are on the stator and the dc or field winding is on the rotor. The direct
current for the field winding is usually fed through carbon or metal-graphite
brushes that make contact with slip rings on the rotor. A large turboalter-
nator with the end bell removed is shown in Fig. 4.1.10.

Fig. 4.1.10 Turboalternator partly assembled for test. This is a 3600-rpm, 192,000-kVA
machine showing rotor in place with the upper half of the bearing and the end shield
removed. The slip rings (or collector rings) for supplying current to the rotor (field)
winding are in the foreground. (Courtesy of General Electric Company.)
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rRotor axis

ir Stator (b) axis
+

S r -T bs +) ibs

Fig. 4.1.11 Schematic representation of smooth-air-gap synchronous machine with field
(dc) winding on the rotor and a balanced two-phase stator (armature) winding.

Some of the principal steady-state characteristics of synchronous machines
can be illustrated by considering the machine shown schematically in Fig.
4.1.11. The electrical and mechanical terminal relations are

,, = Li,, + Mir cos O, (4.1.35)

Ai, = L,i5, + Mi, sin 0, (4.1.36)

7, = L4i, + M(ia, cos 0 + i,4 sin 0), (4.1.37)

T, = Mir(i,, cos 0 - i,, sin 0). (4.1.38)

[These are (4.1.19) to (4.1.21) and (4.1.23) with ib, = 0 and 2,, and i,, replaced
by A, and i, , respectively.]

Synchronous machines are normally operated with the stator windings
excited by voltage sources. We express our results in these terms. We find it
convenient, however, to constrain the stator winding currents analytically
with the balanced, two-phase set

is = I cos wt, (4.1.39)

i, = I, sin wt, (4.1.40)

and to consider I, as an unknown in the analysis. We constrain the rotor
current to be constant

ir = Ir (4.1.41)

and the angle 0 with the position source

0 = wt + 7. (4.1.42)

We see that the condition for average power conversion (4.1.30) is auto-
matically satisfied.

_~I_
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It can be verified by direct substitution of (4.1.39) to (4.1.42) into (4.1.37)
that the rotor flux linkage 2r is constant. Thus, under steady-state conditions,
there is no voltage induced in the rotor circuit, and we could have applied a
constant-voltage source, as we normally do in practice. In such a case the
rotor current is constant and determined only by the applied voltage and
rotor circuit resistance. Consequently, there is no loss in generality by specify-
ing the rotor current as in (4.1.41). For transient conditions there is a differ-
ence between voltage and current excitation of the rotor.

Substitution of (4.1.39) to (4.1.42) into (4.1.38), yields for the instantaneous
torque produced by the machine

T" = - MIrI,sin y. (4.1.43)

For the analysis of the energy conversion properties of large synchronous
machines the mechanical (friction) losses are neglected because they are a
small fraction of the power converted by the machine. Thus we follow this
procedure and assume that the torque expressed by (4.1.43) is applied to
the mechanical load (or source) on the shaft [Tm in Fig. 4.1.5].

To find the electrical terminal characteristics we need to evaluate the
stator terminal voltages. Substitution of (4.1.39) to (4.1.42) into (4.1.35)
and (4.1.36) yields

2as = Lsj,cos wt + MI, cos (wt + y), (4.1.44)
A,, = L,I, sin wt + MI, sin (owt + ). (4.1.45)

These two flux linkages are sinusoidal functions of time with a single fre-
quency w. Moreover, 2i, is the same as A,,, except for a shift of 90' in time
phase. The currents exciting these two windings are identical in amplitude
and different in phase by the same 900. Consequently, we expect the electrical
behavior of the two stator windings to be the same except for this phase
shift; thus we analyze only winding a. When considering power into or out
of the stator, we multiply the result for one winding by two to account for
the second winding.

As is the usual practice in the analysis of the energy conversion properties
of large synchronous machines, we neglect winding resistances and express
the terminal voltage of stator winding a as

dAa• d
Vas _= -- [L,I, cos wt + MI, cos (wt + y)]. (4.1.46)

dt dt

Because this expression involves sinusoidal functions of time with the single
frequency o), it is convenient to express the quantities in terms of complex
functions and to use vector diagrams to illustrate electrical properties
Hence we write

ias = Re (I,ejyt), V,, = Re (1sejt'), (4.1.47)
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where I, is real and J', is complex. We substitute this expression for the
voltage into (4.1.46) replace the time functions by their complex equivalents,

cos wt = Re (eJi"), cos (wt + y) = Re (ejYei•t),

drop the Re, and cancel the e ' t terms to get

P, = joiL,I, + jwoMIre I'. (4.1.48)

The last term in this equation is a voltage source that depends on rotor
current I, and rotor phase angle y. It is conventionally designated as

Ef = jwiMIrejI, (4.1.49)

the subscript f denoting dependence on field (rotor) current. The use of
(4.1.49) in (4.1.48) yields the expression

P, = jwLI, + ff. (4.1.50)

This steady-state stator (armature) terminal voltage is used to construct a
simple steady-state equivalent circuit for one phase of a balanced two-phase
synchronous machine with balanced excitation, as shown in Fig. 4.1.12.*
Note from this figure that because A• is independently adjustable the current

I, can be controlled in magnitude and phase relative to Ji and the synchro-
nous machine can act as a motor or generator. The quantity w,L, is conven-
tionally called the synchronous reactance and is simply the reactance of the
self-inductance of a stator winding.

The complex quantities in (4.1.50) and the equivalent circuit of Fig. 4.1.12
can be used to interpret the properties of a synchronous machine. To do this
we sketch the complex quantities as vectors on the complex plane for two
conditions in Fig. 4.1.13. To put our analysis in tune with convention we
define the torque angle 6 as measuredfrom P,
tn Vf as shown in Ficr 4 1 1 A imn le eo- jAL,

metrical construction illustrated in Fig. 4.1.13
shows that

woL,I, sin y = V, sin 6, (4.1.51)

where V. = If,. Thus from (4.1.43) and
(4.1.49)

Ef

T'= - E, V Fig. 4.1.12 Steady-state equiv-
S 2Lsin , (4.1.52) alent circuit for one phase of a

balanced two-phase synchronous
where Ef = Ifl". This is the expression for machinewithbalancedexcitation;
the torque normally used in the analysis of Et is defined by (4.1.49).

* This same process, which uses an equivalent circuit for one phase, is also applied to
machines with more than two phases.

4.1.6
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Imaginary Imaginary
axis axis

jwLsI,

Ef
Real

is axis

>0, 6>0 y< <0, <0
(a) (b)

Fig. 4.1.13 Diagrams showing relations among variables in synchronous machine: (a)
generator operation in which y and 6 (measured positive in the counterclockwise direction)
are positive; (b) motor operation in which y and 6 are negative.

synchronous machines. It is expressed in terms of the magnitude of the
stator voltage because this quantity is usually constant, as determined by the
source supplying (or absorbing) electrical power.

The instantaneous power into the stator windings is

Pe = Vasia + Vbs•bs. (4.1.53)

It can be verified with some algebra and trigonometry that this power is
equal to the mechanical power out of the shaft

pe = p,,, = a T " = -- sin 6. (4.1.54)
o) L,

Thus the electromechanical power conversion occurs at a constant rate
between the stator circuits and the mechanical system connected to the shaft.
The rotor (field) circuit does not participate in the conversion process
except to control the dependent source Ef. The power required to excite the
field winding as a fraction of the stator (armature) power rating varies from
0.5 per cent in large turboalternators to a few per cent in synchronous motors.
It is for this reason that the field winding is usually on the rotor, the result
being that sliding contacts have to handle less power.

When a synchronous machine is operated with a constant voltage supply
(V,) to the stator and a constant field current (constant Ef), the torque-angle
characteristic is the simple sinusoid shown in Fig. 4.1.14. The machine can

I _~
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Motor
operation -

V,Ef
m-
•21,

w
2
r.

Generator
operation

Pull-out
torque

Fig. 4.1.14 Torque versus torque angle for a synchronous machine with constant stator
voltage amplitude and constant rotor current.

supply any torque required by the shaft load (or supply) in the range

VEE VEfVE< T" < r
w2Ls w2 L,

and operate as a motor or generator. Any attempt to demand (or supply) a
torque outside this range will surpass the ability of the machine and it will
no longer run at synchronous speed and produce an average torque. This
process of loss of synchronism is called pulling out of step and the maximum
torque the machine can supply is called the pull-out torque.

We shall demonstrate one additional property of synchronous machines,
that of adjusting the power factor (phase angle between stator terminal
voltage and current) by varying the field (rotor) current. We shall illustrate
the property by using motor operation; however, the general features of the
analysis also hold for generator operation.

We assume motor operation with constant-amplitude, balanced, two-
phase voltages applied to the stator windings of the machine in Fig. 4.1.11.
A constant torque load T, is applied to the machine, and the field (rotor)
current I, can be set to different values. We neglect stator winding resistance
and friction losses. We consider three cases illustrated on the torque angle
curves of Fig. 4.1.15a, the vector relations among the variables being shown
in Figs. 4.1.15b, c, and d. Note two things in studying the vector diagrams
of Fig. 4.1.15. First, as the field current Ir is increased from a low value
I, to a high value I,,, the magnitude of the stator current passes through a
minimum. Second, for the same variation in I, the phase angle between
stator voltage and current reverses sign. An analysis of this type is used to
produce a so-called V-curve like that shown in Fig. 4.1.15e, which is a plot of
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Imaginary
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jwL.,

Real
axis
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power factor I power factor
I• J.. _t• I I . .

I . * Real
2 axis

(c)

I l j ,an_ Imaginary axis

torque Tm

Constant load
qrjtot ue< T-

I I .I Rotor
0 Ir IA2 Ia current

Fig. 4.1.15 Illustration of the performance of a synchronous motor as the field excitation
is varied: (a) torque versus torque angle; (b) rotor current 1,1; (c) rotor current I2;
(d) rotor current Ira; (e) synchronous motor V-curve.

stator current amplitude as a function of field current with stator voltage
amplitude and load torque held constant. For small values of field current
the machine is said to be underexcited; it appears inductive to the electrical
sources and operates with a lagging power factor. For large values of field
current the machine is said to be overexcited; it appears capacitive to the
electrical sources and operates with a leading power factor.*

* Power factor is defined as cos 0, where 0 is the phase-angle between the current and
voltage. A power factor of unity indicates that the load is purely resistive. See, for example,
R. M. Kerchner and G. F. Corcoran, Alternating-Current Circuits, Wiley, New York, 1955.

Torque

d2 = Uri
Ira = 31l

90

1I

evitcudni
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In many applications of synchronous motors the machines have adequate
field winding capacity for overexcitation and the capacitive characteristics
are used for power-factor correction. Special machines, called synchronous
condensers, are actually synchronous motors that run with no mechanical
load and are used as continuously variable capacitors to adjust power factor
and regulate voltage on electric power transmission systems.

In this presentation we have discussed only a few of the principal features
of synchronous machines. There are many others, depending on the applica-
tion, and they are studied by the same techniques. Our treatment is intended
to be only an introduction to synchronous-machine characteristics. A com-
plete study would fill a book by itself.*

In our analysis we used a two-phase machine as an example. Virtually all
synchronous machines manufactured are three-phase because the power
supply is usually three-phase. Three-phase synchronous machines have
the same energy conversion properties and steady-state characteristics as the
two-phase machine of our examples. In fact, a standard procedure in the
analysis of a three-phase machine is to transform the electrical variables to
obtain the equations for an equivalent two-phase machine. This simplifies
the mathematics in the analysis.t

This analysis was made with direct current applied to the rotor (field)
winding. The rotor can, and sometimes is, replaced by a permanent-magnet
rotor, an arrangement that has the two advantages of requiring no power to
maintain the field and no sliding electrical contacts. This also has two primary
disadvantages: (a) the amplitude of the magnetic field is fixed by the perma-
nent magnet and cannot be controlled externally during operation, and (b)
the magnetic flux densities obtainable with permanent magnet materials
are considerably smaller than those obtainable with current-excited, high-
permeability iron. As a result of the second disadvantage, permanent magnets
are normally used in small synchronous machines.

4.1.6b Induction Machines
An induction machine is conventionally defined as one in which single-

frequency alternating currents are fed into the stator circuits and the rotor
circuits are all short circuited. Rotor currents are obtained by induction
from the stator, hence the name.

To determine that an induction machine can convert average power,
consider again the machine of Fig. 4.1.7 with the stator currents constrained
by balanced two-phase sources.

ias = I, cos wo't, (4.1.55)
ib, = I, sin w,t, (4.1.56)

* See, for example, C. Concordia, Synchronous Machines, Wiley, New York, 1951.
t See, for example, White and Woodson, op. cit., Chapter 9.
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with the rotor circuits short-circuited

var = vbr = 0, (4.1.57)

and with the rotor constrained by the position source

0 = (wmt + Y. (4.1.58)

The terminal relations for the electromechanical coupling system are (4.1.19)
to (4.1.23).

In the analysis that follows we neglect the resistance of the stator windings.
This is standard practice when analyzing the energy conversion properties of
a large induction machine. The primary effect of stator winding resistance is
in heating the machine, and it therefore plays a major role in determining
the machine's rating. For reasons that will become clear subsequently, we
must retain the resistance of the rotor circuits in our analysis.

With the terminal constraints of (4.1.55) to (4.1.58) and with rotor circuit
resistance denoted by Rr, we write the differential equations for the two rotor
circuits:

di d
0 = R,iar + L,r d + MI, - [cos wt cos (cot+ y)

dt dt

+ sin co,t sin (wot + 7)] (4.1.59)

dib d
0 = R,if, + Lr d + MI, - [-cos w,t sin (wt + y)

dt dt

+ sin co,t cos (cot + y)]. (4.1.60)

The use of appropriate trigonometric identities* allows us to rewrite these
equations in the forms

MI,(o, - cor) sin [(w, - ow)t - y = L + Rria,, (4.1.61)
dt

-MI,(o, - ow) cos [(c), - wco)t - y] = L, +ýR,ib,. (4.1.62)
dt

The right sides are identical, linear, first-order differential operators with
constant coefficients. The left sides are sinusoidal voltage drives of equal
amplitudes, but 90 degrees phase difference (just like the stator currents).
Thus we need to consider only one of these equations for a solution.

As indicated by (4.1.61) and (4.1.62), both rotor currents will have fre-
quency (co, - co,) which exactly satisfies the condition of (4.1.30). Thus the
induction machine satisfies the condition for average power conversion at all
mechanical speeds. With finite rotor resistance an induction machine can

* cos (x - y) = cos x cos y + sin x sin y, sin (x - y) = sin x cos y - cos x sin y.
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Fig.4.1.16 Cutaway view of a squirrel-cage induction motor. (Courtesy of General Electric
Company.)

convert average power at all speeds except synchronous (co, = co,), and its
mode of operation (motor, generator, or brake) depends on the relative
values of o, and co8, as we shall see subsequently.

An induction motor can also be obtained by exciting the rotor with ac and
short-circuiting the stator circuits. This, however, requires that all the power
be fed into the machine through sliding electrical contacts (brushes on slip
rings), which is impractical in most cases in the light of the simple alternative.

Most induction machines have squirrel-cage rotors in which bare conduc-
tors are imbedded in slots in the rotor iron and are then all short-circuited
together at the ends by conducting rings. A cutaway view of such a motor is
shown in Fig. 4.1.16. The conductor assembly alone looks like a cage, hence
the name. Some special-purpose induction machines have rotor circuits
wound with insulated conductors with connections to the terminals made
through brushes and slip rings. The rotor for a wound rotor induction machine
was shown earlier in Fig. 4.1.3. Having access to the rotor circuits allows us
to connect different sources, or loads, or to short circuit the rotor circuits
externally and thereby obtain a variety of machine characteristics.
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For reasons that are stated in Section 4.2.2, all induction machines are
smooth-air-gap machines.

We shall now study the steady-state characteristics of induction machines
by using the constraints of (4.1.55) to (4.1.58). We first solve (4.1.61) for the
steady-state current in rotor circuit (a)*:

(W1 - Wm)MIs
iar _=_(Co - )M_ cos [(w, - Wm)t + a], (4.1.63)

N/Rr + (wý - o.m)2 L,2

where
7T

2
and

= tan1 ((- )L
R,

The current in rotor circuit b is identical except for a 90' phase shift indicated
by (4.1.62) [The cos in (4.1.63) is replaced by sin for ibr.]

As usual, we want to know how the machine behaves, as viewed from the
electrical input terminals; thus we wish to find the relation between voltage
and current. It is helpful at the same time to draw a steady-state electrical
equivalent circuit as we did for the synchronous machine.

It can be verified quite easily that for a balanced two-phase machine with
balanced two-phase excitation, as we have here, we need to consider only
one phase (stator circuit) because the behavior of the other circuit will be
identical except for a 900 phase shift.

We use (4.1.19) with the definition of terminal voltage to write

d 5,, d d
dVas = - (Li.,) + (Mi~ cos 0 - Mib sin 0). (4.1.64)

dt dt dt

Substitution from (4.1.55), (4.1.58), and (4.1.63) into this expression yields

d d (ow, - om)M 2 ls
vas -= (LI, cos ojt) + -

dt dt R,R2 + (( s - Cm).Lr2

x {cos [(w, - wm)t + C] cos (Wmt + 7)

- sin [(w, - om)t + oc] sin ()omt + y)}. (4.1.65)

A trigonometric identity is used to simplify the second term; thus

Vas = d (LI,cos o,t) + -d [ ( t - - - .
dt dt 1Rr2 + (w, - Owm)

2L, 2 2

(4.1.66)

* A review of sinusoidal steady-state circuit analysis is given in Section 5.1.
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It is now convenient to define the slip s as

= s - m (4.1.67)
CO

s

The slip is a measure of the difference between the actual mechanical speed
(wo) and the synchronous speed (co) expressed as a fraction of synchronous
speed. When the mechanical speed is less than the synchronous speed, the
slip is positive.

We now use the definition of slip s to rewrite (4.1.66) in the form

d d 'I 7v= , (L,I, cos cot) + Cos (t -, - -
dt dtls(R /s)2 + w,2L, 2

(4.1.68)
and we rewrite the definition of P in terms of slip s as

f = tan- 1 (oL, (4.1.69)
R,/s

We now use complex notation by defining

i, = Re (Ie'" C), c ost - P - 2) = Re (-je.ute-'P),

v., = Re (P,e3"t),
and rewrite (4.1.68) as

Ps = joL,I, + LM2 e-(4.1.70)
(Rr/s)2 + w2L, 2

This equation is conventionally represented by the steady-state equivalent
circuit of Fig. 4.1.17 in which we have indicated a complex amplitude ,. that
can be verified from the circuit to have the value

I -jMIe-(4.1.71)

I (R,IS)2 + o• 2L"2

Thus the second term in (4.1.70) is simply jio,Mt, as it should be for the
circuit in Fig. 4.1.17.

jwJ(L, - M) jwio,(Lr - M)

Rr/s

Fig. 4.1.17 Steady-state equivalent circuit for balanced two-phase induction machine
with balanced excitation.

4.1.6
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jiW(L 8-M) jW8(LI--M) R'

(1 - s)Rrls

Fig. 4.1.18 Alternative form for steady-state equivalent circuit for balanced two-phase
induction machine with balanced excitation. Here the resistance (1 - s)Rr/s gives rise to
a power dissipation equal to the power converted to mechanical form.

By some simple manipulations it can be verified that the magnitude of i,
is the same as the magnitude of iar found in (4.1.63). The effect of the relative
motion has been to change the frequency but not the magnitude of the
rotor current as viewed from the stator winding and indicated in (4.1.64)
and (4.1.66). Consequently, when the equivalent circuit of Fig. 4.1.17 is
redrawn as in Fig. 4.1.18, the power loss calculated in R, is the actual I2R
loss in one winding of the rotor. The power into the other resistance (1 -
s)R./s represents power converted to mechanical form, as will be demonstrated.

The equivalent circuit of Fig. 4.1.17 or 4.1.18 can be used to study the
steady-state electrical behavior of induction machines. Our use of i.s as
having zero phase angle can be relaxed and I, can be replaced by a complex
amplitude. The equivalent circuit serves the important function of helping
to determine the correct relative phase angles.

The b winding on the stator will behave like the a winding except for a 900
phase shift in all variables, as indicated by the excitations (4.1.55) and (4.1.56).
This can be verified quite easily and is not done here.

To describe the behavior of the induction machine, as viewed from the
mechanical terminal pair, we use (4.1.23) with (4.1.55), (4.1.56), (4.1.63)
and the value of ib, obtained by replacing the cosine in (4.1.63) with a sine,
and obtain the expression for the torque

Te= (W, - (,)Mls
2

R, 2+ ((, - jm)2 72
x [{cos [(os, - wm)t + a] sin cot - sin [(o, - wo•)t + a] cos w•t}

x cos (wt + y) - (cos [(wo - w~)t + 0] cos w",t

+ sin [(o, - om)t + a] sin w,t} sin (omt + y)]. (4.1.72)

The successive use of trigonometric identities* and the definition of angle fi
in (4.1.63) lead to the simplified result

S(, - om)M 2RI, 2

TT o Rs + (w0 - y)M si (4.1.73)

* cos(x - y) = cos x cos y + sin x sin y, sin (x - y) = sin x cos y - cos x sin y.
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The instantaneous torque T e is constant. This is to be expected because
balanced two-phase currents yield constant-amplitude rotating fields, as
discussed in Section 4.1.4, and the interaction of these fields when the con-
dition of (4.1.30) is satisfied produces a steady torque.

The mechanical power output of the machine is

Pm= owmTe = (R/s)2 +i2L 2-] ( - s)(4.1.74)

where we have used the definition of slip s in (4.1.67) and manipulated the
result to get this form. Note that the term in brackets is the square of the
magnitude of Al, as given in (4.1.71); thus we have verified that the power
absorbed by the resistance (1 - s)R,l/s in Fig. 4.1.18 is indeed the power
converted to mechanical form when multiplied by two to account for both
phases.

The total power input to the stator windings (excluding stator PR losses,
which we have done) is defined as the air-gappowerp,. It is clear from Fig.
4.1.17 that

g = I~ -, (4.1.75)
S

where Ir is the magnitude of fr given by (4.1.71) and (4.1.75) is twice the
power input to one phase. As already indicated, the rotor 12R losses p, are
given by

Pr = I,2R, = sp,. (4.1.76)

The power Pm converted to mechanical form is

pm = • )R, = (1 - s)pq. (4.1.77)

Thus the power into the stator equals the sum of rotor losses and converted
power

pg= p, + p.m (4.1.78)

and there is no rate of change of total energy stored in the machine. We
knew this all the time, because for balanced excitation the air-gap magnetic
fields have constant amplitudes.

We now use (4.1.75) to (4.1.78) to identify the three possible modes of
operation of an induction machine as illustrated in Fig. 4.1.19. The arrow
heads indicate the flow direction ofpower and the ranges of slip and speed are
given in the figure. Note in particular that the rotor power p, is always greater
than zero as it must be because it is an IPR loss. Note also that brake operation
has power coming into the machine from both electrical and mechanical
terminal pairs and all of this power is dissipated in the rotor resistance.
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Pr> 0

> 0 Electromechanical >0 0<s<l1
coupling < m<w
system

(a)

s<O
WM> WS

p,> 0 s>l
Wo•m<0

(c)
Fig. 4.1.19 The three modes of operation of an induction machine: (a)motor operation;
(b) generator operation; (c) brake operation.

When operating as a motor, the machine efficiency tj is defined as the
mechanical power output divided by the electrical power input to the stator;
thus

Pm7- 1 - s. (4.1.79)
P9

As a consequence, large induction machines intended for the efficient
production of mechanical power are designed to run at as small a slip (as
close to synchronous speed) as possible.

Induction machines are normally excited by almost constant voltage
sources. Consequently, the electromechanical coupling properties are of
most interest for this condition and we need to express (4.1.73) in terms of the
magnitude V, of the terminal voltage P,. We use (4.1.70) to write

o,"M2I1,(R,/s) 3M2OL (4.1.80)
#, = jOLI, + 7

2 
2 (4.1.80)

(R7 /s) 2 + o~Lr (Rr/s) + w8
8L2 '

In obtaining this form we have used the definitions of angle fl from (4.1.63)
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and slip s from (4.1.67). The magnitude squared of P, is then

VF w{_M2L 12 Fw.
2M 2(Rr/s) 2

V, = w -L 2 2 + L(RI 22 -. 2 i. (4.1.81)
(Rr/s)2 + (!)s2L, 2 (R,/s)2 + w(2Lr2

Solution of this equation for I,2 , substitution of that result in (4.1.73) and
simplification lead to the result

Te (k 2'w,)(L,/L,)(R,/s) VY2

[wo,(l - k2)L,2 + (Rr/s)2 (4.1.82)

We have used the square of the maximum coefficient of coupling

M2

k2 - 2- (4.1.83)
L,L,

to simplify this expression. Note that this is the coefficient of coupling between
the a windings on stator and rotor when rotor position 0 is zero.

A curve of electromagnetic torque versus slip (and mechanical speed)
typical of large squirrel-cage induction machines is shown in Fig. 4.1.20.
The ranges over which the machine operates as a motor, generator, and
brake are also indicated.

The torque given by (4.1.82) depends on rotor resistance R, and slip s
only through the ratio R,ls. By differentiating (4.1.82) with respect to this
ratio, setting the derivative equal to zero, and solving for the ratio we can
determine that the torque has two maxima that occur when

- = ± o)(1 - k2)L,, (4.1.84)

Torque

Fig. 4.1.20 Torque-slip curve of a two-phase induction machine with balanced excitation.

4.1.6
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from which the slip at which maximum torque occurs is

s = smT = -- Rr (4.1.85)
Ws(1 - k2)L,

These two values of slip are indicated in Fig. 4.1.20. Substitution of (4.1.84)
into (4.1.82) yields for the maximum torque

k2 V2
Te = +Tem = -1- .2v2 (4.1.86)

2w,2L,(1 - k2)

This maximum torque is indicated in Fig. 4.1.20.
The maximum torque given by (4.1.86) is independent of rotor resistance

R,. Thus for a wound rotor induction motor with which the rotor resistance
can be set to any desired value we can get a set of steady-state torque-speed
curves as sketched in Fig. 4.1.21. Note that as R, increases the speed at which
maximum torque occurs decreases but the maximum torque stays the same.
This fact is often used by introducing external resistance into the rotor
circuit to achieve a high starting torque and then short-circuiting the rotor
windings for normal running to get a small slip and therefore high efficiency.

The loading of an induction motor normally occurs in the region of nega-
tive slope near synchronous speed; for example, the torque-speed curve of an
induction motor and a typical load (e.g., a fan) are shown in Fig. 4.1.22. The
steady-state operating point of the system is indicated on the curves. If the
fan load increases to the dashed curve, the new operating point occurs at a
higher torque, lower speed, and higher slip. At the higher slip the motor
produces more mechanical power but with less efficiency.

It is worthwhile to understand the reasons for the shape of the torque speed
curve of an induction motor. First, in the normal operating range, which is
the region of negative slope near synchronous speed in Fig. 4.1.20, the slip is

Fig. 4.1.21 Variation of torque-speed curves of induction motor with rotor resistance.
Stator voltage held constant.
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Fig. 4.1.22 Loading of an induction motor.

very small, hence the induced currents in the rotor are at very low frequency
[see (4.1.63)]. Under this condition the resistance of the rotor windings has
a much greater effect than the inductance. To express this mathematically,
the resistive term in the denominator of (4.1.82) dominates such that

( > [oi(1- k2)L] 2

and the torque becomes
k2 L, sT½ ---- V8•  (4.1.87)
w, L, Rr

This torque is a linear function of slip and therefore also of mechanical speed.
When the mechanical speed is far from synchronous speed (the slip is

large), the frequency of the rotor currents (4.1.63) is high and inductance
predominates over resistance. This region is defined from the denominator of
(4.1.82) as the condition

[cow(l - k 2)L,]2> (R

In this case the torque becomes

Tk2  R, V. (4.1.88)
co0,(1 - k2)2LL,L s

This expression varies inversely with slip.
The two asymptotes are sketched in Fig. 4.1.23 for positive slip. These

two simplified models are useful for studying the behavior of the machine
under particular conditions; for example, for the kind of torque-speed curve
shown in Fig. 4.1.23, which is typical of large induction motors, the induct-
ance-dominated model (4.1.88) is sufficient for starting conditions and the
resistance-dominated model is adequate for normal running conditions. We
have more to say about these kinds of approximations in the next chapter.
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Fig. 4.1.23 Asymptotic behavior of an induction motor.

Our analysis of induction machines has been done with a two-phase model.
Most large induction machines are actually excited by three-phase sources.
Nonetheless, the standard technique for analysis is to transform a three-
phase machine to an equivalent two-phase machine for a study of the energy
conversion properties. This is true for any number of phases.* Consequently,
our treatment is general and our conclusions are valid for all balanced
polyphase machines with balanced polyphase excitation.

We have only highlighted the properties of polyphase induction machines
with the idea of trying to establish some insight into the physical processes
occurring. The subject of induction machines is complex and extensive
enough to be the sole subject of books.t

All of our discussion so far has been relevant to polyphase induction
machines. There are also single-phase induction machines which have some
unique characteristics. A single-phase induction machine is constructed like
the machine illustrated in Fig. 4.1.1. The stator is excited by a single-phase
source and the rotor winding is short-circuited. (Actually, the rotor is
almost always of squirrel-cage construction and therefore the equivalent of
two windings, 90' apart in space.)

As we discovered in Section 4.1.4, single-phase excitation of a symmetri-
cally distributed winding produces two equal-amplitude waves of flux density
traveling in opposite directions in the air gap. A squirrel-cage rotor in this

* See, for example, White and Woodson, op. cit., Chapter 8.

t See, for example, P. L. Alger, The Nature of Polyphase Induction Machines, Wiley, New
York, 1951.
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environment does not know which way to go and therefore will not start
to rotate. Once started, however, the rotor will continue to run in the same
direction. The torque-speed curve of a single-phase induction motor can be
derived as the superposition of two machines operating with the traveling
components of the air-gap flux, as illustrated in Fig. 4.1.24. Thus, with
rotation in either direction, the flux wave traveling in that direction dominates
and the machine continues to run in that direction. In the normal running
range near synchronous speed the single-phase induction motor has properties
similar to those of polyphase machines.

In view of the single-phase machine properties illustrated in Fig. 4.1.24,
there is a problem in starting the machine. There is a variety of starting
methods.* For moderate-size machines (f- to 5 hp, approximately) of the
type installed in refrigerators, air conditioners, washing machines, and the
like, an auxiliary winding is used. The auxiliary winding is wound with its
magnetic axis displaced 90 degrees from that of the main winding. It is also
excited from the single-phase source, but the phase angle of its current is
different from that of the main winding, either because of a different LIR
ratio or because a capacitor is added in series. This different phase angle of
the current in the auxiliary winding causes an unbalance between the two
rotating field waves; one of the waves dominates and starts the rotor turn-
ing. In most cases the auxiliary winding is disconnected by a centrifugal
switch when the rotor reaches a predetermined speed during the acceleration.

For smaller, single-phase induction machines starting torque is provided
by shading coils,f which are short-circuited turns on the stator that give the
effect of making one flux wave dominate the other.

Fig. 4.1.24 The torque-speed curve of a single-phase induction motor.

* See, for example, Fitzgerald and Kingsley, op. cit., Chapter 11.
t See, for example, Fitzgerald and Kingsley, loc. cit.
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Because of the simple, rugged construction possible with a squirrel-cage
rotor, the induction motor is the least expensive and most reliable means of
converting electric energy to mechanical energy. As a result, induction motors
are more numerous by far than any other type of motor.

Another important class of induction motor is the two-phase servomotor,
which is essentially a two-phase induction motor with rotor resistance
sufficiently high that maximum torque occurs at a slip of around 1.5 (see
Fig. 4.1.21). The torque-speed curve then has a negative slope for all positive
speeds and can therefore run stably at any speed between zero and syn-
chronous speed. Such a motor is normally operated with full voltage applied
to one winding and with variable voltage applied to the other to get smooth
control of speed. Such operation is quite inefficient and thus servomotors are
made in small sizes, mostly up to 20 W but sometimes up to 1000 W with
auxiliary cooling for the rotors. They are, as their name implies, used mostly
in servo systems for control applications. The analysis of servomotors is a
straightforward application of the techniques we have introduced and is
done quite well elsewhere.* Thus we do not discuss them further here.

4.1.6c Commutator Machines

The most widely used machine for control purposes is the dc machine
which uses (or supplies) electrical power at zero frequency. It is evident from
(4.1.18) that with zero-frequency rotor and stator currents it is impossible to
satisfy the frequency condition with any nonzero mechanical speed. This
problem is circumvented by the use of a commutatorwhich can be viewed as a
mechanical frequency changer. The stator circuit (field circuit) of the usual
de machine is excited by direct current and the rotor (armature) circuits are
fed from direct-current sources through a commutator that provides the
currents in the rotor conductors with components at ow. This frequency,
with the zero stator-current frequency, satisfies the condition in (4.1.18)
at all mechanical speeds.

A commutator is a mechanical switch whose state is determined by the
rotor position 0. The simplest possible commutator is shown schematically
for one rotor coil without the iron in Fig. 4.1.25a. When a constant current I
is passed through the external terminals and the rotor carrying the coil and
commutator is rotated about its axis with a mechanical velocity wo,, the
waveform of the current in the coil is as shown in Fig. 4.1.25b. It is clear from
this waveform that the fundamental frequency of the coil current is w,, as
stated above.

In practical machines commutators are made with many segments, and the
many coils on the rotor are connected to one another and to the commutator

* See, for example, G. J. Thaler and M. L. Wilcox, Electric Machines, Wiley, New York,
1966, pp. 208-213.
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Fig. 4.1.25 Schematic representation of a simple commutator: (a) the physical arrange-
ment; (b) coil current.

in one of two ways to obtain maximum utilization of the copper coils.*
A dc machine rotor is shown in Fig. 4.1.26, and Fig. 4.1.27 illustrates how
brushes are mounted to make contact with the commutator in a dc machine.

In spite of the apparent complications, the commutator can still be viewed
as a mechanical frequency changer that is necessary to satisfy the frequency
condition for average power conversion (4.1.18) when the electrical sources
(or sinks) are at zero frequency (dc).

A variety of de machine characteristics is possible, depending on whether
the field (stator) circuit and the armature (rotor) circuit are connected in
series, in parallel, or are excited separately (see Section 6.4.1).

The commutator has been described as having dc excitation, but it also
acts as a frequency changer when alternating currents are fed into the
brushes, the change in frequency being equal to the rotational speed of the
commutator. Thus, if currents at frequency co are fed into the stator circuits
and into the rotor coils through a commutator, the rotor currents will contain
components at frequency co - co,, and the frequency condition of (4.1.18)
is automatically satisfied at all mechanical speeds. This result gives rise to

* For details see Knowlton, op. cit., Section 8.

4.1.6
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Fig. 4.1.26 A dc machine rotor (armature). Note the large number of slots and commuta-
tor bars. (Courtesy of Westinghouse Electric Corporation.)

many varieties of ac commutator machines*; the most common of which are
used to drive vacuum cleaners, hand drills, electric egg beaters, and so forth.

Although we could develop the equations of motion and study the steady-
state properties of commutator machines as we have done for synchronous
and induction machines, it is more appropriate and meaningful to do so
after we have developed some field theory for moving media. Thus we defer
this treatment until we reach Chapter 6, Section 6.4.

4.1.7 Polyphase Machines

In our discussions so far machines have been considered with single-phase
windings (Fig. 4.1.1) and two-phase windings (Fig. 4.1.7). In this section the
definitions and configurations are given for machines with any number of
phases, hence the name polyphase.

Polyphase electric power is generated and used for several reasons. It is
economically optimum to generate and distribute three-phase power; the use

* For more detail see Knowlton, op. cit., Section 7.
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of polyphase power allows the operation of rotating machines to produce
steady torque, even though the excitation is ac (see Section 4.1.3), and a
polyphase machine for a particular application is smaller (and therefore less
expensive) than a single-phase machine.

A set of balanced polyphase currents (or voltages) consists of a number of
currents (or voltages) equal to the number of phases, each member of the
set having the same amplitude and all members of the set being equally
spaced in time phase; for example, a balanced set of three-phase currents
(labeled by subscripts as phases a, b, and c) is specified as

ia = I cos wt,

i =ICos ( t 3),
(4.1.89)

i = I cos (ot - 3

where I is the amplitude and 21r/3 is the phase difference between any two
phases.

Fig. 4.1.27 A dc machine. Note how the brush rigging is assembled to hold the brushes
in contact with the commutator. Note also the salient poles on the stator. (Courtesy of
Westinghouse Electric Corporation.)
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It is easy to extend this system to an arbitrary number of phases. Suppose
there are n phases. Then a balanced set of voltages is written as

vi = Vcos cot

V = Vcos (cut - 29

= Vcos (4.1.90)

v.= Vcos [cot (n -1) 2w

In these expressions V is the amplitude and the phase difference between any
two adjacent phases is (27r/n) rad.

In terms of this general scheme, a two-phase system like that in (4.1.24)
and (4.1.25) is the special case of half a four-phase system. A four-phase set of
currents is written as

i = Icos cot,

ib=Icos Cot - -2,

iO = I cos (ct - 7r), (4.1.91)

id= I cos (cot --

A selection of the first two or the last two of this set will yield a set of two-
phase currents with the same relative phase (4r/2 rad) as that in (4.1.24)
and (4.1.25).

Any set of phases will have a phase sequence defined as the order in which
the phase variables reach a positive maximum (or any other convenient
reference value). Thus the sequence of the three-phase system of (4.1.89)
is a to b to c which is usually defined as positive sequence. A three-phase
set with negative sequence (c to b to a) is

i, = I cos cot,

i I = cos (ot + ) '  (4.1.92)

i6 =Icos (ct +4 .

I__·____ 
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Stator a-winding
magnetic axis

Fig. 4.1.28 A three-phase stator.

Note that the n-phase set of voltages of (4.1.90) and the four-phase set of
currents in (4.1.91) are both positive sequence.

Now suppose that a rotating machine is to have its stator wound so that
with balanced polyphase currents in its windings the rotating field due to
stator currents will have constant amplitude and will rotate at constant speed
around the periphery of the air gap. Such a system has already been discussed
for a two-phase machine in Section 4.1.4. From that discussion it is clear
that the number of windings must equal the number of phases and that the
winding magnetic axes must be placed around the periphery in the same
relative space positions that the currents are placed in relative time phase.

To illustrate this consider the three-phase windings on the stator of Fig.
4.1.28 in which the rotor is omitted for simplicity and the windings are shown
lumped in single slots, although they would be distributed in an actual
machine. When the positive-sequence, three-phase currents of (4.1.89) are
applied to this machine, a field analysis similar to that of Section 4.1.4 will
show that the air-gap flux density distribution will have constant amplitude
and will rotate in the positive V-direction with the angular speed w. Excitation
of the stator of Fig. 4.1.28 with the negative sequence currents of (4.1.92)
yields a constant-amplitude field pattern rotating in the negative p-direction
with the angular speed co.

" -- ~
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This discussion, in which the example of a stator was used, applies equally
well to a rotor. The general case is presented elsewhere.*

A machine can operate successfully with any number of phases on the
stator and the same or any other number of phases on the rotor; for instance,
a three-phase alternator (a synchronous machine used to generate electric
power) usually has a three-phase stator (armature) winding and a single
rotor (field) winding.

4.1.8 Number of Poles in a Machine

The number of poles in a machine is defined by the configuration of the
magnetic field pattern that occurs; for example, consider the rotor of Fig.
4.1.29a with a single winding. When the instantaneous current is in the
direction indicated by the dots and crosses, the resulting B field is as sketched
in the figure. With the B field as shown, the rotor can be viewed as an electro-
magnet with north (N) and south (S) poles as indicated. In a trip around its
periphery two poles are passed; therefore it is a two-pole rotor.

Consider now the rotor of Fig. 4.1.29b which has four slots carrying coils
connected in series with the polarities indicated by dots and crosses. Once
again this winding can be single-phase or it can be one phase of a polyphase
winding. When the instantaneous winding current has the direction indicated,
the resulting B field is as sketched in Fig. 4.1.29b and the rotor is effectively
a four-pole electromagnet.

These ideas can be generalized to an arbitrary number of poles by stating

Fig. 4.1.29 Definition of number of poles in a machine: (a) two-pole rotor; (b) four-pole
rotor.

* White and Woodson, op. cit., Chapter 10.
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Fig. 4.1.30 Four-pole, single-phase machine.

that with current in one phase the number of poles (north and south) en-
countered in one turn around the periphery of the air gap defines the number
of poles. It is clear that poles occur in pairs.

This discussion of the number of poles on a rotor applies equally well to
stators.

Re-examination of the examples of earlier sections shows that they all
concern two-pole machines. Some of those ideas are considered here for
machines with more than two poles.

Consider the four-pole, single-phase machine illustrated in Fig. 4.1.30.
The interconnections are not shown but current i, is in all the stator coils in
the directions shown and current i, is in all the rotor coils in the directions
shown. The slots are assumed to have negligible effects on the self-induct-
ances (this is a smooth-air-gap machine) so that the self-inductances will be
independent of rotor position 0. Because of the symmetries involved (see
discussion in Section 4.1.1), the mutual inductance can be expressed as

L,,(O) = M1 cos 20 + M, cos 60 + Ms cos 100 + . -. . (4.1.93)

_______111__14_______
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Stator
m•anftir

Fig. 4.1.31 Machine with four-pole stator and two-pole rotor. This configuration can
produce no torque.

Compare this expression with (4.1.4). It can be generalized immediately by
recognizing that for a p-pole-pair machine the mutual inductance between a
stator winding and a rotor winding is expressible as

L,,(O) = M 1 cospO + M3 cos 3pO + Ms cos 5p0 + • • • . (4.1.94)

To minimize the generation of harmonics multipole ac machines are designed
to accentuate the lowest space harmonic of Ls,, and to decrease as much as
possible the higher space harmonics.

In the two examples in (4.1.93) and (4.1.94) it has been assumed that the
rotor and stator have the same number of poles. This is necessary for success-
ful operation of the machine as a power converter. If the rotor and stator had
different numbers of poles, the mutual inductance between rotor and stator
would be zero and, as evidenced by the terminal relations (4.1.1) to (4.1.3),
the electromechanical coupling would disappear. To verify qualitatively that
this is so, consider the machine in Fig. 4.1.31 which has a two-pole rotor and
a four-pole stator. We can see that if the system has the usual type of sym-
metry and the stator is excited by direct current the result is that no net flux
links the rotor circuit due to stator excitation for any rotor angle 0 and the
mutual inductance is indeed zero.

~~
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By carrying out a process similar to that used in Section 4.1.2, we find
that the condition that must be satisfied by the frequencies and mechanical
speed (4.1.18) for average power conversion must be generalized for a p-
pole-pair machine to

c -1 (-e- , ± W,). (4.1.95)
P

Thus for given electrical frequencies the mechanical speed is reduced as the
number of poles is increased; for example, for a synchronous machine
operating on 60-Hz power,

w,= 27r60 and ow, = 0,
the mechanical speed is

2rr60
oi =- ;

forp = 1 wo, = 1207n rad/sec = 3600 rpm,
forp = 2 o,~ = 60r rad/sec = 1800rpm,
forp = 15 w,o = 8r rad/sec = 240 rpm.

For a synchronous machine the maximum obtainable shaft speed is produced
by a two-pole machine. The speed can be set at any submultiple of this
maximum speed by setting the number of poles.

The freedom to set the number of poles allows for optimum design of
systems; for instance, in the generation of electric power at 60 Hz generators
for operation with steam turbines have two poles (a few have four) because
steam turbines operate best at high speeds. On the other hand, generators
for operation with hydraulic turbines (water wheels) usually have many
poles, often as many as 40 or more, because hydraulic turbines operate best
at low speeds.

Examination of Fig. 4.1.30 shows that the wire in the slots of the four-pole
configuration could be reconnected at the end turns to yield a two-pole
configuration. Thus a machine can be made to operate at two speeds by
changing the number of poles. This is done frequently on induction machines
for with a squirrel-cage rotor no rotor reconnections need to be made; for
example, induction motors that drive automatic washing machines often
operate with four-poles for the washing cycle and are reconnected as two-pole
machines to run at approximately twice the speed for the spin-drying cycle.

It is clear from the foregoing analyses and discussions that a rotating
machine is conceptually a simple device. It is simply a magnetic field-type,
lumped-parameter, electromechanical device whose principal properties can
be deduced by the straightforward techniques of Chapters 2 and 3. The many
constructional variations (multipole and polyphase) and the wide variety of

4.1.8
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possible excitations and characteristics lead to long and cumbersome, though
necessary, mathematical analysis.* The amount of mathematics required
should never be mistaken for conceptual complexity. Moreover, advantage
should always be taken of the orderly mathematical procedures made
possible by the symmetries that exist in machines.t

4.2 SALIENT-POLE MACHINES

The second geometrical configuration ofrotating machines to be considered
is that of the two-pole, single-phase, salient-pole machine illustrated in Fig.
4.2.1. This machine gets its name from the fact that one member (the rotor
in Fig. 4.2.1) has protruding or salient poles and thus the air gap is not
uniform around the periphery. The stator coil in Fig. 4.2.1 is shown lumped

Stator
magnetic

axis

totor
agnetic
axis

Fig. 4.2.1 Two-pole, single-phase, salient-pole machine with saliency on the rotor.

* See, for example, White and Woodson, op. cit., Chapters 3, 4, and 7 to 11.
t White and Woodson, op. cit., Chapter 4.
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Fig. 4.2.2 Rotor of a salient-pole, synchronous motor. Note the method in which the
coils are wound around the salient poles. (Courtesy of Westinghouse Electric Corporation.)

in two slots for simplicity. In practical machines the stator winding is distrib-
uted among several slots. The rotor winding in Fig. 4.2.1 is a fair representa-
tion of the method of winding salient rotors in practice, as indicated by the
constructional details of the rotor for a salient-pole synchronous motor in
Fig. 4.2.2. Another example of a salient-pole synchronous machine is shown
in Fig. 4.2.3. This is a multipole generator driven by a hydraulic turbine. An
example of a machine with saliency on the stator is the dc device in Fig.
4.1.27.

4.2.1 Differential Equations

Considering the system in Fig. 4.2.1 as an electrically linear, lumped-
parameter, magnetic field-type, electromechanical device along the lines of
Chapter 3, it is evident that the system is completely described when the
inductances (electrical terminal relations) are known. Moreover, power
conversion will occur only through inductances that depend on angular
position 0; thus to assess the effects of saliency on power conversion
properties it is necessary only to investigate the inductances.
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Fig. 4.2.3 Cutaway view of a hydroelectric generator. This is an example of a salient-pole,
synchronous machine. (Courtesy of General Electric Company.)

First, when it is assumed that the slots that carry the stator winding in
Fig. 4.2.1 cause negligible effects on the air-gap magnetic field, it is apparent
that the self-inductance L, of the rotor winding is independent of angle 0.
It is also evident that the mutual inductance and the self-inductance of the
stator winding depend on 0. Thus the electrical terminal relations can be
written as

A, = L,(O)i,+ L 7,(O)i,, (4.2.1)

, = L,,(O)i, + L,i,. (4.2.2)

Comparison of these expressions with the comparable ones for the smooth-
air-gap machine (4.1.1) and (4.1.2) shows that the major difference introduced
by saliency is the dependence of the stator self-inductance L, on angular
position 0, although an additional effect can occur in the form of the mutual
inductance L,(O). *

Consider first the stator self-inductance L,. From the symmetry of the
rotor structure in Fig. 4.2.1 it should be evident that the lowest space har-
monic is the second because turning the rotor 7r rad in 0 brings the inductance
to its original value. This inductance is a maximum at 0 = 0 because the

* In polyphase machines saliency also affects the mutual inductances between windings
on the nonsalient member. For an example of this and resulting forms see Section 4.2.2.
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magnetic field encounters the smallest reluctance and a minimum at 0 = T/2
because the magnetic field encounters the maximum reluctance. Thus the
stator self-inductance is expressible in general as

L,(0) = Lo + L2 cos 20 + L4 cos 40 + * - . (4.2.3)

In the design of ac salient-pole machines the salient-pole structure is shaped to
accentuate the cos 20 term and to minimize all other space harmonics.
Consequently, for the remainder of this treatment it is assumed that

L,(0) = LO + L, cos 20. (4.2.4)

This equation for inductance is often interpreted as representing the super-
position of a smooth air gap (Lo) and a periodically varying air gap due to
saliency (L4 cos 20).

To ascertain the form of the mutual inductance L,(0) we refer to Fig. 4.2.1
and reason physically. We recognize that reciprocity holds (Section 3.1.2c
of Chapter 3) and consider flux linkages with stator windings due to rotor
winding excitation by current of the direction indicated in Fig. 4.2.1. At the
same time, we remember that the stator winding is actually distributed in
many slots around the periphery to form a coil with the magnetic axis shown.
Rotor position 0 = 0 results in maximum positive flux linking the stator
winding, whereas rotor position 0 = ir yields maximum negative flux linkage.
The symmetry indicates that these two maxima are of equal magnitude.
As the rotor position 0 is varied from 0 to r through positive angles, the flux
linkage with the stator varies smoothly from the positive maximum to the
negative maximum. Variation of rotor angle from 0 to 7r through negative
angles gives exactly the same variation of flux linkages. Consequently, the
mutual inductance is expressible as a Fourier series of odd space harmonics,
exactly as it was in the smooth-air-gap machine in (4.1.4),

L,(0) = M1 cos 0 + M, cos 30 + M5 cos 50 + - . (4.2.5)

Although the forms of mutual inductance for the two machine types are the
same, it should be clear that for a given frame size the coefficients in (4.1.4)
will have different numerical values for the two cases.

For salient-pole ac machines the winding distribution on the member
without salient poles (the stator in Fig. 4.2.1) is designed to maximize MI
and minimize all other terms in (4.2.5), just as is done for smooth-air-gap
machines. For the remainder of this treatment it is assumed that this design
objective has been met and the mutual inductance is expressed as

L,(O) = M cos 0. (4.2.6)

Substitution of (4.2.4) and (4.2.6) into (4.2.1) and (4.2.2) and calculation

_~I 



Rotating Machines

of the mechanical torque of electric origin, using the techniques of Chapter 3
[see (g) of Table 3.1], yield

is = (L 0 + L 2 cos 20)i, + Mir cos 0, (4.2.7)

¾ = Mi, cos 0 + Lri,, (4.2.8)

T e = -isiM sin 0 - i,2L, sin 20. (4.2.9)

These terminal relations for the electromechanical coupling system can be
used with whatever external electrical and mechanical sources or loads are
connected to the machine terminals to write the differential equations for
the machine system. For example, if we specify the terminal constraints as
those given in Fig. 4.1.5, which include the parameters normally associated
with that machine alone, the differential equations derive from Kirchhoff's
voltage law and Newton's second law:

v, = R,i, + ", (4.2.10)
dt

vU = Rri' + .r, (4.2.11)
dt

d2 O dO dO/dt
T + Tm = Jr + Br- + Tor , (4.2.12)

dt 2  dt IdO/dt|

where (4.2.7) to (4.2.9) are used to express 4s, 2~, and Te. These equations
have exactly the same form as (4.1.9) to (4.1.11) for the smooth-air-gap
machine, as is to be expected. However, the terminal relations are different
for the two machines. Compare (4.2.7) to (4.2.9) for the salient-pole machine
with (4.1.6) to (4.1.8) for the smooth-air-gap machine. The sources in (4.2.10)
to (4.2.12), v,, v,, and Tm, are completely general and can be independent or
dependent on some variable.

4.2.2 Conditions for Conversion of Average Power

To establish conditions for average power conversion in a salient-pole
machine we assume excitation of the electromechanical coupling system by
ideal current and position sources as illustrated in Fig. 4.1.6. The sources are

i,(t) = I, sin cst, (4.2.13)

i,(t) = I, sin cort, (4.2.14)

O(t) = o(mt + 7, (4.2.15)

where I,, IIr, w,, wo, ,, and y are positive constants. Note that these con-
straints are the same as those we used with the smooth-air-gap machine
(4.1.12) to (4.1.14).
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The first term in the torque expressed by (4.2.9) has the same form as
(4.1.8) for the smooth-air-gap machine. Consequently, all the discussions of
average power conversion in Section 4.1.2 apply equally well to the first term
of (4.2.9). In order for the mutual inductance term of the torque in a salient-
pole machine to participate in average power conversion, one of the four
conditions of (4.1.18), which relates electrical excitation frequencies and
mechanical velocity, must be satisfied. This condition is

Wm, = ± os ± W0. (4.2.16)

The unique effect of salient poles on the power conversion process is
represented by the second term in (4.2.9). With the terminal constraints of
(4.2.13) to (4.2.15), the instantaneous mechanical power output of the cou-
pling system due to the second term in (4.2.9) is

Pm = -oWI, 2 L2 sin 2 
sot sin (2w~t + 2 y). (4.2.17)

The use of trigonometric identities allows us to write this expression in the
form

(O 2L2
pm m- {2 sin (2oJmt + 2y) - sin [2(wm + wo))t + 2 y]

4
- sin [2(•m - os)t + 2y]}. (4.2.18)

A sinusoidal function of time has an average value only when the coefficient
of t in its argument goes to zero. The first term in braces in (4.2.18) has an
average value when o, = 0, which is uninteresting because for this condition
the power conversion is zero. The second term has an average value when

m,ý+ a), = 0 (4.2.19)

and the third term has an average value when

C(o,- 0•, = 0. (4.2.20)

These two conditions are expressed in the compact form

C0or= ±Os, (4.2.21)

and when either condition is satisfied the average power converted is

pm<av) = sin 2y. (4.2.22)
4

Sufficient conditions for nonzero average power conversion are (4.2.21)
and sin 2y $ 0.

It is worthwhile to interpret this result in terms of rotating fields along the
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lines of Section 4.1.4. Recall that single-phase excitation of the stator winding
with a current of frequency w, yields two component field patterns rotating
in opposite directions with the angular speed o,. Thus each of the two con-
ditions of (4.2.21) is interpreted as the condition under which the salient-pole
structure is fixed in space with respect to one component of a stator rotating
field. As a result, it is reasonable to expect that the use of balanced polyphase
windings and balanced polyphase excitation, which produce a constant-
amplitude rotating field (see Section 4.1.4), with saliency can produce a
constant power conversion with no pulsating terms. Such is the case; in fact,
saliency is used in machines (synchronous and direct current) in which such a
result occurs. An example that illustrates how saliency affects the steady-
state behavior of polyphase synchronous machines is given in Section 4.2.4.

4.2.3 Discussion of Saliency in Different Machine Types

The conditions expressed by (4.2.16) and (4.2.21) are now used to assess
the usefulness of saliency in the principal machine types. We must recognize
that within the framework of our general treatment there are possibilities
for numerous unique machine types and many nonstandard machines are
built for special applications. Most of these machines can be analyzed by
using the general techniques developed here.

The simplest machine in which saliency is exploited is the reluctancemotor.
In the nomenclature of Fig. 4.2.1 a reluctance motor has a salient-pole
rotor, one or two stator windings, but no rotor winding. The stator windings
are excited by single-frequency alternating current. The only torque produced
by this machine is that due to saliency or the reluctance torque given by the
second term of (4.2.9) at a mechanical speed defined by (4.2.21). Thus the
reluctance motor is a synchronous motor because it converts power at only
one speed, o,. The steady-state energy conversion properties of a single-
phase reluctance motor were studied in Example 3.1.2. Because of poor
efficiency and power factor, reluctance motors are made in small sizes for
such applications as clocks and phonograph turntables. Like any other
synchronous machine, a reluctance motor has no starting torque and is
usually started as an induction motor.

Saliency is most often exploited to improve the performance of machines
that can operate successfully without it. To determine which machines can be
helped by saliency, we must know when (4.2.16) (smooth-air-gap) and (4.2.21)
(saliency) can be satisfied simultaneously with the same excitation. In one
case we set w, = 0 and w, = o-,, which yields a synchronous machine.
We consider this subject in some detail in Section 4.2.4.

Saliency is also useful in dc machines in which the stator excitation is
direct current (w, = 0) and the commutator produces rotor currents of
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fundamental frequency o, = co,, (see Section 4.1.6c). In this case the saliency
is on the stator and (4.2.21) is replaced by

,. = =•W,, (4.2.23)

which is the same form that (4.2.16) assumes with o), = 0. Thus saliency on
the stator of a dc machine can enhance the power conversion capability.
This is also true for commutator machines that operate on alternating current.

Although salient poles are sometimes used in small, single-phase induction
motors to simplify the construction and make the machines less expensive,
they are never used in large induction machines. As demonstrated in Section
4.1.6b, an induction machine has alternating current on both rotor and
stator. Moreover, the machine converts power only when the rotor is not in
synchronism with the stator-produced rotating field. Consequently, (4.2.16)
and (4.2.21) cannot be satisfied simultaneously and saliency in an induction
machine will produce only an oscillating power flow with no average value.
The attendant noise and vibration make saliency undesirable in an induction
machine.

4.2.4 Polyphase, Salient-Pole, Synchronous Machines

Salient poles are used in many synchronous machines; for example, all
large synchronous motors, synchronous condensers, and hydro generators
have them. It is therefore worthwhile to examine the effects of saliency on
steady-state machine performance. The results achieved with saliency are
compared with those obtained with a smooth-air-gap machine.

For the analysis we assume the balanced, two-phase, two-pole configura-
tion shown schematically in Fig. 4.2.4. As usual we show the stator coils
concentrated in two slots per phase for simplicity, but we realize that in an
actual machine the stator windings are distributed in many slots around the
periphery while maintaining the same relative symmetries with respect to
magnetic axes.

We have already written the electrical terminal relations for a salient-pole
machine with a single winding on both the rotor and stator in Section 4.2.1
[(4.2.7) and (4.2.8)]. These equations are still valid, except that saliency adds
an angular-dependent mutual coupling term between the two stator windings.
In a smooth-air-gap two-phase machine there is no mutual inductance
between the two stator windings. [See (4.1.19) and (4.1.20).]

To obtain the form of this mutual inductance between stator windings
we reason physically by using the configuration in Fig. 4.2.4. When the
rotor magnetic axis is aligned with the magnetic axis of either stator coil
(0 = 0, 7r/2, w, 37r/2), the flux produced by either coil is symmetrical with
respect to its magnetic axis and there is no net flux linking one stator coil

_~ ·111~·11~--·--Ll---------· 
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Stator a-winding
magnetic axis

ding
axis

Stator b-
winding
magnetic

axis

Fig. 4.2.4 Schematic representation of a salient-pole two-pole,
synchronous machine.

balanced two-phase

due to current in the other. Thus the stator mutual inductance L,s is

7T
L,,=O for O=n-,

2
n= 0, ±1, ±2, ±3,..... (4.2.24)

Now assume a current in stator coil a of the polarity shown. When 0 is in the
range (0 < 0 < rr/2), the salient poles distort the flux pattern due to ia,
and tend to concentrate it at the pole where the air gap is smallest. Thus for
(0 < 0 < 7r/2) the flux linkage with winding b on the stator is positive.
A similar argument shows that for the range (--r/2 < 0 < 0) the flux
linkage with winding b is negative. Using these facts, recognizing the machine
symmetries, and realizing that reciprocity applies, we write the stator-to-
stator mutual inductance as the Fourier series

L,,(0) = Ms2 sin 20 + Ms, sin 60 + M,,, sin 100 + • • •. (4.2.25)
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This expression is justified by making use of Fig. 4.2.4 to determine the
field patterns as functions of 0.

As discussed in Section 4.2.1, the winding distributions and salient-pole
shape are adjusted in ac machine design to accentuate the lowest space
harmonic and to minimize higher space harmonics in inductance. This is also
true of stator mutual inductance. To be consistent with the assumptions
made in Section 4.2.1 that this design objective has been met we simplify
(4.2.25) to the form

L,, = M, sin 20. (4.2.26)

This second harmonic variation in stator mutual inductance results from the
same distortion of flux pattern that causes the cos 20 term in stator self-
inductance indicated in (4.2.7). Furthermore, both stator windings have the
same number of turns and consequently we assume

M, = L2. (4.2.27)

This assumption is justified by a careful field analysis of the machine* and
is borne out in practice.

We now use (4.2.7) and (4.2.8) with (4.2.26) and (4.2.27) to write the
electrical terminal relations for the machine in Fig. 4.2.4:

A.. = (LO + L cos 20)ia, + L,i,, sin 20 + Mi, cos 0, (4.2.28)

A,, = Li., sin 20 + (Lo - L2 cos 2 0)i,, + Mi, sin 0, (4.2.29)

A, = Mi., cos 0 + Mi,, sin 0 + L,i,. (4.2.30)

In writing (4.2.29) we have replaced 0 with (0 - 1Tr/2) in (4.2.28) to obtain the
self-inductance and stator-to-rotor mutual inductance terms. This change
accounts for the angular difference of 7r/2 in the positions of the two stator
coils. This equation (4.2.29) could have been obtained by reasoning physi-
cally with Fig. 4.2.4 and using the assumptions we have for design objectives.

The use of (4.2.28) to (4.2.30) with the techniques of Chapter 3 [see (g)
of Table 3.1] leads to the mechanical terminal relation

T e = Mi,(i,, cos 0 - is, sin 0) - L 2 (i,. 2 
- ib,") sin 20

+ 2Li,,i,, cos 20. (4.2.31)

Equations 4.2.28 to 4.2.31 should be compared with (4.2.7) to (4.2.9) for a
single-phase, salient-pole machine to see the effects of adding the second phase
and with (4.1.35) to (4.1.38) for a smooth-air-gap, two-phase machine to see
the effects of adding saliency.

In our study of the steady-state characteristics of the salient-pole synchro-
nous machine we neglect stator winding resistances and mechanical losses

* White and Woodson, op. cit., pp. 180-190.
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and use the same excitations we had in Section 4.1.6a, namely balanced
two-phase currents on the stator,

i., = I. cos cot, (4.2.32)

ibs, = I sin wt, (4.2.33)
direct current on the rotor,

i, = I, (4.2.34)
and the position source

0 = wt + y. (4.2.35)

Like the smooth-air-gap machine in Section 4.1.6a, it can be verified by
direct substitution that there is constant flux linking the rotor winding,
hence no induced voltage. Thus we could have excited the field winding with
a constant-voltage source, as is usual in practice. It is convenient analytically,
however, to use the constant current of (4.2.34), and there is no loss of
generality in the steady-state analysis. For realistic transient analyses a
rotor winding voltage source with a series resistance must be used.

Substitution of (4.2.32) to (4.2.35) into (4.2.31) yields for the steady-state
instantaneous torque produced by the electromechanical coupling system,

To = MIr,[sin cwt cos (cot + y) - cos cot sin (wot + y)]

- LI,2[cos2 cot - sin2 wt] sin (2cot + 2y)

+ 2L2IJ2 cos cot sin ot cos (2tot + 2y). (4.2.36)

The use of appropriate trigonometric* identities allows the simplification of
this expression to the form

Te = - MIJ, sin y - L,2I, sin 2 y. (4.2.37)

This instantaneous torque is constant because the stator windings with
balanced excitation produce a constant amplitude rotating flux wave and
the salient-pole rotor is at an instantaneous position fixed with respect to this
rotating field.

Comparison of (4.2.37) with (4.1.43) shows that saliency has added a term
to the torque expression for a smooth-rotor machine.

Neglecting stator (armature) winding resistance, the terminal voltage of
stator winding a is

va, = (4.2.38)
dt

*sin x cos y - cos x sin y = sin (x - y); cos 2x = cos2x - sin 2 x; 2 cos axsin x = sin 2z.
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Substitution of (4.2.32) to (4.2.35) into (4.2.28) and that result into (4.2.38)
yields

d
va, = I, - {[L, + L 2 cos (2wt + 2y)] cos ot + L2 sin ot sin (2awt + 27))

dt

+ MI, d [cos (cot + y)]. (4.2.39)
dt

The use of trigonometric identities reduces this equation to the form

d
va, =- [LoI, cos aot + L,I, cos (Ot + 2 y) + MI, cos (wt + 7)]. (4.2.40)

dt

We define the complex quantities

va, = Re (feIt), i,, = Re (I,ejem), cos (oot + a) = Re (e•te 'ia)

and use the standard techniques of steady-state ac circuit theory to write

s, = joLoI, + jcwLI,e j2 + jwMIrejy. (4.2.41)

We define the complex voltage amplitude 4f generated by field (rotor)
current, as we did for the smooth-air-gap machine in (4.1.19), as

Ef = jMMI,e"j (4.2.42)
and rewrite (4.2.41) as

V, = jwLoI, + jwL 21,e'j2 + E4. (4.2.43)

This is the same form as (4.1.50) for the smooth-air-gap machine with the
addition of the second term due to saliency.

Because of this term, it is not possible to draw a simple equivalent circuit
for the salient-pole machine as we did in Fig. 4.1.12 for the smooth-air-gap
machine. We can, however, draw vector diagrams to show the relations among
variables as we did for the smooth-air-gap machine in Fig. 4.1.13. These
diagrams, which illustrate generator and motor operation in the salient-pole
machine, appear in Fig. 4.2.5. Note that the additional term due to saliency
does not greatly change the over-all nature of the vector diagram.

When analyzing salient-pole synchronous machines with conventional
nomenclature, the sum of the two reactance voltages (jcoLoI, + jwL 2Ie

j z2 ) is
normally decomposed into two components, one parallel to P, called the
direct-axis reactance voltage, and one perpendicular to 4, called the quad-
ratureaxis reactance voltage.*

To complete the description of the steady-state properties of salient-pole
machines we need to assume stator excitation from constant-amplitude

* See, for example, Fitzgerald and Kingsley, op. cit., Chapter 5.
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voltage sources, as is done in practice, and to express the torque Te in terms
of the terminal voltage. It can be established quite easily from the vector
diagram in Fig. 4.2.5a or 4.2.5b that

w(Lo - L,)I, sin y = V, sin 6

wo(L 0 + L,)I, cos y = VI cos 6 - Ef,

(4.2.44)

(4.2.45)
where

E= I£f1,

6 is defined in Fig. 4.2.5 and is positive in the counterclockwise direction.
The use of (4.2.44) and (4.2.45) to eliminate the angle y and (4.2.42) for E,
in (4.2.37) lead to the desired form of the torque equation

EV, L2 s2'T - Ff1 sin 6 L sin 26.
o2(Lo + L2 ) w• (L0

2 - L 2
2)

(4.2.46)

When we compare this result with (4.1.52) for the smooth-air-gap machine,
we find that the first term of (4.2.46) is the same form as (4.1.52). The second
term in (4.2.46) depends solely on the presence of saliency. When saliency is
removed, L2 = 0, the second term in (4.2.46) goes to zero, and the first term
reduces to (4.1.52) for the smooth-air-gap machine.

The two terms of (4.2.46) are plotted separately with dashed lines and the

Imaginary
Imaginary

axis

Y>0, a >0

Real
axis

'y<0, B<0
(b)

Fig. 4.2.5 Vector diagrams showing relations among variables in a salient-pole syn-
chronous machine. Diagrams drawn for L 0 = 3L2 : (a) generator operation; (b) motor
operation.

I



Torque Te

Fig. 4.2.6 Torque versus torque angle for a salient-pole synchronous machine. Curves
plotted for Lo = 5L2 and E, = V,.

total torque in a solid line in Fig. 4.2.6. These curves are plotted for

Lo = 5L,,

which is typical for water-wheel generators,* and for

E, = V,.

Note from Fig. 4.2.6 that the presence of saliency has increased both the
pull-out torque and the torque produced at small angles, which is quite
important for transient behavior.

It should be clear from what we have done so far in this section that
vector diagrams and V-curves can be drawn for salient-pole machines and
that they will be similar to those for the smooth-air-gap machine shown in

* See, for example, Fitzgerald and Kingsley, op. cit., Table 5-1, p. 237. In their nomen-
clature Xd = o(L o + L2) and X, = m(LO - L2).
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Stator

tis

Fig. 4.2.7 Four-pole, single-phase, salient-pole machine with saliency on rotor.

Fig. 4.1.15. The process is straightforward and the interpretation is the same;
consequently it is not repeated here.

All of the discussions of polyphase machines and excitations in Section
4.1.7 and of the number of poles in Section 4.1.8 apply equally well to salient
pole machines, with the understanding that there is one polar projection per
pole in a salient-pole machine; for example, Fig. 4.2.7 is a schematic drawing
of a four-pole, single-phase machine.

In our discussions of synchronous machines in this section and in Section
4.1.6a we have made the point that a synchronous machine will produce a
time-average torque and convert time-average power only at synchronous
speed. Consequently, a synchronous machine alone can produce no starting
torque. This is no problem with generators, but it is a problem with motors
and synchronous condensers. A few machines are started by auxiliary
starting motors, but the vast majority are started as induction machines.
Conducting bars are mounted axially in the pole faces and shorted together
at the ends to form a squirrel-cage winding, as shown for a motor in Fig.
4.2.2. Such a winding is conventionally called a damper winding or amortisseur
winding because, in addition to acting as an induction motor winding for
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starting, it also damps out transients in torque angle. Operation as an induc-
tion motor brings the speed to near synchronous speed. The torque oscillations
resulting from the interaction between the rotor field due to dc excitation
and the rotating stator field occur at the slip frequency, which is quite low.
This allows the oscillating torque ample time to accelerate the rotor inertia
and pull it into step at synchronous speed during one half cycle. In a turbo-
generator the solid steel rotor provides enough induction-motor action
for adequate damping and no separate damper winding is used (see Fig.
4.1.10).

4.3 DISCUSSION

At this point it is worthwhile to re-emphasize several points made in this
chapter.

First, although we have treated two geometrical configurations, the
techniques are applicable to other rotating machines by simple extensions
and modifications. Thus we should understand the basic concepts that are
quite simple physically.

Second, we have considered in some detail the steady-state characteristics
of some standard machine types for two purposes: to illustrate how the
transition is actually made from basic concepts to practical descriptions of
steady-state terminal behavior and to present the characteristics of some of
the most important rotating machines.

Next, when the reader thinks back through the material presented in this
chapter he will realize that the basic concepts of energy conversion in rotating
machines are quite simple, though the mathematics sometimes becomes
lengthy. As we indicated earlier, the symmetries that exist in rotating ma-
chines have led to orderly mathematical procedures forhandling the manipula-
tion. Thus rotating machine theory may appear formidable at first glance,
but we, you and the authors, know that this is not so.

Finally, we want to state again that among all electromechanical devices,
past, present, and forseeable future, rotating machines occur in the greatest
numbers and in the widest variety of sizes and types. Thus they form an
important part of any study of electromechanics.

PROBLEMS

4.1. The object of this problem is to analyze a physical configuration that yields the
electrical terminal relations of (4.1.6) and (4.1.7) almost exactly. The system of Fig. 4P.1
consists of two concentric cylinders of ferromagnetic material with infinite permeability
and zero conductivity. Both cylinders have length I and are separated by the air gap g. As
indicated in the figure, the rotor carries a winding of N, turns distributed sinusoidally and
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N sin 02(R +g)

into paper

-- Ni, sin (;p - 0)

Fig. 4P.1

having negligible radial thickness. The stator carries a winding of N, turns distributed
sinusoidally and having negligible radial thickness. Current through these windings leads
to sinusoidally distributed surface currents as indicated. In the analysis we neglect the
effects of end turns and assume g << R so that the radial variation of magnetic field can be
neglected.

(a) Find the radial component of air-gap flux density due to stator current alone.
(b) Find the radial component of air-gap flux density due to rotor current alone.
(c) Use the flux densities found in parts (a) and (b) to find A, and Ar in the form of

(4.1.6) and (4.1.7). In particular, evaluate L,, L,, and M in terms of given data.

4.2. Rework Problem 4.1 with the more practical uniform winding distribution representable
by surface current densities

{. Nsis(N
i (R + g)

for O< i < r,

for n < < 27r,

for O<(•y- O) <r,

for r < (o -- ) < 2r.
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In part (c) you will find the mutual inductance to be expressed as an infinite series like
(4.1.4).

43. With reference to Problems 4.1 and 4.2, show that if either the rotor winding or the
stator winding is sinusoidally distributed as in Problem 4.1, the mutual inductance contains
only a space fundamental term, regardless of the winding distribution on the other member.

4.4. The machine represented schematically in Fig. 4P.4 has uniform winding distributions.
As indicated by Problem 4.2, the electrical terminal relations are ideally

, = LiO + i -cosnO,
nodd n

A = Li r + i, M cos nO,
n odd

where L,, Lr, and Mo are constants. We now constrain the machine as follows: if= I =
constant; 0 = ct, w = constant, stator winding open-circuited i, = 0.

(a) Find the instantaneous stator voltage v,(t).
(b) Find the ratio of the amplitude of the nth harmonic stator voltage to the amplitude

of the fundamental component of stator voltage.
(c) Plot one complete cycle of v,(t) found in (a).

Fig. 4P.4

4.5. Calculate the electromagnetic torque TO of (4.1.8) by using the electrical terminal
relations (4.1.6) and (4.1.7) and the assumption that the coupling system is conservative.

4.6. A schematic representation of a rotating machine is shown in Fig. 4P.6. The rotor
winding is superconducting and the rotor has moment of inertiaJ. The machine is constructed
so that the electrical terminal relations are A, = L,i, + Mi r cos 0, A, = Mi, cos 0 + Li,.
The machine is placed in operation as follows:

(a) With the rotor (r) terminals open-circuited and the rotor position at 0 = 0, the
current i, is raised to 1,.

(b) The rotor (r) terminals are short circuited to conserve the flux Ar, regardless of
0(t) and i,(t).

(c) The current i, is constrained by the independent current source i(t).

__··_I·__ _·_·
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i(t)I

Fig. 4P.6

Write the equation of motion for the shaft with no external mechanical torque applied.
Your answer should be one equation involving 0(t) as the only unknown. Damping may
be ignored.
4.7. A smooth-air-gap machine with one winding on the rotor and one on the stator (see
Fig. 4.1.1) has the electrical terminal relations of (4.1.1) and (4.1.2).

A, = Li, + Lsr(O)ir, (4.1.1)

4,= L8,(0)i, + Li,. (4.1.2)

The mutual inductance L,,r() contains two spatial harmonics, the fundamental and the
third. Thus L,,r() = M1 cos 0 + M s cos 30, where M1 and M s are constants.

(a) Find the torque of electric origin as a function of i, i,, 0, M1 , and Ms.
(b) Constrain the machine with the current sources i, = I, sin co,t, i, = Irsin wrt and

the position source 0 = w,t + 7, where I,, I,, w,, w, and y are constants. Find
the values of w, at which the machine can produce an average torque and find an
expression for the average torque for each value of ow,. found.

4.8. The smooth-air-gap machine of Fig. 4.1.1 with the terminal relations given by (4.1.6)
to (4.1.8) is constrained as follows: single-frequency rotor current, i, = I,sinort; stator
current containing fundamental and third harmonic, i, = I,l sin ost + I,,sin 3ow,t; and
the position source 0 = cut + y, where I. 181, s83,IsO, c,, and y are constants. Find the
values of wo,at which the machine can produce an average torque and give an expression
for the average torque for each value of Co found.

4.9. Compute the torque T 6of (4.1.23) by using the electrical terminal relations of (4.1.19)
to (4.1.22) and the assumption that the coupling system is conservative.

4.10. A smooth-air-gap machine has a two-phase set of stator windings, each with a total
of N turns. The windings are distributed sinusoidally and currents in them produce surface
current densities as indicated in Fig. 4P.10. When g << R, the radial flux density produced
in the air gap by each winding (see Problem 4.1), is

Bro N cos V,
2g

-oNi.Br - Nib sin y.
2g
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Magnetic axis of
stator a winding

- x+

Fig. 4P.10

(a) For the two-phase excitation i4 = I cos wt, ib = Ibsin owt, which is unbalanced
in amplitude, find the total radial flux density.

(b) Express the answer to part (a) as a sum of two traveling waves. Identify the
forward and backward components and show that their respective angular
velocities are wf = w and Wb = --w.

(c) Evaluate the ratio of the amplitudes of backward and forward waves. Show that
the ratio -k 0 for a balanced excitation (i.e., consider the limit for Ib - Ia).

(d) Discuss how to achieve a constant amplitude backward wave only. This is the
method used to reverse the direction of rotation of an ac machine.

4.11. Rework Problem 4.10 and replace the excitation of part (a) with ia = Icos cut,
ib = Isin (wt + f). This is a two-phase set of currents, balanced in amplitude but unbalanced
in phase. For part (c) balanced excitation occurs when P -- 0.
4.12. Use (4.1.53) as the starting point to show that for steady-state operation the electrical
power into a two-phase synchronous machine is equal to the mechanical power delivered,
as expressed by (4.1.54).

4.13. The two-phase equivalent of a large turbogenerator of the type now being used to
generate power is as follows:

2-phase
60 Hz, 2-pole
Rated terminal voltage, 17,000 V rms

· ·II_ ·~I 
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Rated terminal current, 21,300 A rms
Rating, 724 x 106 VA
Rated power factor, 0.85
Armature inductance, L, = 4.4 x 10-3 H
Maximum value of armature-field mutual inductance, M = 0.030 H
Rated field current, If = 6100 A

Calculate and plot a family of V-curves for this generator. The V-curves are plots ofarmature
current versus field current at constant power and constant terminal voltage (see Fig.
4.1.15). Your family of curves should be bounded by rated armature and field current,
zero-power-factor, and 900 torque angle. Indicate which of these limits the curves. Also
indicate on your plot the 0 and 0.85 power factors, both leading and lagging, and the unity
power factor. Plot curves for 0, 1, J, 1, and full rated load of 615 MW and for rated armature
voltage. It will be convenient to normalize armature current to the rated value and field
current to that value necessary to produce rated terminal voltage with the armature
open-circuited.

4.14. It is customary to define the complex power produced by an alternator as P +-jQ,
where P is real power and Q is reactive power. For a two-phase machine with balanced
currents and voltages and a phase angle 0

va = Re (J7eijt), ia= Re (ieim),

vb = Re (--jPeJ~t), ib= Re (--jleWi'),

where 17 = V and I = le-J4. The complex power supplied by both phases is P + jQ =
Pl* = VI cos b + jVI sin 0. By convention Q > 0 when I lags 7"(the load is inductive).

A capability curve for an alternator is a plot of P versus Q for constant armature voltage
and for maximum allowable operating conditions defined by rated armature current,
rated field current, or steady-state stability (torque angle r approaching a critical value
which we take to be 900). Plot the capability curve for the alternator described in Problem
4.13 for operation at rated voltage. Indicate on your plot the limit that determines that
part of the curve. It is useful to normalize both P and Q to the rating of the alternator.

4.15. An automobile speedometer consists of a permanent magnet mounted on a rotating
shaft connected to the automobile transmission. An aluminum "drag cup" with a pointer
mounted on it is placed around this rotating magnet. The cup is free to rotate through an
angle cbut is restrained by a torsion spring that provides a torque T, = -Kry. The angular
position of the cup can be used to determine the angular velocity of the shaft connected to
the magnet and therefore the speed of the automobile. The model to be used in analyzing
the speedometer is illustrated in Fig. 4P.15. The permanent magnet is represented by a
coil excited by a constant-current source. The drag cup is simulated by two coils shunted
by resistances. These coils are attached to a rotatable frame, which in turn is restrained by
the torsion spring. An appropriate electrical model of the coupling field is

A1 = Mi. cos ( V- y)+ Lil,

A2 = Mi3 sin ( - ) + Li2,

A3 = L3i3 + Mi1cos (0 - v,)+ Mi2 sin ( - ).

Assuming that the rotational velocity of the shaft is constant (i.e., the speed of the car is
constant), find the deflection of the rotatable frame (of the speedometer pointer) as a
function of the shaft rotational velocity q&.You may assume that the device is designed in
such a way that

L <<IRil.
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Fig. 4P.15

4.16. For nomenclature, refer to Fig. 4.1.17. The two-phase equivalent of a large, two-pole,
polyphase, 60-Hz induction motor has the following parameters for operation at 60 Hz:
Rr = 0.100 ohm, oM = 4.50 ohms, and w,(L8 - M) = c,(L, - M) = 0.300 ohm.
Neglect armature resistance. For operation at a constant amplitude of armature voltage
V, = /2 500 V peak, calculate and plot torque, armature current, volt-ampere input,
electrical power input, and mechanical power output as functions of mechanical speed for
the range 0 < wco < c, = 120w rad/sec.

4.17. The induction motor of Problem 4.16 is driving a fan load with the torque speed
characteristic Tm = --Bwa s , where B = 7.50 x 10-6 N-M secS/rads. Assume steady-state
operation.

(a) For operation with balanced armature voltage of V, = Vi500 V peak calculate
the steady-state slip, mechanical power into the fan, electrical power input, and
power factor.

(b) Calculate and plot the quantities of part (a) as functions of armature voltage for
a range V2-450 < V, < V2'550 V peak.

4.18. This problem is a version of the machine analysis in Problem 4.1 but with a three-
phase winding on the stator. The geometry is illustrated in Fig. 4P.18; N , is the total number
of turns on each stator phase and Nr is the total number of turns in the rotor winding. The

_·_ 1_ 1 1_ _·_- ------------ __I
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Magnetic axis of
a-stator winding

Fig. 4P.18

surface current densities produced by the three armature currents on the surface at R + g are

Nio
K, = i z sin V,

2(R + g)

Kb =(.z Nb 2n

2(R + g) sin 3

K, = i, NJN, sin V 47)
2(R + g) 3

The surface current density due to rotor current on the surface at R is

K, = i z "1r sin (r - 0).
2R

Assumeg << R so that there is no appreciable variation in the radial component of magnetic
field across the air gap.

(a) Find the radial flux density due to current in each winding.
(b) Find the mutual inductance between the a and b windings on the stator.
(c) Write the electrical terminal relations for the machine.
(d) Find the torque T' of electrical origin.

"~-~'? ·
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4.19. Consider the machine in Problem 4.18 with the stator excitations

i, = I cos wt,

i= IbCOS (t - 2

ic= ccos 4t-- .

(a) Show that the radial component of air-gap flux density is expressible as a com-
bination of two constant-amplitude waves, one rotating in the positive 0-direction
with the speed cw and the other rotating in the negative 0-direction with speed ow.

(b) Show that when Ia = Ib = I the amplitude of the wave traveling in the negative
0-direction goes to zero.

4.20. A four-pole smooth-air-gap machine has a two-phase set of stator windings, each
with a total of N turns. The windings are distributed sinusoidally and currents in them
produce surface current densities as indicated in Fig. 4P.20. When g << R, the radial flux
density produced in the air gap by each winding is (see Problems 4.1 and 4.10)

PoNia
Bra = cos 2py,

2g

Brb = sin 2p.
2g

(a) For the two-phase excitation, i, = Ia cos wt, ib = Ibsin wt, which is unbalanced
in amplitude, find the total radial flux density.

(b) Express the answer to (a) as a sum of two constant-amplitude traveling waves.

24,

Fig. 4P.20
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Identify the forward and backward components and show that their respective
angular velocities are coi = cu/2 and cmo= --o/2.

(c) Show that the amplitude of the backward wave goes to zero when Ib = I.and
that the amplitude of the forward wave goes to zero when Ib = --I.

4.21. Rework Problem 4.20 for a p-pole-pair machine for which the component radial
air-gap flux densities are

Br - cospvy,
2g

FoNibBrb = sinpy.
2g

Assume the same excitation as in part (a) of Problem 4.20. In part (b) the forward and
backward waves have angular velocities wc= colp and cob = -w-op.
4.22. Derive the electromagnetic torque of (4.2.9), starting with the electrical terminal
relations of (4.2.7) and (4.2.8) and the assumption that the coupling system is conservative.

4.23. The salient-pole, synchronous machine of Fig. 4P.23 is electrically linear and lossless
and has a terminal inductance expressed as

L= L
(1 - 0.25 cos 40 - 0.25 cos 80) '

where Lo is a positive constant. This is an alternative mathematical representation to the
form given by (4.2.3).

(a) Describe briefly why the dependence of this inductance on 0 is physically
reasonable.

(b) Find the torque of electric origin Teas a function of flux linkage A,angle 0, and
the constants of the system.

(c) As shown in Fig. 4P.23, the terminals are excited by a sinusoidal voltage source
such that the flux Ais given by A(t) = A ocos ot, where A o and co are positive
constants. The rotor is driven by a constant-angular-velocity source such that
O(t) = Ot + 6, where 0 and 6 are constants. Find the values of Q,in terms of the
electrical frequency co, at which time-average power can be converted by the
machine between the electrical and mechanical systems.

W)

I
Fig. 4P.23
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4.24. The two-phase equivalent of a salient-pole, synchronous motor has the following
parameter values and ratings [see (4.2.28) to (4.2.30) for definitions]

2-phase 60 Hz
Rated output power, 6000 hp
Power factor, 0.8 leading
Rated armature voltage, 3000 V rms
Voltage coefficient, oM = 350 V/A
Direct axis reactance, o(Lo + L,) = 4 ohms
Quadrature axis reactance, w(Lo - L2) = 2.2 ohms
(a) Find the field current necessary to give maximum rated conditions at rated

voltage. This is rated field current.
(b) Calculate and plot a family of V-curves for loads of 6000, 3000, and zero hp and

rated voltage; V-curves are plots of armature current as a function of field current
for constant load power (see Problem 4.13). Indicate the factor that limits the
extent of the plot: rated armature current, rated field current, or steady-state
stability (pull-out torque is approached).

4.25. As discussed at the end of Section 4.1.6a, synchronous condensers are essentially
synchronous machines operating with no shaft torque. They are used for power-factor
correction and they are conventionally of the salient-pole type of construction. Start with
(4.2.41), assume zero shaft torque [y = 0 from (4.2.37)] and operation at constant armature
voltage amplitude, and construct vector diagrams to show the machine appearing capacitive
and inductive.

4.26. This is a problem that involves the use of a synchronous condenser to correct power
factor in a power system. The correction is actually achieved by using the synchronous
condenser to regulate voltage. We consider one phase of a balanced two-phase system. In
Fig. 4P.26a a power system feeds a steady-state load which has admittance Ye-jO as shown.

jx,

vs

t,

(b)

Fig. 4P.26
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The Thevenin equivalent circuit of the system, as viewed from the load, is the source P,
in series with the inductive reactancejX,. To fix ideas assume the following parameters and
excitations: V8 = v%2 100,000 V peak, X, = 10 ohms, Y = 0.01 mho.

(a) Find the ratio of the magnitudes of the load voltage Vand the source voltage V,
for 4 = 0 and 0 = 45 degrees.

(b) Now a synchronous condenser is connected across the load as shown in Fig.
4P.26b and draws current I. Find the volt-ampere rating required for the syn-
chronous condenser to make the ratio IPIII l", equal to unity for each case in
part (a). Compare each with the real power drawn by the load.

4.27. A two-phase, 60-Hz, salient-pole, 2-pole, synchronous motor has the following
ratings and constants:

Rated output power, 1000 hp
Rated armature volts, V2 1000 V peak
Rated power factor, unity
Direct axis reactance, co(Lo + L2) = 3.0 ohms
Quadrature axis reactance, w(Lo - L2) = 2.0 ohms
Speed voltage coefficient, woM = 150 V/A

One phase
of armature

voltage supply

0-

Fig. 4P.27

(a) The field winding of the motor is supplied from one phase of the supply by a
full-wave bridge rectifier as shown in Fig. 4P.27. The field winding inductance is
large enough that only the dc component of field voltage need be considered.
Calculate the total field circuit resistance Rf necessary to achieve unity-power-
factor operation at rated voltage with 1000 hp load.

(b) Calculate and plot the torque angle 6 as a function of armature supply voltage
from 10 per cent above rating down to the value at which the motor can no longer
carry the load.

4.28. The two-phase equivalent of a large, salient-pole, 72-pole, water-wheel generator of
the type now being used has the following constants and ratings:

Rating, 200 x 106 V-A
Frequency, 60 Hz
Power factor, 0.85 lagging
Rated terminal voltage, 10,000 V rms
Rated armature current, 10,000 A rms
Armature inductance, L, = 2.65 x 10- 3 H

L, = 0.53 x 10- 3 H
Maximum armature-field mutual inductance, M = 0.125 H
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(a) Calculate the field current necessary to achieve rated conditions of armature
voltage, current, and power factor.

(b) Plot a capability curve for this generator. See Problem 4.14 for a description of a
capability curve. In this case the stability limit of maximum steady-state torque
will occur for 6 < 900 (see Fig. 4.2.6).

4.29. Figure 4P.29 shows a pair of grounded conductors that form the rotor of a proposed
rotating device. Two pairs of fixed conductors form the stator; one pair is at the potential

Fig. 4P.29

tes

Fig. 4P.30



178 Rotating Machines

v1 and supports a total charge ql; the other is at the potential v2 and supports the total
charge qg. Given that q, = Co(1 + cos 20)v1 , q2 = Co(l + sin 20)v2, where Co is a given
positive constant,

(a) what is the electrical torque exerted on the rotor in the 0 direction?
(b) The voltages v1 and v2 are now constrained to be v1 = Vo cos wt, v, = Vo sin cit.

Under what condition(s) will the device produce a time-average torque?
(c) Under the condition(s) of (b), what is the time-average torque?

4.30. A pair of capacitor plates is attached to a rotating shaft in such a way that when 0 is
zero they are directly opposite a pair of fixed plates. It is assumed that the variation in
capacitance can be approximately described by the relation C = Co + C1 cos 20. If a
potential difference v(t) = Vo sin wot is applied to the plates through a slip ring, what are
the shaft rotational velocities at which the device can behave like a motor?



Chapter 5

LUMPED-PARAMETER
ELECTROMECHANICAL DYNAMICS

5.0 INTRODUCTION

The representation of lumped-parameter electromechanical systems by
means of mathematical models has been the subject of the preceding chapters.
Our objective in this chapter is to study their dynamical behavior. Mathe-
matically, we are interested in the solution of differential equations of
motion for given initial conditions and with given driving sources. Physically,
we are interested in important phenomena that occur in electromechanical
systems.

It is clear from previous examples that the differential equations that
describe electromechanical systems are in most cases nonlinear. Consequently,
it is impossible to develop a concise and complete mathematical theory, as is
done for linear circuit theory. We shall find many systems for which we can
assume "small-signal" behavior and linearize the differential equations.
In these cases we have available to us the complete mathematical
analysis developed for linear systems. If exact solutions are required for
nonlinear differential equations, each situation must be considered separately.
Machine computation is often the only efficient way of obtaining theoretical
predictions. Some simple cases however, are amenable to direct integration.
The physical aspects of a given problem often motivate simplifications of the
mathematical model and lead to meaningful but tractable descriptions.
Hence in this chapter we are as much concerned with illustrating approxima-
tions that have been found useful as with reviewing and expanding funda-
mental analytical techniques.

Lumped-parameter systems are described by ordinary differential equations.
The partial differential equations of continuous or distributed systems are
often solved by a reduction to one or more ordinary differential equations.
Hence many concepts used here will prove useful in the chapters that follow.
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Similarly, the physical behavior of a distributed system is sometimes most
easily understood in terms of lumped parameter concepts. Examples discussed
in this chapter are in many cases motivated by the physical background that
they provide for more complicated interactions to be considered later.

Because the mathematics of linear systems is comparatively simple,
we begin our study of the dynamic behavior of lumped-parameter electro-
mechanical systems by considering the several types of system for which a
linear model provides an adequate description. We shall then consider the
types of system that are basically nonlinear and for which the differential
equations can be integrated directly.

5.1 LINEAR SYSTEMS

We have stated that electromechanical systems are not usually described by
linear differential equations. Many devices, however, called incremental-
motion transducers, are designed to operate approximatelyas linear systems.
Moreover, meaningful descriptions of the basic properties of nonlinear
systems can often be obtained by making small-signal linear analyses.
In the following sections we develop and illustrate linearization techniques,
linearized models, and the dynamical behavior of typical systems.

5.1.1 Linear Differential Equations

First, we should recall the definition of a linear ordinary differential
equation.* An nth-order equation has the form

d"r dn-xx
+ AI(t) + ... + A,(t)x = f(t), (5.1.1)

dt" dt"-1

where the order is determined by the highest derivative. Note that the
coefficients A,(t) can in general be functions of the independent variable t.
If, however, the coefficients were functions of the dependent (unknown)
variable z(t), the equation would be nonlinear. The "driving function"
f(t) is a known function of time.

The "homogeneous" form of (5.1.1) is provided by making f(t) = 0.
There are n independent solutions x,(t) to the homogeneous equation. The
general solution to (5.1.1) is a linear combination of these homogeneous
solutions, plus a particular solution x,(t) to the complete equation:

X(t) = c1lx(t) + ... + cXn(t) + ,(t). (5.1.2)

Although (5.1.1) is linear, it has coefficients that are functions of the

* A review of differential equations can be found in such texts as L. R. Ford, Differential
Equations, 2nd Ed., McGraw-Hill, New York, 1955.
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independent variable and this can cause complications; for example, if
f(t) is a steady-state sinusoid of a given frequency, the solution may contain
all harmonics of the driving frequency. Alternatively, if f(t) is an impulse,
the response varies with the time at which the impulse is applied. These
complications are necessary in some cases; most of our linear systems,
however, are described by differential equations with constant coefficients.
For now we limit ourselves to the case in which the coefficients A, = a, =
constant, and (5.1.1) becomes

d__(t) dn-xZ(t)
dnX + a + " ' - + anx(t) = f(t). (5.1.3)
dt" dtn- 1

The solution to equations having this form is the central theme of circuit
theory.* The solutions xs,(t) to the homogeneous equation, when the co-
efficients are constant, are exponentials e*t, where s can in general be complex;
that is, if we let

X(t) = ce"t  (5.1.4)

and substitute it in the homogeneous equation, we obtain

(s," + alsr-' + " + a.) ce"'t = 0 (5.1.5)
i=1

and (5.1.4) is a solution, provided that the complex frequencies satisfy
the condition

sin + als' - 1 + " + a7 = 0. (5.1.6)

Here we have an nth-order polynomial in s, hence a condition that defines
the n possible values of s required in (5.1.4). The frequencies s, that satisfy
(5.1.6) are called the natural frequencies of the system and (5.1.6) is sometimes
called the characteristic equation.t

Many commonly used devices are driven in the sinusoidal steady state.
In this case the driving function f(t) has the form

f(t) = Re [Pee'"]. (5.1.7)

Here P is in general complex and determines the phase of the driving signal;
for example, if P = 1,f(t) = cos cot, but, if P = -j,f(t) = sin cot. To find

* See, for example, E. A. Guillemin, Theory of Linear Physical Systems, Wiley, New York,
1963 (especially Chapter 7).
t If the characteristic equation has repeated roots, the solution must be modified slightly,
see, for example, M. F. Gardner and J. L. Barnes, Transients in Linear Systems, Wiley,
New York, 1942, pp. 159-163.

____._ I_
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the particular solution with this drive we assume

x,(t) = Re [Lei' • ] (5.1.8)

and substitute into (5.1.3) to obtain

Re {e' t[k((jwo)n + al(jo)'- 1 + . . + a,n) - ]} 0. (5.1.9)

It follows that (5.1.8) is the particular solution if

I = (5.1.10)
(joa) + a1(jw)"- 1 + . --+ an

Note that the natural frequencies (5.1.6) are the values of jw in (5.1.10)
which lead to the possibility of a finite response k when / = 0; thus the
term natural frequency.

The general solution is the sum of the homogeneous solution and the
driven solution (5.1.4) and (5.1.8):

x(t) = cie' + Re . (5.1.11)i= + jo) n + a1(jco) n- 1 + "'" + an]

Given n initial conditions [e.g., x(0), (dx/dt)(0), ... , (d'-zx/dt'-l)(0)], the
constants c, can be evaluated. The first term in (5.1.11) is the transient part
of the solution and the second term is the driven or steady-state part. If the
system is stable (i.e., if all the si have negative real parts), the transient term
in (5.1.11) will damp out. After a long enough time the first term will become
small enough to be neglected. Then the system is said to be operating in the
sinusoidal steady state and the response is given by the second term alone.
When we wish to calculate the sinusoidal steady-state response, we find only
the particular solution.

5.1.2 Equilibrium, Linearization, and Stability

We have already stated that useful informaton can be obtained about many
electromechanical systems by making small-signal linear analyses in the
vicinity of equilibrium points. In this section we introduce the concept of
equilibrium and illustrate how to obtain small-signal, linear equations. In
the process we shall study the nature of the small-signal behavior and define
two basic types of instability that can occur in the vicinity of an equilibrium
point.

5.1.2a Static Equilibrium and Static Instability

In general, the term equilibrium is used in connection with a dynamical
system to indicate that the motion takes on a particularly simple form;
for example, a mass M, constrained to move in the x-direction and subject
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to a forcef(x) will have a position x(t) predicted by the equation [see (2.2.10)
of Chapter 2]

M -= f(x). (5.1.12)
dt

We say that the mass is in equilibrium at any point x = X such thatf(X) = 0.
Physically, we simply mean that at the point x = X there is no external force
to accelerate the mass, hence it is possible for the mass to retain a static
position (or be in equilibrium) at this point.

The word equilibrium is used to refer not only to cases in which the
dependent variables (x) take on static values that satisfy the equations of
motion but also to situations, such as uniform motion, in which the general
(nonlinear) equations of motion are satisfied by the equilibrium solution.
Equilibria of this type were of primary interest in Chapter 4, in which the
steady-state behavior of rotating magnetic field devices was considered.

Small perturbations from the equilibrium positions are predicted approxi-
mately by linearized equations of motion, which are found by assuming that
the dependent variables have the form

x(t) = X + x'(t), (5.1.13)

where X is the equilibrium position and x'(t) is the small perturbation.
It is then possible to expand nonlinear terms in a Taylor series* about the
equilibrium values; for example,f(x) in (5.1.12) can be expanded in the series

f(x) = f(X) + ' df (X) + x d2f (X) +- . (5.1.14)
dx dx2

Now, if x' is small enough, it is likely that the first two terms will make the
most significant contributions to the series, hence the remaining terms can
be ignored. Recall that by definition f(X) = 0 and 5.1.12 has the form,

+ wo0 x' = 0, (5.1.15)
dt2

where

coo =2 1 df (X).
M dx

The resulting equation is linear and can be solved as described in Section
5.1.1. The solution has the form

x' = clej' lot + c2e
-C '1 *. (5.1.16)

* F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, New York, 1949,
p. 125.

_~_~ 
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f(x) M

X
x

(c)
Fig. 5.1.1 Graphical representation of a force f(x) which acts on the mass M with a
static equilibrium at x = X: (a) unstable; (b) stable; (c) nonlinear.

We see that if (df/dx)(X) is positive co is imaginary and any small displace-
ment of the mass (as will inevitably be supplied by noise) will lead to a
motion that is unbounded. In this case we say that the equilibrium position
X is unstable, and we call this type of pure exponential instability a static
instability. We can interpret this situation physically by reference to Fig.
5.1.1 a which shows a plot off(x) with a positive slope at x = X. If the mass
moves a small distance to the right of the equilibrium point, the force f
becomes positive and tends to increase the displacement still further. Thus a
static experiment will reveal the presence of the instability. Although our



solution cannot be trusted for long after the start of a transient, the small-
signal instability provides the essential information that the mass will not
remain at the equilibrium point. If df/dx is negative at x = X, wo is real and
the mass will execute a sinusoidal motion about the equilibrium point with
the angular frequency (o, as can be seen from (5.1.15) and (5.1.16). This
result is also easily understood physically. Figure 5.1.1 b shows a plot of force
fhaving a negative slope at the equilibrium point. If the mass moves slightly
to the right, the force becomes negative and tends to return the mass to
x = X. When the mass reaches the equilibrium point it has finite velocity
and overshoots. In the absence of further external disturbances the mass will
oscillate sinusoidally about the equilibrium point with constant amplitude.
We call this motion stable because the response is bounded. If there were
damping in the system, the amplitude of the oscillation would decay until the
mass came to rest at the equilibrium point.

Once a solution has been found to the linearized equations of motion, it is
possible to check the accuracy of the prediction by considering the significance
of the terms that were dropped in (5.1.14), compared with the second term.
An extreme case in which linearized equations would not adequately describe
the motion is illustrated in Fig. 5.1.1c, where the slope off(x) is also zero at
the equilibrium point. In this case the lowest order, nonzero term in (5.1.14)
must be retained.

Example 5.1.1. To illustrate some of these ideas we consider again the magnetic field
transducer shown schematically in Fig. 5.1.2. The electric terminal relations were calculated
in Example 2.1.1 and the equations of motion were written in Example 3.2.1.

Spring constant K
Non-magnetic equilibrium position I

sleeve-, g __j f.g g
elbae

aterial

Depth d
perpendicular

to page

CW

Fig. 5.1.2 Magnetic field transducer used to demonstrate linearization techniques in
Example 5.1.1.

5.1.2 Linear Systems
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The electric terminal relation, as described by (d) and (e) of Example 2.1.1, is

Loi
1 L (a)

1 +xlg
where

L uoN 2 (2wd) (b)

g

is the inductance with the air gap closed (x = 0). The force of electric origin is given by
(d) of Example 3.2.1 and is

Loi2

f _ (c)2g(l + xlg)
2 ~

Because the electrical excitation is a current source, the equation for the electrical part
of the system is not of interest. In the mechanical part we neglect damping; consequently,
the equation of motion for the mechanical node (x) is [see (e) of Example 3.2.1]

d 2x Lo12
M - K(x - 1). (d)

dt2 
2g(1 + x/g)2

This equation has the form of (5.1.12):

Lo12
f(x) = - 2- K(x - 1) = fe(x) + f (x). (e)

2g(1 + x/g)

In static equilibrium at x = X, (d) becomes

Lol2
f(X) = 

2 g( + /) 2 
K(X - I) = 0. (f)

2g(1 + X/g)2

This is a cubic equation in X which cannot be solved easily. Its properties, however, can
be investigated by sketching the two terms as shown in Fig. 5.1.3. In this figure the negative
offe has been plotted as a function of X on the same scale as a plot off . Hence the inter-
sections represent solutions to (f); that is, the points X 1 and X, are positions at which the

Force

1
2

Fig. 5.1.3 Sketch for determining equilibrium points for system of Fig. 5.1.2.



plunger experiences no external forces, hence it can be in static equilibrium. There are, of
course, three roots to the cubic equation, but one is not physical, since it requires that X
be less than zero or that the plunger extend into the magnetic yoke. The relative values of
the parameters can be such that there are no possible equilibrium points, as illustrated by
the dashed curve A in Fig. 5.1.3, or there may be only one equilibrium point, as indicated
by the dashed curve B. Note that all equilibrium points are such that X < 1. Physically,
this is expected, since the forcefe always tends to pull the plunger into the yoke, hence to
extend the length of the spring.

We now assume that the conditions represented by the solid curves of Fig. 5.1.3 have been
established and consider the dynamics for small excursions from the equilibrium points;
for example, about X1,

x(t) = X 1 + x'(t)
and (d) becomes (see 5.1.15)

d2 x'
d + (02x

' 
= 0, (g)

where

1 df 1 L 2

Co - (XA) - K- . (h)
M d M g 2 (1 + X1/g)3

It should be clear from (5.1.15) and (5.1.16), and the associated discussion, that the relative
magnitudes of the two terms in brackets determines whether this system is stable at the
operating point X1.

Although we could proceed in a formal mathematical way to study the stability at the
equilibrium points, we shall pursue the subject with some qualitative study of the curves
in Fig. 5.1.3.

At the point X, the magnitude of dfe/dX is larger than the magnitude of df"fdX. Hence
the derivative df/dX at X, has the sign of dfe/dX; that is,

d(X) > 0, (i)dX

and we conclude that this equilibrium point is unstable. We have found mathematically
that a small excursion of the mass to the right of X = X, (Fig. 5.1.3) subjects the plunger
to a force dominated by the spring force, which tends to force the plunger further to the
right. (Remember that fS is defined as a force that acts in the +x-direction if it is positive.)

Similarly, at X2 the slope dfs/dX has a larger magnitude than dfe/dX, hence the sign of
df/dX is negative at X2,

df
S(X,) < 0 (j)

dX

and the equilibrium point X2 is stable.

The process of using the first two terms in a Taylor series expansion to make
a linear approximation has been described for the case in which there is a
single dependent variable (x). It can be generalized to an arbitrary number of
dependent variables. Suppose there are M variables xl, x,, ... ,x11, in terms
of which a general function is expressed as f(x,, X2, . . . , ,,). If there is an
equilibrium point (X,, X 2, X), . . . , X1 ,) about which we wish to obtain a
linear approximation tof by using a Taylor series expansion, we express each
variable as

Zk = Xk + Xk.

5.1.2 Linear Systems
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Then we write the fixed and linearly varying parts of the Taylor series about
the fixed point as

f(x, X, ...I, xM) ' f(X1, X2, .. . X V)

M

+ (X1, X,..., XJV)xk. (5.1.17)
k-1 aXk

The range of x, over which this approximation is valid within specified
limits of error must be evaluated by using higher order terms in the Taylor
series.* In Section 5.2.1 we consider the errors that result from using a linear
approximation.

5.1.2b Dynamic or Steady-State Equilibrium

In the preceding section we studied small-signal operation about a static
equilibrium. In many cases it is desirable to analyze devices as they are
perturbed from a steady-state dynamic condition. This often occurs in
rotating devices that are commonly designed to operate with constant
angular velocity (as discussed in Chapter 4). Changes in external constraints
(excitation or load) produce changes in the angular velocity that can be
described as perturbations from the steady-state condition.

The linearization techniques that are the subject of this section are also
applicable to many situations containing continuous media. The steady-state
equilibrium may involve a moving medium such as a fluid, which has a
constant velocity at a given point in space. The dynamics that result from
perturbations from this steady flow could be described in a way similar to
that developed here and illustrated in Chapter 10.

In the following example a synchronous magnetic field machine is used to
illustrate the ideas involved in studying linearized motions about a dynamic
equilibrium. The steady-state behavior of this type of device was studied in
Section 4.1.6a and the example picks up the equations of motion developed
there.

Example 5.1.2. A synchronous machine is modeled by the system of three coils shown
schematically in Fig. 5.1.4. The physical arrangement of these coils may be as shown in
Fig. 4.1.10.

The magnetic torque on the rotor, as a function of the stator currents ias and ibs, the
rotor current i,, and the rotor angle 0, is (4.1.38)

T
e = Mir(ib cos 0 - ias sin 0). (a)

* For a discussion of this expansion see, for example, F. B. Hildebrand, Advanced Calculus
for Engineers, Prentice-Hall, New York, 1949, p. 353.
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is = Is Cos w•t

Xbs + tibs

ibs = Is sin fct

Fig. 5.1.4 Schematic representation of synchronous machine showing two fixed (stator)
and one rotatable (rotor) coils.

To obtain steady-state synchronous conditions the stator and rotor terminals are excited
by the current sources

i, = I, (b)

is = I cos wOt, (c)

ibs = Is sin w,t, (d)

where it is helpful for purposes of discussion to consider I, I, and o, as positive constants.
In addition to the torque Te , the shaft is subject to an inertial torque, a friction torque, and
a load torque. We represent the total moment of inertia about the axis of rotation as J [see
(2.2.27)], the friction torque as linear with coefficient B [see (2.2.6)], and the load torque
as a driving function Tm(t). Thus we can write the mechanical equation of motion for the
angular deflection 0 of the rotor as

d20 dO
J t + B + MIr,(cos wt sin 0 - sin w,t cos 0) = T,(t). (e)

To establish a dynamic equilibrium we assume T, = 0 and constant angular velocity

dO
D- = constant (f)

and write
0 = nt + f'o, (g)

where y, is a constant to be determined. We substitute (g) into (e) with T, = 0 to obtain
the equilibrium equation

Bl + MlIrs[cos o,t sin (Ot + yo) - sin wt cos (9t + yo)] = 0. (h)

The use of a trigonometric identity to simplify the term in brackets yields

BQ = MI,Is sin [(c, - f)t - yo]. (i)

The left side of this equation is constant; consequently, the equation can be satisfied for all
t only if

This is the synchronous speed at which the rotor can run in dynamic equilibrium. Using

This is the synchronous speed at which the rotor can run in dynamic equilibrium. Using

___ I
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sin yo

Fig. 5.1.5 The equilibrium values of angle y,.

(j) in (i), we obtain an expression for y.:
--Bn

sin o Mi (k)

Dynamic equilibrium is defined for the system of Fig. 5.1.4 with the electrical excitations of
(b) to (d) by (g), (j), and (k). Note that there is a limited range of parameters over which
a dynamic equilibrium is possible because

-1 < sin yo < 1.
Also, for any value of

Bn

there are basically two different solutions for yo, as indicated in Fig. 5.1.5.
We now assume operation in dynamic equilibrium and describe perturbations from this

equilibrium by y'(t); thus
0(t) = nt + Y, + y'(t). (1)

Substitution of this expression into (e), use of appropriate trigonometric identities, and
retention of only linear terms yields after some simplification

d2y' dy'
-j + B- + Ky'= T(t), (m)
dt2 dt

where K = MIl, cos y, is the effective spring constant of the magnetic torque. In writing
this equation we have subtracted out the equilibrium equation represented by (k).

To study the dynamic behavior we assume that the load torque Tm is a small step
occurring at t = 0:

Tm(t) = Tu-1(t), (n)

where T is a constant and u_ (t) is the unit step occurring at t = 0.
The method of solution reviewed in Section 5.1.1 can be used here. A particular solution

is
T

(o)

The initial conditions are y'(0) = 0 and (dy'/dt)(0) = 0. The complete solution therefore is

y'(t) = T + s2 ei + s e' (p)
K s1 - z - S22 -S1 )
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where B KB)2

Sý= -T +[ -72

are the natural frequencies that satisfy the characteristic equation

B K
s2 + - s + = 0. (q)

We refer now to the two equilibrium points illustrated in Fig. 5.1.5. At equilibrium point
(2) the effective spring constant K is negative because cos yo is negative. Consequently, s. is
positive, the response is unbounded, and the machine has a static instability at equilibrium
point (2).

At equilibrium point (1)in Fig. 5.1.5 cos y, is positive, Kis positive, and the real parts of
s, and s2 are both negative. Consequently, this equilibrium point is stable. When we assume
the system to be underdamped,

K >/B)

J (2J
we can write (p) in the form

y'(t) • - e- t cos wt + - sin ot , (r)

where
B

2J'

The response of (r) is plotted as a function of time for two values of a/w in Fig. 5.1.6. Two

0 4 8 12 16 20 24 28
6ot

Fig. 5.1.6 Hunting transient of a synchronous machine.

ý4 IE,
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general features of this "hunting" transient should be noted. First the initial parts of both
transients are the same because, as (e) indicates, the initial part of the transient is dominated
by the angular acceleration term J(d2 0/dt2), which is the same for both cases. Second, the
damping retards the phase as indicated by the second term in parentheses in (r). The
normalization for the time axis is different in the two cases because w differs by a small
amount.

5.1.2c Overstability or Dynamic Instability
In Section 5.1.2a we described a static instability characterized by a pure

exponential growth in time. There is a second basic type of instability, called
overstability or dynamic instability, which we now illustrate.

The equilibrium points of the system described by (5.1.12) are not changed
if the mass is subject to an additional force proportional to velocity. The
equation of motion has the form

dax dx
Md -- + B - f(x), (5.1.18)

dt 2 dt

and in static equilibrium the additional term makes no contribution. The
linearized equation, however, is

d2x' B dx'
+ + wC 2x' = 0 (5.1.19)

dt2 M dt

and the natural frequencies of the system are

s =- C±-oo .) (5.1.20)

(2) 2M 4

If the term B(dx/dt) is due to viscous damping, B will be positive (see Section
2.2. 1b). In this case, if wo2 < 0, one of the natural frequencies will be positive,
and the result will be a static instability that can be detected by the static
experiment described in Section 5.1.2a. On the other hand, if Co2 > 0, the
system will be stable, regardless of the magnitude of w0

2 .

As we show in Example 5.1.3, feedback can be used to make B < 0 in
(5.1.18). If coo2 < 0, one of the natural frequencies (5.1.20) will be real and
positive and will result in a pure exponential growth that is a static instability
detectable with a static experiment. Alternatively, if

B2

0 < < , B< B<0, (5.1.21)
4M2

the natural frequencies will be real and both will be positive, thus indicating
an instability that cannot be detected by our static argument. If

B2

0 < < w0
2, B < 0, (5.1.22)

4Ma

the radical in (5.1.20) will be imaginary and the natural frequencies will be



complex with positive real parts. In this case the transient is an exponentially
growing sinusoid. This is overstability* or dynamic instability.

Note that under conditions of overstability w0
2 > 0 and our static experi-

ment of a small displacement will result in a force that tends to return the
mass toward the equilibrium point; but this force is reinforced by the negative
damping and the system overshoots the equilibrium point and reaches a
larger displacement in the opposite direction.

It is clear that the static argument we used in Section 5.1.2a to detect a
static instability will not detect overstability and one type of exponential
growth. Thus we must regard the static argument as a sufficient, but not a
necessary, condition for instability.

We have discussed stability in Section 5.1.2a and in this section in terms of
a system describable by a second-order differential equation. Many systems
have differential equations of an order higher than 2. Whenever a system
goes unstable, however, the instability is usually caused by one or two
natural frequencies. Because the instability dominates the dynamical behavior,
the system differential equation can sometimes be approximated by a first-
or second-order differential equation for studying the instability.

It is worthwhile to establish the physical significance of the three modes of
instability. For this purpose, suppose that the mass is given an initial position
x' = xo with no initial velocity. Then the appropriate solution to (5.1.19) is
[in terms of the roots sL and s, defined by (5.1.20)],

x'(t) = XO (s2e"•l- sle"' t). (5.1.23)
S2 - S1

This solution is shown in Fig. 5.1.7 for the three cases of instability that have
been illustrated. Further insight is provided by the following example.

Example 5.1.3. In many situations it is desirable to support an object with a magnetic
field; for example, in a wind tunnel effects of the mechanical structure (stinger) supporting
the model under study introduce errors in drag and lift measurements. One solution to this
problem is to use a magnetic field.t Then, if the fluid is an ordinary nonconducting gas, the
magnetic field will not interfere with the flow. To support a large mass it is desirable to use
a ferromagnetic core in the model so that magnetic forces will be of a useful magnitude.
It is familiar to anyone who has held a piece of magnetic material near a magnet, that any
static equilibrium achieved with these forces is unstable. The example undertaken here
shows how feedback can be used to stabilize an inherently unstable equilibrium. Without
feedback the equilibrium exhibits a static instability. This is obviated by the introduction of
feedback, but then dynamic instability comes into play. This second type of instability is
removed by additional feedback.

* For additional discussion of the terminology we use for describing instabilities see S.
Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Oxford University Press,
London, 1961, pp. 1-3.
t J. E. Chrisinger et al., "Magnetic Suspension and Balance System for Wind Tunnel
Application," J. Roy. Aeron. Soc., 67, 717-724 (1963).

5.1.2 Linear Systems
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-HIA

t(seconds)

Fig. 5.1.7 Three modes of instability for a second-order system. The normalized damping
ccis negative for cases B and C (cc = B/2M).

The simple example to be considered here is shown schematically in Fig. 5.1.8a and an
operating system of this type is illustrated in Fig. 5.1.8b. This system has the basic ingredients
of systems constructed to levitate a mass M to be used in gyroscopes and accelerometers.
The spherical particle is magnetic and is therefore attracted upward by the magnetic field
induced by I. Hence there is a position x = d at which the mass is supported against
gravity by the magnetic field. With no feedback (i' = 0) the equilibrium is unstable, for,
as the ferromagnetic mass approaches the inductor, the upward force increases, whereas
the gravitational force remains constant. Feedback is introduced by using the optical
system to detect the position of the mass. The photomultiplier and amplifier are adjusted
to give a current i' as nearly as possible proportional to the deflection x' from the equilibrium
position x = d. Hence with feedback there is an addition to the magnetic force proportional
to the deflection x'. By adjustment of the loop gain it is possible to make the effective spring
constant introduced by the feedback large enough so that the equilibrium will appear to be
stable on the basis of a static experiment of displacing the sphere from equilibrium and
finding a restoring force. The amplifier, however, is not an ideal current source, and the
effect of the coil inductance with finite amplifier output impedance causes the equilibrium
to be dynamically unstable. A feedback signal proportional to sphere velocity is then added
to stabilize the equilibrium completely. This discussion characterizes the design process
used with the system shown in Fig. 5.1.8b.*

* The analysis was used in a student laboratory project to achieve the stable suspension
of the sphere shown.
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Fig. 5.1.8 (a) Mass M levitated by a magnetic field.
The optical system provides a signal that is fed back
to stabilize the static equilibrium of the mass at
x = d; (b) view of laboratory project shown sche-
matically by (a); (c) dependence of coil inductance
on nme mass dusplacement.
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Measurement of the inductance L as a function of the position of the mass M would
produce a curve like that shown in Fig. 5.1.8c. The inductance has its largest value when the
ferromagnetic sphere is next to the coil and decreases to a constant as the sphere is removed
to z = co. For the present purposes we take this dependence as

L,
L(x) = L1 + L , (a)

1 + sla

where L1, Lo, and a are positive constants. Then the methods of Chapter 3 provide the force
on the mass M; that is, the coenergy (since the electrical terminal relation is linear) is

W'(i, X) = .L 1 + r ) (b)
2( 1 + xa

and the force of electrical origin follows as

8W' 1 L .
-=- o is. (c)

f a 2a (1 +z/a) 2  (c)

When the sphere is in static equilibrium, the gravitational force is balanced by this force:

I L,
Mg = 2. (d)

2a (1 + dla)2

Given the current I, the equilibrium position d is determined. Perturbations z' from the
equilibrium lead to a perturbation current i'; that is,

x = d + x',
i = I + i'.

To linear terms in the perturbation quantities the force of (c) becomes

Lo F I2 2x'l2  21 1

2a (1 + d/a) a(1l + da) + (1 + d/a)j (f)

It follows that the incremental equation of motion is

d2x' L 1 " Lli'
d t 2  a2 (l + d/a)s  a(1 + d/a) -, (

where use has been made of (d) to cancel out the constant part of the force equation.
In the absence of feedback (i' = 0) it is clear from (g) that the equilibrium is statically

unstable. To consider first the effect of ideal feedback, assume that the output voltage of the
photomultiplier is linear with x' and that the amplifier is a perfect current source feeding
the coil. In this case

i' = Gx', (h)

where G is a constant, including the amplifier gain. Substitution of this expression into (g)
yields

M - + 2(l d x' = 0. (i)S (1 + da) a(1 + dla).
This system has natural frequencies determined from [see (5.1.15)]

LII \
v

o ,n 1, LJ

_~__1_1_ C

a ( + ja) a +



Thus the response is bounded and the system is
stable when the feedback gain is raised high enough
to make

I

G>a+d
a~d'

No amplifier is absolutely ideal; consequently,
we consider next the system performance in which
the amplifier has a large but finite output im-
pedance. In this case the amplifier produces a
voltage proportional to sphere displacement x' and
this voltage is applied to the series RL circuit illu-
strated in Fig. 5.1.9 in which the resistance R in-
cludes the internal resistance of the amplifier. The
relation between x' and i' is now determined from
the equation

1 d(Li')
Gx' -- + i'.

R dt

Fig. 5.1.9 The driving current of
Fig. 5.1.8a is produced by a voltage
amplifier connected in series with a
large resistance R. The output voltage
is proportional to the displacement x'.
The inductance L is the equilibrium
inductance of the coil shown in Fig.

(1) 5.1.8a.

Expansion of the derivative and retention of only linear terms yields

11 Lo) di' Lol dx'

R ++ dla dt Ra(1 + d/a)2 dt

Using the exponential forms

x = est and i' = iest,
we rewrite (m) in the form

GRa(1 + d/a)
2

= + I (L + LO s
R 1 + d/a

For relatively high gain G and relatively high amplifier output impedance we assume

LoI

GRa(l + da)2 s

I L, + o s<<l,
R I + dja

and approximate (o) by the form

where
i = G.(1 - As),

A=R~L 1 + d/a Ga(l + d/a)2

It is evident that when the inequality k is satisfied A > 0.

5.1.2 Linear Systems



Lumped-Parameter Electromechanical Dynamics

We rewrite (p) in differential form as

i' = Gx' - GA (r)
dt

and substitute this result in (g) to obtain

dSx' GALoI dx' LoIM + L G I X'= 0. (s)
djt a(1 + d/a)2 dt a(1 + dla)2 a + d

This has the form of (5.1.19) with B < 0; thus the system is overstable or dynamically
unstable when the nonideal nature of the amplifier is included. The response of this system
to a small disturbance will be like curve B or curve C of Fig. 5.1.7, depending on the relative
sizes of the coefficients in (s) [see (5.1.19) to (5.1.22)].

We can interpret the three curves of Fig. 5.1.7 physically with reference to this example.
For curve A the electrical force due to the bias current I exceeds the restoring force induced
by the feedback. Thus, when the mass is released from rest with a small initial displacement,
the displacement increases exponentially. This occurs regardless of whether the damping
is negative or positive, the only effect of the damping being to change the rate of exponential
growth.

Curve B of Fig. 5.1.7 represents the situation in which the feedback force dominates the
force due to bias current I to provide a restoring force but the derivative term due to
electrical feedback is negative. Also, the relative parameter values are such that the system
is oscillatory. When the mass is released from rest with an initial displacement, the feedback
force immediately accelerates the mass back toward equilibrium. The negative damping
force adds to this feedback force to cause the position to overshoot equilibrium by more
than the magnitude of the initial displacement. The process repeats periodically as the
amplitude of the oscillation grows exponentially.

Curve C of Fig. 5.1.7 represents the situation in which the feedback force dominates the
electrical force due to the bias current I to provide a static restoring force. The negative
damping due to the electrical feedback is large enough to make the system's natural
frequencies s real. When the mass is released from rest with an initial displacement,
the feedback force accelerates the mass back toward equilibrium. As the mass starts moving,
however, the negative damping adds a force to accelerate the mass further toward equilib-
rium. As the mass passes through equilibrium, the negative damping force dominates to
accelerate the mass further along a rising exponential in a direction opposite that of the
initial displacement.

To stabilize the equilibrium with a nonideal amplifier it is necessary to modify the
amplifier signal so that its output current contains a component proportional to (dx'/dt)
with the proper sign. This process is called compensation.* The simplest method of compen-
sation is achieved by using the RC circuit of Fig. 5.1.10 between the photomultiplier output
and the amplifier input. Implicit in what follows is the assumption that the internal impedance
of the photomultiplier is very low and the amplifier input impedance is very high.

In terms of complex exponentials

v2 =i 2e
st and v = i l e

st,

* Compensating networks and their use in automatic control systems are discussed in
such texts as J. J. D'Azzo and C. H. Houpis, "Feedback Control System Analysis and
Synthesis." McGraw-Hill, New York, 2nd ed., 1966 p. 158.
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amplifier

input

From
photomultiplier

output

Fig. 5.1.10 Compensating network to provide stabilization of dynamic instability caused
by finite amplifier output impedance.

the transfer function of the compensating network is

V2 R, r RICs + 1 1

Vl R + R z [IRIR2 (RI + R]Cs + 1 (t)

For proper operation of the network it is conventional to set R, << R1 ; thus

RIR,RR Cs < R1Cs
R1 + R2

and for low frequencies we can approximate (t) by the form

R2
b,= R (R1Cs + 1)0k

R1 + R2
or in differential form as

R, + R2 dtUp= R1  +R1-• (u)

Because v, is the output voltage of the photomultiplier and is therefore proportional to x',
we now rewrite (m) as

dx' 1 1 L\ di' LI dx'Gcx' + GIRC - - LI + OL + i-', (v)
t R I + da) ddt Ra(l + d/a)2 dt

where

G A R 2  G.
R1 + R2

Using the exponential forms of (n), we solve for t to obtain

1 + RtCs +GRa(1 + dfa)2 s
GxRa( + d+a)O

MR Ih 1 + df a

Making the assumption that parameter values and frequency s are such that we need retain

___I·I ~··-··-··~····I~--·I~--·----
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only first-order terms in s, (w) becomes

I = G14[l + (RIC - A)sl, (x)

where A is defined in (q) and A > 0 when inequalityk is satisfied. Writing (x) in differential
form, we have

dx'
i' = Gx' + Gi(RiC - A) dj. (y)

Substitution of this expression into (g) yields

dsx' LoIG1(R1C - A) dx' Ljol I X, (z

dt a(l + dla)2 dt a(1 + da)2 a +

It is clear from this equation that the compensation circuit has added positive damping
to the system and that the system is completely stable when

I
G, > a and R 1C>A.

a+d

Note that becauseG 1 = [R5[(R1 + R2)]GandR2 << R.forproper compensation the amplifier
gain must be greater when compensation is used. This is a principal consequence of
compensation-that amplifier gain can be traded for a change in dynamic system behavior.

5.1.2d Steady-State Sinusoidal Response

Many incremental-motion transducers, such as speakers, microphones,
and electromechanical filters, are designed to operate approximately as linear
systems. One of the most important design factors is the driven response. A
transducer may be used to convert a mechanical signal (pressure for example)
to an electrical form, in which case the electrical signal is the response to a
driving force. It may also convert the output of an amplifier to an acoustic
signal, and thus the pressure or velocity response to a driving voltage is of
interest. The most commonly used and convenient driven response for a
linear system with constant coefficients is the sinusoidal steady state. Many
systems operate largely in a sinusoidal steady-state condition, but even for
those that do not the techniques of Fourier transforms and Fourier series are
available. The response to an arbitrary signal can be synthesized from the
response to sinusoidal driving signals ranging over the frequency spectrum
of interest.*

In this section we show, by means of an example, how the techniques of
Section 5.1.1 can be used to find the steady-state response to a sinusoidal
excitation. The example also serves to illustrate characteristic dynamical
behavior and impedance levels in an electric field system.

* See, for example, S. J. Mason and H. J. Zimmermann, ElectronicCircuits, Signals, and
Systems, Wiley, New York, 1960, Chapter 7.
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Fig. 5.1.11 Electric field transducer that can be used as a pressure sensor (microphone)
or pressure source (speaker): (a) cross section of device (side view); it would appear circular
from above; (b)equivalent electromechanical circuit.

Example 5.1.4. The simple variable capacitor shown schematically in Fig. 5.1.11 illustrates
the basic construction of an electric field transducer that can be used as a microphone or as
a speaker.* A circular movable plate with a total mass Mis mounted on a peripheral bellows
spring which has an equivalent constant K. The plate moves against a damping force
(primarily caused by the surrounding air), which we assume is linear, with a coefficient B.
When the device operates as a microphone, the differential pressure p(t) acting over the
area of the moving plate exerts a force f(t) (defined as positive in the positive x-direction)
which moves the plate and changes the capacitance, as seen from the electrical terminals.
When the electrical terminals are biased with a constant voltage V, (see Fig. 5.1.11lb), a
change in capacitance due to the motion induces a current dqldt in the circuit. This current,
at least in part, flows through resistance R1 and produces a voltage vo(t) at the output
terminals.

In this example we wish to analyze the behavior of the device of Fig. 5.1.11 for steady-
state sinusoidal operation as a microphone. We assume that the driving force (pressure)
is a sinusoidal function of time with constant amplitude and ask for the steady-state
response of the output voltage. In the process we make approximations appropriate for the
analysis of devices of this type.

Because the general properties of the coupling network should be described without
taking into account the external elements, we begin with the electric field coupling network.
We neglect fringing fields at the edges of the plates and describe the capacitance of this

* L. L. Beranek, Acoustic Measurements, Wiley, New York, 1949, pp. 173-176 and pp.
211-224.
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electrically linear system as
EOA

C(x) - (a)

Thus the electrical terminal relation for the coupling network is

q(v, x) = C(x)v = (b)

The system is conservative, hence we obtain the force fe as

ax (c)

Because the system is electrically linear, we express the electric coenergy as

E,Av2
W" = C()v 2 - °A(d)2x (d)

We use this expression with (c) to evaluate the force

EoAv
2

fe = 2X
2 (e)

The equation of motion for the mechanical node (x) is written by referring to the circuit of
Fig. 5.1.11b:

d2x dx
Mdt + BW- + K(x - I) =e + f(t). (f)

We use (e) in this expression to rewrite (f) as

d
2
x dx + EAv

2

M-W + B,- + K(x -- ) + f(t). (g)
d'

2 
dt 2x

Before equations for the electric circuit shown in Fig. 5.1.11lb are written, we shall make
some appropriate approximations to simplify the problem. The circuit comprised of
capacitance C1 and resistance R, is used to isolate the output terminals from the bias
voltage Vs and is not intended to affect the dynamic behavior of the system in normal
operation. Consequently, with a driving frequency o we assume that the values of R, and
C 1 satisfy the inequalities

- < R and R 1 > R (h)
oC 1

over the frequency range of interest. Thus the output voltage v,(t) is essentially the time-
varying component of v and the current through R 1 can be neglected compared with the
current through R.

Using the inequality (h) we now write the node equation for the electric circuit as

dq V, - v d EoAv (i)
dt R d-t

and describe the output voltage as

-vo(t) = R - ; ()
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(g), (i), and (j) are the general equations from which we can calculate the output voltage
v(t) once the driving forcef(t) is specified. Note that these equations are nonlinear.

This capacitor microphone is representative of a class of devices constructed and operated
purposely to behave as linear devices. Nonlinear effects cause distortion and loss of fidelity.
Linearization techniques are especially meaningful because they are appropriate under
conditions that must be fulfilled in construction and operation to achieve linearity.

We now use the technique presented in Section 5.1.2 to linearize (g), (i), and (j) for
small-signal operation about a static equilibrium. We define the static equilibrium by
requiring that all time derivatives andf(t) be zero. Thus from (j) the equilibrium value for
vo(t) is zero. Defining the equilibrium values of x and v as X and V, respectively, we find
the relations from (g) and (i):

eoA V 2

K(X - 1) + .2 = 0, (k)

V, - V= 0. (1)

It is clear that the equilibrium value of the terminal voltage is the bias voltage V, and that
the equilibrium position X is determined from the cubic equation. This equation and the
properties of the equilibria are similar to those studied in Example 5.1.1. For our purposes
here it suffices to state that we select the solution of (k) that represents a stable equilibrium
position X.

We now assume the two variables x and v to be perturbed from their equilibrium values
by small time-dependent functions x'(t) and o'(t). Thus

x(t) = X + X'(t),

v(t) = V, + v'(t).

We substitute these variables into (g), (i), and (j), subtract out equilibrium terms, and
retain only linear terms in the perturbation variables to obtain

d2x' dx'
M dt- + B-+ o + + CoEov' =f(t), (m)

dv' dx' v'

Co -dt Eod R (n)

vo(t) = v'(t), (o)

where we have defined the following constants:

cEA
Co = X is the capacitance at equilibrium,

V, is the magnitude of the electric field intensity between the plates
E = at equilibrium,

Ko = K - C0oE is the effective (net) spring constant and is positive for the stable
equilibrium we are using.

Our interest here is in the steady-state response of the system to a sinusoidal driving force.
Thus (see Section 5.1.1 and Fig. 5.1.11) we assume that

f(t) = -A p(t) = Re (Fe -wt) = Fcos wt,

I I_· ··
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where F and w are positive real constants. The system equations are linear with constant
coefficients; thus we assume solutions of the form

x'(t) = Re (fe••'),

v, (t) = v'(t) = Re (17ei't),

where 9 and P are complex amplitudes. We substitute these forms of the dependent
variables into (m) and (n), cancel the eim0t , and drop the Re to obtain the algebraic equations.

[(jw)2M + jwB + Kgo] + CoE 0 1 = F, (q)

(jwCo + = jwCoEo . (r)

We solve these two equations to find the complex amplitude of the output voltage P
as a function of the amplitude of the driving force F:

[(Ko - 2M +jB)(jCoR + 1) +j(CoEo)R F. (s)

This expression could be used to determine the time response vo(t) for any set of parameters,
value of frequency, and amplitude of drive. It is customary, however, to describe the steady-
state sinusoidal response by plotting the magnitude (and often the phase) of the complex
amplitude as a function of frequency for a constant input amplitude. Such a plot could be
made for (s), but the denominator is quite complex and in its general form obscures the
fact that different physical phenomena predominate in different frequency ranges.

We plot the amplitude of the transfer function P'/Fasa function of frequency by making
approximations to simplify the expression in three frequency ranges. Our approximations
are those made to achieve good microphone design.*

We consider first the low frequency behavior of the microphone and set the limit of (s)
as w -- 0 to obtain

jwCREo 
(t)

The operation at very low frequencies can be interpreted as follows: first, the velocity and
acceleration are so small that the inertia and damping forces are much smaller than the
spring force in (g) and can be neglected. Next, the perturbation voltage rP has negligible
effect in the force equation and the term CoEo 1 can be neglected in (q). These two assump-
tions lead to the result in (t) if we recognize that the first term is small compared to the
second on the left hand side of (r).

The fact that we can neglect the IPterm in (q) indicates that from a mechanical viewpoint
the microphone capacitance is constrained to constant voltage. Thus the spring constant
Ko includes the electrical spring constant due to the constant (bias) voltage [see (m)].

In summary, in the low-frequency limit the microphone capacitance operates at constant
voltage and the mechanical system behaves as a spring, which includes electrical "spring"
effects.

The low-frequency approximation breaks down when the frequency becomes large
enough that

uCoR - 1.

* Ibid., pp. 211-218 and especially Fig. 5.30a.
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This occurs in conventional microphones around a frequency of 10 Hz.* In the region of
transition between the low-frequency and the mid-frequency ranges the transfer function is

P jwCoREo
F Ko(jowCoR + 1) + jw(CoEo)1R (

We next define the mid-frequency range as starting at a frequency such that

1

RC0

and continuing until inertia and damping forces become appreciable. This results in a
mid-frequency transfer function

t= (v)

Note that the denominator is the spring constant K alone, without the electrical spring force
[see (m)]. This is an indication that the microphone capacitance is operating at constant
charge because a parallel plate capacitor with negligible fringing fields and constant charge
will have a force that is independent of plate spacing. The constraint of constant charge
results because the resistance R is so large (R > /lCo) that appreciable charge cannot
flow on or off the plates. We can obtain this mid-frequency solution by neglecting the 1/R
term in (r) and using that result to eliminate the term involving P in (q).

The mid-frequency range is the normal operating range of the microphone. The amplitude
and phase of the transfer function are constant over this range; thus the output voltage is
an exact replica of the input force and high fidelity is obtained.

The approximate transfer function for the mid-frequency range (v) breaks down when
inertia and damping forces become appreciable. In practice, the mechanical system is
lightly damped and a resonance occurs. In fact, elaborate means are used to provide
additional mechanical damping to reduce the size of the resonance peak.t With a resonance,
the mid-frequency transfer function breaks down when the frequency becomes high
enough so that

woM % K.

The frequency corresponding to this transition is usually around 10,000 Hz.4
In the transition between the mid-frequency and high-frequency ranges the transfer

function is
P1 Eo
F K - wM +jwB

Note that in this region the microphone capacitance is still operating at constant charge,
as evidenced by the presence of only the mechanical spring constant K in the denominator.

The high-frequency range is defined by the condition

w2M >> K and o2M >> B.

Thus the high-frequency transfer function is

=  (x)

* Ibid.
t Ibid., pp. 217 and 220.
t Ibid., p. 220.

__· I 
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Fig. 5.1.12 Frequency response of capacitor microphone.

In this case the microphone capacitance is still operating at constant charge and the
mechanical dynamics are determined completely by the mass M.

The amplitude of the transfer function 1i/F is plotted as a function of frequency in Fig.
5.1.12. The approximate solutions, commonly called asymptotes, given by (t), (v), and (x)
are shown as dashed lines. The more exact solutions in the transition regions (u) and (w)
are shown as solid lines. The curves are plotted for the following relations among parameters:

B Ko  K\
- - = 0.7; -- 0.9; CoR = 1000.
TMK K M

Note that in Fig. 5.1.12 both the amplitude and frequency scales are logarithmic. This
is a Bode plot, used for plotting frequency-response data.*

5.1.3 Physical Approximations

There are two indices by which the usefulness of an engineering model
can be measured. First, there is the degree to which it represents the essential
features of the physical situation. Second, there is the amount of effort
required to use it for an analytical study. Obviously, these two considerations
are in conflict and the choice of a model represents a compromise.

The selection of an appropriate model demands an awareness of the inter-
play between physical approximations and mathematical techniques; for
example, if dissipation mechanisms are not significant in a given situation,
it may be a simple matter to describe the nonlinear dynamics. In the opposite
extreme, if dissipation dominates the dynamics, it may also be possible to
include nonlinear effects. In the intermediate case of moderate damping
nonlinear effects may be included only with a great deal of effort.

In this section a simple example is used to illustrate how the mathematical
model can be simplified by recognizing the important physical effects at the

* F. E. Nixon, Principles of Automatic Controls, Prentice-Hall, Englewood Cliffs, N.J.,
1953, pp. 165-174.

I· ~
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outset. This is often done in circuit theory.
Suppose that the voltage v in the LR circuit
of Fig. 5.1.13 is given and the current i is to
be computed. We can, of course, solve this
problem with little trouble. This allows us to
see that if interest is confined to the current
at very low frequencies

uv n iR; (5.1.24)

that is at low frequencies virtually all of the
voltage drop is across the resistance. By
contrast, at high frequencies the inductive
reactance greatly exceeds the resistance and
across the inductance. In this limit

Ldiv ~ L-._
dt

v = Re [V•et]

Fig. 5.1.13 L-R circuit to illustrate
appropriate electrical approxima-
tions when the period of excitation
is extreme compared with the time
constant LIR.

virtually all the voltage drop is

(5.1.25)

The frequency is considered to be low or high, depending on the relationship
between the period of excitation 27r/ow and the time constant L/R of the
circuit. This is normally expressed as a ratio of inductive reactance and
resistance. Thus, when coLIR << 1, (5.1.24) can be used; and, when oL/R >
1, (5.1.25) can be used. When coL/R ; 1, neither approximation is appro-
priate.

By contrast with the circuit of Fig. 5.1.13, most electromechanical problems
are represented by nonlinear equations unless the dynamics are limited to
incremental motions. In these situations approximations analogous to those
represented by (5.1.24) and (5.1.25) are useful. The electromechanical
approximation, however, is more subtle because the frequency or character-
istic time constant of the system is often not known until after the problem
has been solved. In Fig. 5.1.13 we knew at the outset that the current i
had the same frequency as the driving voltage. With the circuit coupled to a
mechanical system and natural or free motions of the system under considera-
tion (not the sinusoidal steady state resulting from a given driving function),
the temporal behavior of the system is at least in part determined by mechan-
ical effects. Hence the characteristic frequencies of the response to initial
conditions can be low or high, compared with the natural frequencies of the
electrical system.

The pair of coils shown in Fig. 5.1.14 provides a concrete example of the
physical consequences of making electrical approximations in a magnetic
field system. A pair of fixed coils is driven by the constant current i2 = I and
arranged to give a uniform magnetic flux density B0 in the region of a pivoted
coil with the angular deflection 0. The rotatable coil is short-circuited but has a

-·-X1·-·ll~··~·llll~-··1111^ --·-I
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Fig. 5.1.14 A pivoted coil is free to rotate with the angular deflection 0 in a uniform
magnetic field produced by i2 .

resistance R, which is represented by a resistance connected to the terminals.
We wish to study the mechanical response of the coil when it is given an
initial angular velocity dO/dt = 0 at the angular position 0 = 0.

The equations of motion are found by first writing the electrical terminal
relations as

2x = Lli1 + Mi2 sin 0, (5.1.26)

A2 = Mil sin 0 + Li,, (5.1.27)

where L1, M, and L2 are constants. The dependence of the mutual inductance
on 0 should be evident from Fig. 5.1.14, and in the absence of magnetic
materials the self-inductances are independent of 0. For this electrically
linear system the coenergy follows from (5.1.26) and (5.1.27) as

W'=-L, i12 + Miji2 sin 0 + 1Lei22. (5.1.28)

Hence the electrical torque is
aW'

Te -- = Mi x iYcos 0. (5.1.29)
80

The rotatable coil has a moment of inertia J,so that if mechanical damping is
ignored the mechanical equation of motion is (i2M = IM = ABo).

d20
J 20 = ABoix cos 0. (5.1.30)

dts

The electrical equation requires that -- ixR = d) 1Idt, which, in view of (5.1.26)
and the fact that Mi, = AB o, is

di- dO- iR - L AB, cos 0 d (5.1.31)
dt dt
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The voltage on the right-hand side of this equation is induced by the motion
of the coil through the magnetic induction Bo. The equation expresses the
fact that this "speed voltage" is absorbed by the self-inductance of the coil
and by the resistance R. Note that the relative magnitudes of these terms on
the left are determined by the same considerations discussed in connection
with Fig. 5.1.13. Now, however, the current i1 has a temporal behavior that
depends on the mechanical deflection of the coil. From (5.1.31) it is clear
that the moment of inertia plays a part in determining whether the inductive
reactance or the resistance (or both) are significant.

We approach the problem here by assuming at the outset that one or the
other of the terms on the left in (5.1.31) dominates, investigating the analytical
consequences, and returning to check the validity of the initial assumption by
using the predicted response. Suppose first that

Ii1RI l>L•i, (5.1.32)

Then, i, can be found explicitly from (5.1.31) and substituted into (5.1.30).
The result, after some trigonometric manipulation, has the form

d [J d (AB )2 (cos 0 sin O + )] = 0. (5.1.33)dt dt 2R

Here one derivative has been factored to show that the quantity in brackets
is constant. The initial conditions that dO/dt = Q when 0 = 0 fix this constant
so that (5.1.33) can be integrated.

dO (AB0)2
J A + (cos 0 sin 0 + 0) = JA. (5.1.34)

dt 2R

This first-order equation can be integrated to find 0(t) without approxima-
tions concerning the amplitude of the angular deflection 0. This approach to
nonlinear dynamics is the subject of Section 5.2.2. It serves our purpose here
to establish the physical significance of the approximation by limiting
consideration to small amplitude (linearized) deflections about 0 = 0, in
which case (5.1.34) is approximated by

dO + = 2, (5.1.35)
dt 7%

where
RJ

% -(ABo) 2

In view of the initial conditions, this linear equation has the solution

0 = 2to(1 - e-tboI), (5.1.36)
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Fig. 5.1.15 Response in angular deflection of the rotatable coil of Fig. 5.1.14 to an initial
angular velocity n at 0 = 0: (a) motion dominated by electrical resistance ( o >> L1/R); (b)
flux Aiconserved at zero (2r/cou << L1 /R) as it would be if the resistance R were very small.

which is sketched in Fig. 5.1.15a. Remember that this expression is valid
only if the inequality of (5.1.32) is satisfied. Use of (5.1.36) shows that the
inequality requires

to > _- (5.1.37)
R

Note that the electromechanical time constant To is proportional to the mo-
ment of inertia J. When r, is large enough to satisfy (5.1.37), it simply means
that the inertial effect slows the motion to the point at which the inductive
reactance (which depends on the rate ofchange of ix)is of negligible influence.

This approximation is typical of those used in the analysis of large, magnetic-
field type devices such as rotating machines. Mechanical and electro-
mechanical time constants are so long compared with electrical time constants
that mechanical and electromechanical transients are assumed to occur with
the electrical system always operating in the steady state [Lx(dil/dt) neglected
in the example just completed]. Conversely, electrical transients are so fast
that they are assumed to occur with the mechanical system operating at
constant speed.

It is important to see that an equation of motion in the form of (5.1.35)
would be obtained if the magnetic induction Bo were absent but the coil
rotated in a viscous fluid. In the limit in which the reactance of the coil
can be ignored the magnetic field and short-circuited coil combine to act as a
mechanical damper. This is the limit used in synchronous machines when
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short-circuited damper windings are added to the rotor to assist in damping
electromechanical oscillations (see Section 4.1.6a and Example 5.1.2).

It is evident from the solution (5.1.36) that there are no oscillations (as
would be expected from "springlike" torques). The reactance represents the
contribution of self-currents to the total magnetic field. When Lldix/dt is
ignored in (5.1.31), it means that we are ignoring the magnetic field induced
by the current i. This kind of physical approximation is useful in dealing
with continuum interactions (see Chapter 10). We shall also find that in the
limit in which electrical dissipation dominates, media tend to "ooze" rather
than "bounce."

In both lumped parameter and continuum electromechanics it is often
meaningful to model a conducting medium as "perfectly" conducting. This
model is illustrated here by taking an extreme (to that so far considered)
in which characteristic times of the electromechanical system are short
enough to warrant neglecting the drop across the resistance compared with
that across the reactance; that is, the first term in (5.1.31) is ignored compared
with the second. That expression can then be integrated to give

AB
i = AB sin 0. (5.1.38)

L1

Here, we assume that when the motion is initiated at t = 0, not only do
0 = 0 and dO/dt = Q but il = 0. Note that (5.1.38) requires that the flux A,
linking the rotatable coil be conserved. The initial conditions require that this
flux be conserved at i2 = 0.

It follows from (5.1.38) and (5.1.30) that the equation of motion is

d26 (ABo) 2

J - sin 0 cos 0. (5.1.39)
dt' L,

This nonlinear expression can be integrated without further approximations.
For now, we delay this nonlinear problem until Section 5.2.1 and illustrate
the physical consequences of the approximation by considering small
amplitude deflections about 0 = 0. Then (5.1.39) becomes

d20
+ w0 20 = 0, (5.1.40)

where

ABo

The solution to this equation, which satisfies the initial conditions, is

0 = - sin wt. (5.1.41)
to,

111_ __·_ 
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Fig. 5.1.16 Distortion of the initially uniform magnetic field caused by angular deflection
of coil shown in Fig 5.1.14. The flux of the moveable coil is constrained to be zero.

This expression is plotted in Fig. 5.1.15b, where it can be compared with the
loss-dominated case.

When the electrical dissipation can be ignored, the magnetic torque has
the same effect on the motion as a torsional spring (in the nonlinear case, a
nonlinear torsional spring). The reason for this can be seen physically with
the help of Fig. 5.1.16. Remember that in this limit the total flux ý2 through
the rotatable coil is constrained to be zero. With the angular deflection
shown in Fig. 5.1.16, the flux density Bo links the coil, thus contributing to A1.
This flux must be canceled by a flux induced by the current i1. The deflection
shown in Fig. 5.1.16 is accompanied by the currents, as indicated, which
induce a flux that cancels that from Bo. The total magnetic field is distorted to
remain tangential to the plane of the coil. Note that the magnetic force
it x B tends to restore the coil to the angle 0 = 0. Because the induced current
is proportional to the angular deflection (and not to its rate of change), the
magnetic torque is similar to that of a spring.

The assumption that the inductive reactance is of primary importance to
the dynamics is equivalent to recognizing that the effect of the magnetic
field induced by the motion is on the same order as that of the imposed
magnetic field. More is said on this point in Section 7.0, in which the same
physical arguments appear in the context of a distributed interaction. In the
context of lumped parameters perfectly conducting media (in a magnetic
field system) behave in a "springlike" or "bouncing" fashion. In continuous
media (e.g., a "perfectly" conducting fluid) the same approximation leads
to the possibility of wavelike motions, as illustrated in Section 12.2.3.

Our remarks in this section have been limited to electrical approximations
that are appropriate in magnetic field systems. We could further illustrate the

----
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role of electrical dissipation in electric field systems. This was done implicitly
however, in Example 5.1.4, in which it was shown that the electrical variables
of a capacitor microphone were essentially constrained to constant potential
and constant charge in the low and high-frequency ranges, respectively;
that is, if the capacitor plate in Fig. 5.1.11 responded at a low frequency,
the R dq/dt drop across the resistance R could be ignored and the potential
on the plate taken as the constant V,. In the opposite extreme rapid variations
in the capacitance of the microphone meant that there was little chance of
charge leaking off through the resistance R. The result was an essentially
constant charge on the movable plate. The critical parameter that determined
which approximation was valid was wRC o or again essentially the ratio of the
electrical time constant and the period of the mechanical response. The
simplifying feature of Example 5.1.4 was the known response frequency to.
We could, however, easily envision a situation like the one considered in this
section, in which the characteristic dynamic time would not be known until
after the problem had been solved.

5.2 NONLINEAR SYSTEMS

As we have seen, most lumped-parameter electromechanical devices are
described in general by nonlinear differential equations. Section 5.1 was
devoted to showing that for many purposes these equations can be approxi-
mated bylinearized equations. There are cases in which the nonlinear dynamics
are essential, and indeed nonlinear interactions represent possibilities for
engineering applications that are not available within the framework of
linear systems. Unfortunately, there is no general mathematical theory to
cover the solution of all types of nonlinear differential equation. This is not
surprising, since nonlinear equations include all types that are not linear, as
defined in Section 5.1.1.

The most direct way of obtaining numerical answers to nonlinear problems
is to use machine computation, either analog or digital. In some simple cases
it is possible to integrate the equations of motion. In the following two
sections we illustrate two classes of these simple systems and the analytical
techniques that are useful in obtaining solutions. Our objective is not only to
study techniques for describing nonlinear systems but to gain a deeper
physical insight into electromechanical dynamics.

5.2.1 Conservative Systems

In mechanics, if the energy remains constant throughout the motion of a
system, the system is said to be conservative; that is, although the velocity
and position of a mass change with time, the total energy is conserved at its

5.1.3
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Fig. 5.2.1 Simple pendulum
with an angular deflection 0(t)
in the gravitational field g.

initial value. As we show in this section, this
provides a basis for finding the motions of many
electromechanical systems.

A simple mechanical system that illustrates
the approach while allowing considerable phys-
ical insight is the simple pendulum of Fig. 5.2.1.
It consists of a mass M whose center of mass is
connected by a rigid, weightless rod of length I
to a frictionless pivot. We consider the motion
in which there is no externally applied torque
except that due to gravity, which acts downward
as shown.

The torque equation is therefore

d20
J d T,

dt2
(5.2.1)

where the moment of inertia J = M12 and T,, the torque due to gravity,
can be written as

a8
T,= ;O V = -Mgl cos O. (5.2.2)

It is useful to write the torque as the derivative of the potential V because
(5.2.1) can then be written as

d [t 2 + V =0.
dt L2 '.Idtj

(5.2.3)

The best way to see that this is true is to take the first time derivative in
(5.2.3) and see that (5.2.1) is recovered. It follows from (5.2.3) that the
quantity in brackets is constant, or conserved. If we call this constant E,

- = E - V(o).
2 \dt/

(5.2.4)

To understand the physical significance of this equation it is helpful to think
in terms of the potential plot shown in Fig. 5.2.2. The constant E, which is
the sum of the kinetic and potential energies, is independent of 0. According
to (5.2.4), the kinetic energy, hence the square of the angular velocity, is
proportional to the difference between E and V(O). This is shown graphically
in Fig. 5.2.2. It is apparent from the diagram that at points (a) and (b), at
which 101 = 0,, the angular velocityis zero,whereas at 0 = 0 the magnitude of
the angular velocity has its largest value. The kinetic energy J(dO/dt)2 /2 is
always positive. Hence, given the value of E, we can picture the angular
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Fig. 5.2.2 Potential well V(O) for the pendulum of Fig. 5.2.1 and for the rotatable coil
of Fig. 5.2.4. If the pendulum is released from a stationary state at 0 = Om, it will have an
excursion between the points (a)and (b). The square of the angular velocity at any given
position is proportional to the vertical distance between the constant E line and the
potential V(O).

deflection as limited to those regions of the potential plot in which the con-
stant E line is above the potential V(O). For the value of E shown in Fig. 5.2.2
the pendulum oscillates between the angles 0 = 0 m and 0 = -- ,.

The invariant E is established by the initial conditions. Suppose that at
t = 0, 0 = 0, and dO/dt = 0; that is, the pendulum is released from an
initial static deflection 0 = 0m . Then from (5.2.4) E = V(Om) and

J 2 = V(Om)- V(O). (5.2.5)

Similarly, the pendulum could be given an initial velocity (dO/dt)m at 0 = 0,
and it follows from (5.2.4) that E = (J/2)(dO/dt)' + V(O). If the initial
kinetic energy exceeds V(wr) - V(0), the line of constant E in Fig. 5.2.2
never intersects the potential curve and the pendulum deflection increases
monotonically. This simply means that, given a large enough initial energy,
the pendulum rotates continuously on its pivot, moving rapidly at 0 = 0,
27r, 4,rr ... and slowing down at 0 = 7n, 3 r, ....

Note that at the angles 0 = 0, n, . . . the pendulum can be in static equilib-
rium, for at these points V/O0 = 0 (T, = 0). The question whether these
equilibria are stable can be answered in terms of the potential plot. Suppose
that the pendulum is given an initial static position 0 = 0. This establishes
the constant E line in Fig. 5.2.2 as passing through point (1). To see if the
equilibrium is stable, the pendulum is given a slight kinetic energy, which
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raises the constant E line just above point (1) and shows that small amplitude
oscillations result. In the sense defined in Section 5.1.2a we say that this
equilibrium is stable. Similarly, if the pendulum is placed in static equilibrium
at (2), the constant E line just grazes the peaks of the potential curve. To test
for stability the pendulum is given a slight additional kinetic energy (greater
E). It is clear that the pendulum does not tend to return to position (2),
which is a point of unstable static equilibrium. This is not surprising to
someone who has tried to balance a broom on his finger. The pendulum is
upside down at 6 = 7r.

As a consequence of our deductions concerning Fig. 5.2.2, we can interpret
the system behavior as if the moment of inertia were a particle that slides
without friction on a physical "hill" with the shape V(O). Motions within a
potentialwell are bounded and therefore stable.

It is worthwhile to place the linear stability theory of Section 5.1.2a in
perspective by relating it to the potential well. The torque T0 can be expanded
about a point of static equilibrium 0 = 0:

av a2V
T"(0) - (0- 0) (0). (5.2.6)
ao )82

Because the equilibrium is static, the first term on the right is zero. Hence
(5.2.1) has been linearized and is

jd2o rav ]ndtJ + (0)] (0- ) = 0. (5.2.7)
dt2 0

From this constant coefficient linear equation it follows that the solutions will
be oscillatory, hence stable, at points of zero slope on the potential plot at
which

a2V
> 0. (5.2.8)

a82

Our linearized techniques of Section 5.1.2a tell us that small perturbations
about a point in the bottom of a potential well (1) are stable, whereas those
from the peaks (2) are unstable. We shall see in the examples that follow cases
in which even though small amplitude deflections are unstable large deflec-
tions remain bounded.

We return to this example of the mechanical pendulum to show how (5.2.4)
can be integrated to determine the detailed temporal behavior. Before
doing so, however, it would be more to the point to see how these ideas can
be extended into the context of electromechanics.

In Fig. 5.2.3 an electromechanical system is represented schematically by a
mechanical system connected to an electromechanical coupling network.
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Fig. 5.2.3 Electromechanical system in which conservation of an energy function can be
used to determine the dynamics. The mechanical system is composed of lossless elements
and one of each of the electrical terminal variables is held constant.

This network, as defined in Chapter 3, does not contain elements that dissipate
energy, but, of course, it in turn couples to an electrical system that does
contain such elements. If, however, the electrical terminals are constrained
so that a variable at each of the terminal pairs is held fixed, we expect to find
a constant of the motion for the total electromechanical system. This is true
because any additions to the total electromechanical energy of the system
must be made through the electrical terminals. If a terminal variable is fixed,
there is either no flow of energy or no flow of coenergy through that terminal
pair; for example, in the case shown in Fig. 5.2.3 an increment of coenergy
at the (ix, A2) terminal pdir is Ax di, which is constrained to zero as long as
I, = constant. Now we know from Chapter 3 that the torque of electrical
origin To can be found as the derivative of an "energy function" written as a
function of 0 and one of each of the elec-
trical terminal variables (the "independent"
variables): for example, in Fig. 5.2.4

aw'
TB - (i., is, 0), (5.2.9)

where W' is the coenergy function (see,
for example, Section 3.1.2b). If i, and i,
are constrained to be constant, then Te is
the derivative of a known function of 0:

N
!Xi1j-

T = aw(I, I2 0).
a0

(5.2.10)

Because the mechanical system is composed
of elements that do not dissipate energy,
the mechanical torque can also be written
as the derivative with respect to 0 of an

X- 2 +

Fig. 5.2.4 A pair of fixed coils is
excited in series by the current i2. A
pivoted coil has the angular deflection
o and the electrical terminal variables
(ix, 2A). When both coils are driven by
constant current sources, the poten-
tial well is as shown in Fig. 5.2.2.

______·_
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energy function, which we might call U(O)

au
T" = - (5.2.11)

a0

It follows that the torque equation can be written as

d20 av
dJ + = 0, (5.2.12)
dtV ao

where
V(O) = U(O) - W'(I1, 12, 0), (5.2.13)

which now takes on the same form as (5.2.3).
Example 5.2.1 is based on this generalization of the potential well to

include the electromechanical energy function.

Example 5.2.1. The electromechanical system shown in Fig. 5.2.4 has the schematic
description of Fig. 5.2.3. The pivoted coil has the terminal variables (ix,4), whereas the
fixed coils are connected in series, with the terminal variables (i2,A2). There is no magnetic
material in the problem, so that self-inductances remain constant and the electrical terminal
relations can be written as

A1 = Lli, + M(O)i2 , (a)

A2 = M(0)ix + L2iz, (b)

where for this particular case M(O) = Mo cos 0, L1 , L 2, and Mo are constants. From the
terminal relations the coenergy W'(i,, i2,0) follows as

W'= 1Lli2 + ½L2i2
2 + M(O)ili2. (c)

The first two terms in this expression are constant and can be absorbed in the constant of
the motion E. Hence from (5.2.13) we have

V = --II2M(0). (d)

For the particular case of Fig. 5.2.4

V = --1112 ocos 0. (e)

This potential has the same form as the mechanical pendulum of Fig. 5.2.1; hence the
developments relevant to dynamics of the pendulum are equally applicable here. For
quantitative purposes Mgl is replaced by II2M o.

Note that the state ofstable static equilibrium at (1) in Fig. 5.2.2 now corresponds to the
situation in which the magnetic field generated by ilat the center of the pivoted coil is
aligned with the field produced by i2.If either I, or 12 is made negative, the potential well
in Fig. 5.2.2 is inverted, with 0 = 0 becoming an unstable static equilibrium and point (2)
becoming a stable equilibrium.

Now that we have discussed the basic considerations involved in using
potential-well techniques for describing electromechanical problems it would
be interesting to embark on examples that illustrate characteristic dynamic
behavior. It is not often that an engineer is concerned with the detailed tem-
poral behavior of a system. Example 5.2.2 illustrates how a knowledge of the
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electrical terminal relations can be used to establish the significant features
of dynamic behavior under a variety of electrical constraints. This approach
is extremely useful because the relevant features of the electrical terminal
relations can be found quantitatively by simple measurements or qualitatively
by sketching the electric or magnetic fields.

Example 5.2.2. A coil (mass M) is mounted on a massless pendulum of length R, as
shown in Fig. 5.2.5, to allow it to swing through the magnetic field generated by a pair of
series-connected fixed coils. We wish to study the dynamical consequences of energizing
the fixed coils with a current source I2 and constraining the electrical terminals of the
movable coil in two different ways. First, the pendulum motions that result when ii = Ii
or the current through the moving coil is constant provide us with an opportunity to illus-
trate how a combination of electrical and mechanical potentials is handled, a situation that
can then be contrasted with the second case to be considered in which the terminals (i , A1)
are constrained to zero flux linkage. This is the physical result if the terminals of the moving
coil are short-circuited and the resistance of the coil is "small." This limit is discussed in
Section 5.1.3, in which it is shown that the flux can be considered essentially constant if
the current il is limited by the self-reactance of the coil and not by the resistance. This
demands that the characteristic time constant of the motion be short compared with the
LIR time constant of the moving coil.

The mutual inductance between the moving and fixed coils is shown in Fig. 5.2.5c. The

Fig. 5.2.5 (a) A coil is attached to a pendulum in such a way that when 0 = 0 it is directly
between a pair of fixed coils energized by the current 12; (b) top view of (a) showing the
magnetic field produced by the fixed coils; (c) mutual inductance between the fixed and
movable coils of (b).

-I__--·I~~ II-
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dependence on 0 can be understood qualitatively by considering Fig. 5.2.5b. When OR is
very large, it is clear that the magnetic field generated by the fixed coils does not link the
movable coil. As the movable coil comes into the vicinity of the fixed coils, it links a magnetic
field having the opposite direction to that linked when it is directly between the coils. Hence
the mutual inductance first becomes negative and then positive. If the diameter of the fixed
coils is large compared with their spacing, the field, which tends to concentrate near the
currents, will be smaller at the center (0 = 0) than at off-center angles where the movable
coil is adjacent to the fixed windings. Hence the mutual inductance is shown with a dip in
the vicinity of 0 = 0.

This inductance could be measured by exciting the fixed coil with a sinusoidal current
and measuring the induced voltage in the movable coil as a function of position. Therefore
we can regard M(O) as determined either qualitatively or quantitively. The electric terminal
relations have the form of (a) and (b) in Example 5.2.1.

CONSTANT CURRENT CONSTRAINTS

First, consider the consequences of driving both fixed and movable coils by constant-
current sources. The total potential is then the sum of a gravitational potential (5.2.2) and
a potential due to the magnetic field [(d) of Example 5.2.1]:

V = -Mgl cos 0 - I1 2M(O). (a)

There are two possibilities. Either IlI, > 0, in which case the total potential appears as
shown in Fig. 5.2.6a, or 1112 < 0, and V(O) is as shown in Fig. 5.2.6b.

Consider first the case in which both currents are positive. If the pendulum holding the
coil is released from an initial static position at 0 = 0 ,, the line of constant E appears as
shown in Fig. 5.2.6a. The pendulum swings completely through the region of the fixed
coils. The effect of the negative slope of the mutual inductance is not sufficient to
decelerate it as it approaches them. Once the movable coil is between the fixed coils, the
I X B force tends to accelerate it toward the center, except very near 0 = 0. The effect of
the constant current constraints with both currents positive is to make the potential well
centered on 0 = 0 even deeper than it would be without the field.

A similar experiment with one of the currents reversed results in motions characterized
by the constant E line shown in Fig. 5.2.6b. For this case the pendulum released from the
initial angle 0,, is reflected by the magnetic interaction with the fixed coil. This is expected,
since the I x B force on the moving coil as it nears the origin is now in the direction required
to retard the motion. Of course, given enough initial energy, the pendulum will pass on
through the interaction region. Note that the pendulum could be trapped in a region near
the origin.

A significant feature of the constant current dynamics is its dependence on the sign of
the excitation current. If one of the currents is reversed, that part of the potential due to
the magnetic field is turned upside down; for example, in Fig. 5.2.6b, in which one of the
currents is reversed, the static equilibrium at the origin (a) is stable, and there are two
additional points (d and e) at which the pendulum can be in stable static equilibrium. The
equilibria (b and c) that were stable in Fig. 5.2.6a are replaced by unstable equilibria (b and
c) in Fig. 5.2.6b.

CONSTANT-CURRENT CONSTANT-FLUX CONSTRAINTS

We now embark on describing the motions when the pendulum coil of Fig. 5.2.5 is
constrained to constant (zero) flux. As is evident from the development, the electro-
mechanical coupling must now be represented by a hybrid energy function, for neither all
of the currents nor all of the fluxes are constrained to be constant.
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V(o) 1112>0

0

(b)

Fig. 5.2.6 Potential plots for the system of Fig. 5.2.5 constrained to constant current:
(a) both coil currents positive; (b) one coil current positive and one negative.

A schematic representation of the terminal constraints is shown in Fig. 5.2.7. To use the
potential techniques, we require a function W"(0) from which we can find the electrical
torque by taking a derivative:

T7 = . (b)
80

This function, with the terminations of Fig. 5.2.3, was simply the coenergy W', since in
the coenergy function the currents are used as independent variables. For our present
purposes it is helpful to recall that any of the energy functions are derived from a statement
of conservation of energy for the electromechanical coupling.

iz dA 1 + i2 dA2 = dW + T' dO;

111^-1·1·^-1~ -11_-.1 1-· · 1-1

5.2.1
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Electromechanical
coupling

Mechanical
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Fig. 5.2.7 Schematic representation of the system shown in Fig. 5.2.5a when the pendulum
coil is constrained to zero flux.

for example, in the case in which the currents were held constant it was appropriate to
transform this expression to one involving the currents i I and is as independent variables
(as discussed in Section 3.1.2b). For the present situation A1 and is are fixed and therefore
should be used as independent variables. Hence the second term in (c) is rewritten as

is dAn= d(i 2 ) - A2 d4i (d)
so that (c) becomes

A2di2 - il dA, = dW" - Te dO, (e)
where

W" = i2 , - W.

From (e) it follows that the electrical torque is given by (b). As for the energy and coenergy
functions, W" is found by integrating a form of the energy equation, which is now (e). In
carrying out this integration, it must be remembered that is and A1 are independent variables
and must be used to express A2 and il in (e). Thus (a) and (b) of Example 5.2.1 are written as

A1 M(O) .
iA = ( 2 , (9)

L1 L1

t (L_ M2(o)\ M(6)A- L ---- )is+ -z. (g)

Now, if the integration of (e) is carried out in the usual way (Section 3.1.1), we obtain

W" 1 M2 s 1 A 1
W - L - i - +-i(h)

The terminal constraints require that is = 12 and that A1 = 0. (The initial conditions
determine the constant A1 the short-circuited pendulum coil will retain.) For the present
purposes we assume that the coil is initially outside the magnetic field, where a short
circuit establishes the flux Ai = 0. We have established the function W" to be used in (b):

W"= - L, -- I, . (i)
2 L- 120

The potential V, which includes both the effects of the magnetic field and gravity, is [from
(5.2.2)]

1.2

V = -Mglcos 0 ++ M'(0).

x-0---

+

/.1'1
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Here, a constant has been absorbed in the constant of the motion E [which appears in
(5.2.4)].

The potential well for the flux-constrained coil is shown in Fig. 5.2.8 as the superposition
of the same gravitational potential used before and a magnetic potential that is proportional
to the square of M(O), as given in Fig. 5.2.5c. At the outset two observations are of physical
significance; the potential well is unaltered by reversing the direction of the field due to the
fixed coils [I2 is squared in (j)] and the interaction does not depend on the sign of the mutual
inductance. This is by contrast with the current constrained situation in which the potential
well could take on the alternative forms shown in Fig. 5.2.6. These observations reflect the
fact that the current i, is induced in a direction that cancels any flux due to is linking the
pendulum coil. This type of dynamics is familiar from Section 5.1.3 and is evident here
from the potential diagram.

The field generated by the fixed coils represents a magnetic barrier to the pendulum coil;
for example, if the pendulum is given the initial velocity required to establish the constant
of the motion as E1 in Fig. 5.2.8, the moving coil will bounce off the potential barrier set
up by the magnetic field. In fact, at an energy E2, the pendulum coil oscillates between a
maximum deflection magnitude determined by gravity and a minimum determined by the
magnetic interaction.

At an energy E. it is possible to trap the coil in a well created solely by the
imposed magnetic field. This magnetic trapping is a lumped-parameter illustration of how
a magnetic field can be shaped to "bottle up" a highly conducting continuum such as a
plasma. We can think of the pendulum coil as replaced by a highly conducting "blob" of
material, which in turn can be modeled by many arbitrarily oriented, perfectly conducting
loops. Each of these loops tends to behave as described here.

The effects of a finite coil resistance were considered in Section 5.1.3 to place the dynamics
as found here in perspective. The zero flux constraint is a meaningful model for the actual

171*1

Fig. 5.2.8 Potential well for the system of Fig. 5.2.5a when the pendulum coil is con-
strained to zero flux. The potential has this shape regardless of the sign of the current I.

-1·1·-~11~11 1- I ·
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physical situation only as long as characteristic times for the motion are short compared
with the LIR time constant of the pendulum coil.

So far in this discussion of nonlinear conservative systems we have not
concerned ourselves with detailed temporal behavior. Sometimes nonlinear
periods of oscillation or deflections as a function of time are required and
(5.2.4) must be integrated. For this purpose it is written as

dO - [E V(0)] . (5.2.14)
dt

The plus and minus signs indicate that the pendulum can be moving in
either direction at a given angle 0.

If we specify that when t = 0 the angle 0 = 0m, (5.2.14) can be integrated.

t = dO' (5.2.15)
- 2E - V(0')])

The parameter 0' is a running variable of integration. Whether (5.2.15) can
be integrated analytically depends on the form of V(O). In any case, given
V(O), numerical integration is a straightforward matter.

In the case of the mechanical pendulum of Fig. 5.2.1, V(O) is given by
(5.2.2) and the integration of (5.2.15) can be carried out. Suppose that the
pendulum is released from rest at 0 = 0,. Then from (5.2.4) E = V(Om)
and the integral of (5.2.15) takes the standard form of an elliptic integral*
for which solutions are tabulated. One fourth of a cycle of oscillation is
shown as a function of time in Fig. 5.2.9, where for (a) the pendulum is
released from an initial "small" angle 0, = 200 and for (b) the initial ampli-
tude is 900. For these plots the time is normalized to the frequency (o = 4/g-.
This is the frequency of oscillation for small amplitudes, as can be seen by
combining and linearizing (5.2.1) and (5.2.2) to obtain

d20 + o_20 = 0. (5.2.16)
dt 2

For the initial conditions considered in Fig. 5.2.9 the solution to this equa-
tion is

0 = ,Omcos cot. (5.2.17)

This response, predicted by the linearized equation of motion, is shown as
dashed curves in Fig. 5.2.9. For an amplitude of 0 = 200 the results from the
linear and nonlinear models are almost identical, although there is some

* P. Franklin, Methods of Advanced Calculus, McGraw-Hill, New York, 1944, Chapter
VII.
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Fig. 5.2.9 Oscillation of a simple pendulum: (a) small amplitude; (b) large amplitude.

discrepancy between the predictions for 0 = 900. This comparison between
the exact and linearized solutions should help to place the methods of
Section 5.1 in perspective. Of course, the adequacy of a linearized model will
depend greatly on the nature of the nonlinearity. The following example is
one in which a linearized model would be difficult to make and would be of
doubtful usefulness.
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(a) v V- g< <R
+ a R

Moment of
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Fig. 5.2.10 (a) Capacitor plates just overlap when 0 = 0 and are constrained to constant
potential Vo; (b) capacitance as a function of 6; (c) potential for the system of (a).

Example 5.2.3. The electric field system shown in Fig. 5.2.10 illustrates how the period
of oscillation, computed from (5.2.15), can have nonlinear behavior. A capacitor is con-
structed from fixed and rotatable plates with the shape of sections from coaxial cylinders.
At 0 = 0 the plates are aligned and the capacitance has the maximum value Co. At 0 = ±2cC
there is no overlap between the plates and the capacitance is essentially zero. Hence C(0)
depends on 0 essentially as shown in Fig. 5.2.10b. With the plates constrained to have the
constant potential difference Vo, we expect that the rotatable plate can be at rest at 0 = 0,
for the induced charges will tend to make the plates attract one another. We wish to deter-
mine the period of oscillation that results when the plate is deflected from this equilibrium.

The terminals are constrained to constant potential; hence it is appropriate to write the
electric torque in terms of the coenergy W'(v, 0) (see Section 3.1.2b):

aW'
Te = -w (Vo,0). (a)

Hence the potential V is [from (5.2.1) and (5.2.2)]

V= - W'(Vo, ), (b)
which for this example is

V= --IVo2C(), (c)
with C(0) as shown in Fig. 5.2.10b. It follows that the potential produced by the electric
field appears as shown in Fig. 5.2.10c. From this diagram it is clear that if the movable
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plate (with the moment of inertia J but with no effect from gravity) is given a kinetic energy
greater than

I dO \ C V (d)

at 0 = 0 the motions will not be oscillatory. Instead, the plate will rotate continuously with
constant velocity when the plates do not overlap and with a maximum velocity at 0 = 0.

We can compute the period of oscillation Tfrom (5.2.15) when the initial conditions are
such that the motions are oscillatory. For this purpose we call the peak deflection 0, so
that the line of constant energy is as shown in Fig. 5.2.10c. In terms of that figure the rotor
moves from (a) to (b) in T/4 sec. Over this interval the potential can be written as

V() = ( - 2c) •. (e)
2a 2

For our purposes (5.2.15) becomes

T o dO'
= . 2 VOM) - V(')lA

where from (e)
C Vo(g2

V(O,) - V(O) = ( ) 0 (g)2oc 2

Substitution of (g) into (f), followed by integration, gives the required period of oscillation:

/ 2Jm \ý _
T= 8 ( , .v ; , < 2c. (h)

Of course, this result is limited to a range of 08 in which the plates overlap. Beyond this
range the motions are not bounded (oscillatory) and

T- o; [0m. > 2m. (i)

The dependence of the oscillation period on 0n is shown in Fig. 5.2.11. In a linear system
the period of oscillation is independent of amplitude. Hence the plot emphasizes the
nonlinear character of the motion.

It should be recognized that the approximate function C(O) is valid only if the plate
spacing g is small compared with deflections OR of interest. In a more exact model the
functional dependence of C would be smoothed in the region near 0 = 0 and 0 = -±2c in
Fig. 5.2.10. This is true because the fringing fields would extend beyond the edge of the
overlapping plates a distance on the order of g. Hence we cannot expect the period of
oscillation given by (h) to be correct unless 0mR > g.

5.2.2 Loss-Dominated Systems

The approach to the analysis of nonlinear problems in Section 5.2.1 took
advantage of the small mechanical and electrical energy dissipations. In this
section we wish to illustrate how simplifying assumptions can be made
valid when there is a large effect from damping mechanisms. We can illustrate
briefly the notion involved by returning to the example of the pendulum used
in Section 5.2.1 (Fig. 5.2.1). If there is viscous damping (with coefficient B),

· __·___·___··III II~_UI I·
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Fig. 5.2.11 Normalized period of oscillation for the electric pendulum of Fig. 5.2.10a
as a function of peak amplitude.

(5.2.1) for the deflection of the pendulum is replaced by (see Section 2.2.lb
for a discussion of torsional viscous dampers)

d26 d6
J + B d -Mgl sin 0. (5.2.18)

dt' dt

In the analysis presented in Section 5.2.1 the viscous term was implicitly
assumed small compared with the other terms in the equation. In the opposite
extreme the viscous damping is so large that the inertial effects of the first
term are ignorable. This would be the result of immersing the pendulum in
heavy oil. Then we can approximate (5.2.18) by

B O -Mgl sin 0, (5.2.19)
dt

which is a simple nonlinear expression to integrate. Rearranging, we have

dO Mg dt. (5.2.20)
sin 0 B

If, when t = 0, 0 = 0,, we can integrate this equation between 0,, and 6(t)

f(t, d_ Mglif dt. (5.2.21)
Je, sinO B J

We carry out this integration to obtain*
t g = -In Ftan (0/2)_

-In [ t(02) (5.2.22)

This expression for 0 is plotted in Fig. 5.2.12.
We now consider an example of a nonlinear, lossy system, for which we

can make simplifying assumptions to allow analytical integration of non-
linear equations, and analyze a time-delay relay in which the dynamic

* C. D. Hodgman, Mathematical Tables from Handbook of Chemistry and Physics, 9th
ed., Chemical Rubber Publishing Co., Cleveland, Ohio.
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S

(Mgl/B) t

Fig. 5.2.12 Angular deflection 0 of a pendulum heavily damped and released from
0,n = 90 .

behavior is controlled by mechanical losses. Although we treat a time-delay
relay in this example, the approximations and analytical techniques are
applicable to many other systems.

Example 5.2.4. In Fig. 5.2.13 we show schematically the basic actuator for a mechanically
damped time-delay relay.* The basic operation to be analyzed is as follows: with switch S
open, the spring pulls the plunger against a mechanical stop at x = xo; when switch S is
closed, current in the coil causes a magnetic force that pulls the plunger against the stop
at x = 0. This displacement opens or closes relay contacts. The motion of the plunger when
driven by the magnetic force is dominated by the mechanical damper. The damper, or
dashpot, normally used in this application consists of a piston with a small orifice, moving
in a cylinder filled with oil (see Fig. 2.2.10a). As discussed in Section 2.2.1b, a damper of
this type is represented quite well by a damping force proportional to the square of the
velocity [see (2.2.8)].

The electromechanical coupling of the configuration in Fig. 5.2.13 has been analyzed
in Examples 2.1.1, 3.2.1, and 5.1.1. Neglecting fringing fields and assuming infinitely
permeable magnetic material, we obtain the electrical and mechanical terminal relations
from (a) and (c) of Example 5.1.1.

2 L 
(a)

1 + ag

fJ- (b)2g(l + x/g)2 '

where
L PoN 2

(2wd)

* A. E. Knowlton, ed., Standard Handbook for Electrical Engineers, 9th ed., McGraw-Hill,
New York, 1957, Section 5-150.
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Fig. 5.2.13 Basic configuration of actuator for mechanically damped time-delay relay.

Thus, with switch S closed and the plunger between the stops

0 < x < Xo,
the equations of motion are

Lo di Loi dx
V= Ri + d (c)1 + x/g dt g(l+ x/g) dt '

d2x (dx Li 2 
(d)

M -x Bs + K(x - 1) L (d)
dt2 2 g(1 + xlg)2

The + or - sign on the damping force is chosen to make the damping force oppose the
motion.

As already stated, we wish to analyze the transient that occurs when the switch S is
closed at t = 0 with the initial conditions at t = 0

x =x o, i = 0. (e)

The mechanical damper dominates the mechanical motion and slows down the motion of
the plunger so that the closing time can be of the order of seconds to minutes. Consequently,
the speed voltage, the last term in (c), can be neglected throughout the analysis, and the
transient in current is complete before the position x changes significantly from the initial
position x,. Thus we find the current from the simplified equation

L. di
V = Ri + -"-

-r (UIY

W,-



Nonlinear Systems

which has constant coefficients. The current transient is

V
I = - (1 - e-t/To), (g)

R
where

Lo
= R(I + z•og)

The time constant -r is the electrical time constant with the gap fully open.
With the purely electrical transient completed before the mechanical motion starts and

with the neglect of the speed voltage in (c) the mechanical motion occurs with the current
essentially constant. Thus from the viewpoint of the mechanical motion the voltage source
V and resistance R form an effective current source. This situation, in which electrical time
constants are much shorter than mechanical time constants (see Section 5.1.3), occurs often
in electromechanical transducers and is the source of significant simplification.

As stated before, the mechanical motion is dominated by the damper. This means that
except for the very short time during which the mass initially accelerates, the damping force,
the second term on the left of (d), is much greater than the acceleration force and the spring
force. Consequently, when our interest is in the time required for the air gap to close, we
can simplify (d) to

-B8 ( L(VR)
\Bdt/ 2g(1 + xzg) 2

where we have chosen the minus sign because B,(dx/dt)2 must act to retard the motion of
the plunger in the -x-direction. Solution of this expression for the velocity yields

dx VL•/2gB, V/R
dt - 1 + /g

We have specified a minus sign because we know from the initial conditions and the physical
nature of the problem that x is decreasing.

With the initial condition as specified by (e), we integrate (i) to find the time t at which
the plunger is at position x as

a + dx'= V dt'. (j)

Integration of this expression yields

(x- x) + (X 2  ( t. (k)
2 ý2gB) R

We find z as a function of time by solving this quadratic equation. The result is

z = -g + (g + X,)2 - %jiB ] / _ (1)

Note that this expression satisfies the initial condition that at t = 0, x = xo. Because the
other root of (h) does not satisfy this condition, it is extraneous.

I·I_1_UUIII^_IIIIII__- .
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AI

Fig. 5.2.14 Dynamic response of system of Fig. 5.2.13.

Alternatively, if we wish to evaluate the time rm necessary for the airgap to close, we set
x = 0 in (k) and obtain

m,• o -g • (m)

It is clear from this expression how the closing time can be controlled by the damping
constant B, or by the current V/IR.

The response of the position as a function of time (I) is plotted in Fig. 5.2.14. For this
purpose (1)is normalized in the following way:

. . . ... (n)
X
o Xo (Lo

and we assume the ratio

- 0.1.
x

o

Also plotted in Fig. 5.2.14 is the magnitude of the velocity, normalized, by using (i) and (n)
in the form

idx/dt 1 [( + t o)

(LoI2gB 8) VIR g g9 ))
We note from the curves of Fig. 5.2.14 that the plunger moves at almost constant velocity
over most of the travel and then accelerates markedly. This results because the magnetic
force (b) increases rapidly as x -- 0. A characteristic of this type is desirable in a time-delay
relay to ensure that the contacts will close rapidly to avoid arcing. In any given situation,
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however, the validity of ignoring the acceleration and speed voltage effects in this last region
should be examined.

The curve of velocity in Fig. 5.2.14 indicates that this system behaves much like a linear
statically unstable system (see curve A of Fig. 5.1.7). In some cases it may be desirable to
approximate the equations of motion by a linear set with a static instability. This is especially
true if the nonlinear expressions cannot be integrated analytically.

Although we have confined our attention in this section to discussing
examples in which the damping is mechanical in nature, electrical damping
can also dominate the dynamics. An example in which this is the case was
discussed in Section 5.1.3. There the dynamic behavior of a coil rotating in a
magnetic field was discussed in the limit at which the inductive reactance
could be ignored [condition of (5.1.32)]. This made it possible to reduce
the solution of the nonlinear motions to the problem of integrating (5.1.34),
a procedure that is analogous to integrating (5.2.19).

5.3 DISCUSSION

In this chapter there have been two objectives. For the first, important
types of dynamical behavior have been illustrated in which attention has been
given to the relation of basic electromechanical interactions to mathematical
models. For the second objective we have formed a basis on which to build an
understanding of continuum interactions. In this regard both the mathe-
matical techniques and physical approximations of this chapter are important
in the chapters that follow.

PROBLEMS

5.1. Two parallel, perfectly-conducting plates are constrained as shown in Figure 5P.1
in such a way that the bottom plate is fixed and the top one is free to move only in the
x-direction. A field is applied between the plates by the voltage source v(t). When x = 0,
the spring is in its equilibrium position.

Depth d into paper R

+
)vpt)

L- '

Fig. 5P.1
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(a) What is the force of electric origin exerted on the upper plate?
(b) Write the complete equations of motion for this system.
(c) If R = 0 and v(t) = (Vo sin wt)u_ 1(t), where u-1(t) is the unit step function, what

is x(t)? Assume that the system is in static equilibrium when t < 0.
5.2. The system illustrated in Fig. 5P.2 is a schematic model of a differential transformer,
which is a device for measuring small changes in mechanical position electrically. The
movable core is constrained by bearings (not shown) to move in the x-direction. The two
excitation windings, each having N 1 turns, are connected in series with relative polarity
such that, when the movable core is centered as shown, there is no coupling between the
excitation circuit and the signal winding. When the core moves from the center position
in either direction, a voltage is induced in the signal winding. In the analysis neglect
fringing fields and assume that the magnetic material is infinitely permeable.

Excitation winding

v, X1

Excitation
winding

epth d
o paper

1 x Movable core I

Fig. 5P.2

(a) Calculate the lumped-parameter equations of state, A1(i, -),i ,x), 2(i,x), for
this system.

(b) Terminal pair 1 is constrained by a current source iI = Io cos cot and the system
operates in the steady state. The open-circuit voltage v2 is measured. Calculate the
amplitude and phase angle of v2 as a function of displacement x for the range
-a < x < a.

5.3. A pair of highly conducting plates is mounted on insulating sheets, as shown in Fig.
5P.3a. The bottom sheet is immobile and hinged to the top sheet along the axis A. The
top sheet is therefore free to rotate through an angle v. A torsion spring tends to make
y = yo so that there is a spring torque in the +•-direction TS = K(Vo - y). A source
of charge Q(t) is shunted by a conductance G and connected by flexible leads between the
conducting plates. We wish to describe mathematically the motion of the upper plate [e.g.,
find cy(t)]. To do this complete the following steps:

(a) Find the static electric field E between the two flat, perfectly conducting plates
shown in Fig. 5P.3b. Assume that each of the plates extends to infinity in the r-
and z-directions.

(b) If the angle y is small [,a << D, ya << (b - a)] so that fringing fields are not
important, the electric field of part (a) can be used to approximate E between the
metal plates of Fig. 5P.3a. Under this assumption find the charge q on the upper
metal plate. Your answer should be in the form of q = q(V, V) and is the electrical
terminal relation for the block diagram of Fig. 5P.3c.
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Fig. 5P.3c

(c) Use part (b) to find the electrical energy stored between the plates W = W(q, p)
and, using W, find the torque of electrical origin T e exerted by the field on the
movable plate.

(d) Write two differential equations that, with initial conditions, define the motion of
the top plate. These equations should be written in terms of the two dependent
variables W(t) and q(t). The driving function Q(t) is known and the movable plate
has a moment of inertia J.

(e) Use the equations of part (d) to find the sinusoidal steady-state deflection yP(t) if
G = 0 and Q(t) = Q, cos wot. You may wish to define y as yV= ytp + py'(t), where
v, is a part of the deflection which is independent of time. Identify the steady-state
frequency at which the plate vibrates and give a physical reason why this answer
would be expected.

M
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5.4. This is a continuation of Problem 3.4, in which the equations of motion for the
system shown in Fig. 3P.4 were developed.

(a) The resistance R is made large enough to be ignorable and the current I(t) = Io,
where Io is a constant. Write the equation of motion for x(t).

(b) Use a force diagram (as in Example 5.1.1) to determine the position x = xo,
where the mass can be in static equilibrium, and show whether this equilibrium is
stable.

(c) With the mass M initially in static equilibrium, x(O) = zo, it is given an initial
velocity vo. Find x(t) for x xo.

5.5. Two small spheres are attached to an insulating rod, and a third sphere is free to slide
between them. Each of the outside spheres has a charge Q1, whereas the inside sphere has
a charge Qo and a mass M. Hence the equation of motion for the inside sphere is

d2x QoQ 1 QIQo
dt2 42re(d + )2 47rE(d - x)2 "

d d

Mass M

Fig. 5P.5

(a) For what values of Qo and Qx will the movable sphere have a stable static equilib-
rium at x = 0? Show your reasoning.

(b) Under the conditions of (a), what will be the response of the sphere to an initial
small static deflection x = xz? xz << d. (When t = 0, x = xo, dx/dt = 0.)

5.6. Figure 5P.6 shows a sphere of magnetic material in the magnetic field of a coil. The
coenergy of the coil is

W'(i,x)= 1 - 4 i'21L \/

Fig. 5P.6
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where Lo is positive. The sphere has a mass M and is subject to a gravitational force Mg
(as shown).

(a) Write the differential equation that determines x(t).
(b) Find the equilibrium position(s).
(c) Show whether this (these) equilibrium position(s) is (are) stable.

5.7. In Problem 3.15 we developed the equation of motion for a magnetic wedge, and it
was shown that, with a constant current i = I o applied, the wedge could be in static
equilibrium at 0 = 0. Under what conditions is this equilibrium stable?

5.8. The system shown in Fig. 5P.8 is one third of a system (governing vertical motion
only) for suspending an airfoil or other test vehicle in a wind tunnel without mechanical
support. The mass M0, which represents the airfoil, contains magnetizable material and is
constrained by means not shown to move in the vertical direction only. The system is
designed so that the main supporting field is generated by current i1 and the stabilizing
field is generated by current i2. Over the range of positions (x) of interest, the electrical
terminal relations may be expressed as:

Lli1 Mi2A1(i, i2, x) = +
(1 + x/a)3 (1 + x/a) '

Mi1 L2 i2
(1 + xa)3 (1 + x/a)

3 '

where a, L1, L2 , and M are positive constants and M 2 < L1L2.
(a) Find the force of electric originfe(il, i2,x) acting on mass Mo.
(b) Set i1 = I, a constant current, and set i2 = 0. Find the equilibrium position X o

wheref e is just sufficient to balance the gravitational force on the mass Mo.
(c) With the currents as specified in part (b), write the linear incremental differential

equation that describes the motion of mass M o for small excursions x'(t) from the
equilibrium X o. If an external force f(t) = Iou,(t) (an impulse) is applied to the
mass in the positive x-direction with the mass initially at rest, find the response
x'(t).

(d) For stabilization of the equilibrium at X o a feedback system, which uses a light
source, photoelectric sensor, and amplifiers, supplies a current is such that
i2(t) = ca'(t), where a is a real constant. Keeping ix = I, write the equation of
motion for x'(t). For what range of a is the impulse response x'(t) bounded?

^I

S I I I rromagnetic
material

Fig. 5P.8
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(e) To make the impulse response tend to zero as t - co, the signal from the photo-
electric sensors is operated on electronically to produce a current i2 such that

is = ax'(t) + dT ,

where ac and fl are real constants. Again, write the equation of motion for x'(t).
For what ranges of a and f does the impulse response x'(t) tend to zero as t - oo ?

5.9. A conservative magnetic field transducer for which variables are defined in Fig. 5P.9
has the electrical equation of state A = AAzi, for x > 0, where A is a positive constant.
The system is loaded at its mechanical terminals by a spring, whose spring constant is K

i fe

B

Fig. 5P.9

and whose force is zero when x = 1o, and a mechanical damper with the constant B. The
electrical terminals are excited by a direct-current source I, with the value

(a) Write the mechanical equation in terms offe.
(b) Find f' in terms of data given above.
(c) Find by algebraic techniques the possible equilibrium positions for the system and

show whether each equilibrium point is stable.
(d) Check the results of part (c) by using graphical techniques to investigate the

stability of the equilibrium points.

Fig. 5P.10

_I___·_1 
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5.10. An electric field system has a single electrical terminal pair and one mechanical
degree of freedom 0 (Fig. 5P.10). The electrical terminal variables are related by q =
Co(1 + cos 20)v, where 0 is the angular position of a shaft. The only torques acting on
this shaft are of electrical origin. The voltage v = - Vo , where Vo is a constant.

(a) At what angles 0 can the shaft be in static equilibrium?
(b) Which of these cases represents a stable equilibrium? Show your reasoning.

5.11. Figure 5P.11 shows a diagrammatic cross section of a two-phase, salient-pole
synchronous machine. The windings in an actual machine are distributed in many slots

Magnetic axis (2)

Fig. 5P.11

along the periphery of the stator, rather than as shown. The rotor is made of magnetically
soft iron which has no residual permanent magnetism. The electrical terminal relations are
given by

A, = (Lo + M cos 20)i I + M sin 20 is,

A 2 = M sin 20 i1 + (Lo - M cos 20)i2.

(a) Determine the torque of electrical origin T*(i, i2, 0).
(b) Assume that the machine is excited by sources such that i1 = I cos oat,

i --= Isin w,t, and the rotor has the constant angular velocity w,. such that
0 = o,.t + y. Evaluate the instantaneous torque T'. Under what conditions
is it constant?

· _.__
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(c) The rotor is subjected to a mechanical torque (acting on it in the +0-direction):
T = To + T'(t), where To is a constant. The time-varying part of the torque
perturbs the steady rotation of (b) so that 0 = wot + yo + y'(t). Assume that
the rotor has a moment of inertia J but that there is no damping. Find the possible
equilibrium angles V, between the rotor and the stator field. Then write a differen-
tial equation for y'(t), with T'(t) as a driving function.

(d) Consider small perturbations of the rotation y'(t), so that the equation of motion
found in (c) can be linearized. Find the response to an impulse of torque T'(t) =
Iu,(t), assuming that before the impulse in torque the rotation velocity is constant.

(e) Which of the equilibrium phase angles Yo found in (c) is stable?

5.12. An electromechanical model for a magnetic transducer is shown in Fig. 5P.12. A
forcef(t) is to be transduced into a signal vo(t) which appears across the resistance R. The

"1 o -

Fig. 5P.12

system is designed to provide linear operation about an equilibrium where the coil is
excited by a constant current I. The plate is constrained at each end by springs that exert
no force when x = 0.

(a) Find the force of electrical origin fe(x, i) on the plate in the x-direction.
(b) Write the equations of motion for the system. These should be two equations in

the dependent variables (i, x).
(c) The static equilibrium is established with f(t) = 0, x = X, and i = I. Write the

equilibrium force equation that determines X. Use a graphical sketch to indicate
the equilibrium position X at which the system is stable. Assume in the following
that the system is perturbed from this stable static equilibrium.

(d) The resistance R is made large enough so that the voltage drop across the
resistance is much larger than that across the self-inductance of the coil. Use this
fact as the basis for an approximation in the electrical equation of motion.
Assume also that perturbations from the equilibrium conditions of (c) are
small enough to justify linearization of the equations. Given thatf(t) - Re [fejit],
vo(t ) = Re [voeJwt], solve for the frequency response Volf.

5.13. The cross-section of a cylindrical solenoid used to position the valve mechanism of a
hydraulic control system is shown in Fig. 5P.13. When the currents il and i2 are equal, the
plunger is centered horizontally (x = 0). When the coil currents are unbalanced, the plunger
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Fig. 5P.13

moves a distance x. The nonmagnetic sleeves keep the plunger centered radially. The mass
of the plunger is M, the spring constant K, and the viscous friction coefficient is B. The
displacement x is limited to the range -d < x < d. You are given the terminal conditions

rA = L1 1i, + L12i•
2s = L12i1 + L22ij

L = Lo 3- 2 x

L 22 = L (3 +2 W2

L2 = Lo I - X).

where

7/, oo,

K

g
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(a) Write the mechanical equation of motion.
(b) Assume that the system is excited by the bias current Io and the two signal current

sources i(t) in the circuit of Fig. 5P.13 with the restriction that ii(t)I <<Io.
Linearize the mechanical equation of motion obtained in part (a) for this exci-
tation.

(c) Is the system stable for all values of Io?
(d) The system is under damped. Find the response x(t) to a step of signal current

i(t) = =Iul(t).
(e) Find the steady-state response x(t) to a signal current i(t) = Isin ot.

5.14. A plane rectangular coil of wire can be rotated about its axis as shown in Fig. 5P.14.
This coil is excited electrically through sliding contacts and the switch S by the constant-
current source I in parallel with the conductance G. A second coil, not shown, produces a

A"•Uniform magnetic
field

Fig. 5P.14

uniform magnetic field perpendicular to the plane of the rectangular coil when 0 = 0.
Assume that the terminals of the second coil are described by the variables i2, )2, so that
we can write the electrical terminal relations as A, = Li i + i2M cos 0, •2 = i 1M cos 0 +
Li2, where L1, M, and L2 (the self- and maximum mutual inductances of the coils) are
constants. Concentrate attention on the electrical variables of the rotating coil by assuming
that i2 = I2 = constant. This is the excitation that provides the uniform constant magnetic
field. In addition, assume that the mechanical position is constrained by the source
O = Ot.

(a) Write the electrical equation for the coil. This equation, together with initial
conditions, should determine i:(t).

I
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(b) Assume that the switch S is closed at t = 0; that is, the initial conditions are,
when t = 0, 0 = 0 and i1 = 0. Find the current il(t).

(c) Find the flux A1(t) that links the rotating coil.
(d) Consider the limiting case of (b) and (c) in which the current i1 can be considered

as constrained by the current source.

LIlfGL1 << 1 and IGL 1 <<
MI,

Sketch il(t) and IA(t).
(e) Consider the limiting case in which the electrical terminals can be considered to be

constrained to constant flux fGL1 > 1 and sketch il(t) and A1(t).
(f) Compute the instantaneous torque of electrical origin on the rotating coil.
(g) Find the average power required to rotate the coil. Sketch this power as a function

of the normalized conductance QGL 1. For what value of OGL, does G absorb
the maximum power?

5.15. In the system illustrated in Fig. 5P.15 the lower capacitor plate is fixed and the upper
plate is constrained to move only in the x-direction. The spring force is zero when x = 1,
and the damping with coefficient B is so large that we can neglect the mass of the movable

V0

Fig. 5P.15

plate. The capacitor plates are excited by a constant voltage source in series with a resistance
R. Neglect fringing fields. The voltage Vo is adjusted so that a stable, static equilibrium
occurs at Xo = 0.71. With the system at rest at this equilibrium position, a small step of
mechanical forcef is applied:f = Fu_1 (t). In all of your analyses assume that the pertur-
bations from equilibrium are small enough to allow use of linear incremental differential
equations.

(a) Calculate the resulting transient in position x.
(b) Specify the condition that must be satisfied by the parameters in order that the

mechanical transient may occur essentially at constant voltage. Sketch and label
the transient under this condition.

(c) Specify the condition that must be satisfied by the parameters in order that the
initial part of the mechanical transient may occur essentially at constant charge.
Sketch and label the transient under this condition.

5.16. A mass M has the position x(t). It is subjected to forces fl and f2 which have the
dependence on x shown in Fig. 5P.16. The mass is released at x = 0 with the velocity vo.
In terms of Fo and K, what is the largest value of vo that will lead to bounded displacements
of M?
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Fig. 5P.16

5.17. The electric field transducer shown in Fig. 5P.17 has two electrical terminal pairs and
a single mechanical terminal pair. Both plates and movable elements can be regarded as
perfectly conducting.

(a) Find the electrical terminal relations qz = qx(vl, v2, x), q2 = q2 (v1, V2 , X).
(b) Now the terminals are constrained so that v, = Vo = constant and q, = 0. Find

the energy function U(x) such that the force of electrical origin acting in the
x-direction on the movable element is

axfe T

tq2

Fig. 5P.17

I
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5.18. The central plate of a three-plate capacitor system (Fig. 5P.18) has one mechanical
degree of freedom, x. The springs are relaxed in the equilibrium position x = 0 and fringing
can be neglected. For a long time the system is maintained with the central plate fixed at
x = 0 and the switch closed. At t = 0 the switch is opened and the center plate is released
simultaneously.

(a) Find, in terms of given parameters, a hybrid energy function W" such that
fO = -8W'Bax for t > 0.

vith constant K/4

tharea A

her dimensions

pened and central
eased at

Fig. 5P.18

(b) Determine the criterion that the central plate be in stable equilibrium at x = 0.
(c) In the case in which the criterion of part (b) is satisfied, sketch a potential well

diagram for -a gxa a, indicating all static equilibrium points, and whether
they are stable or unstable.

5.19. An electromechanical system with one electrical and one mechanical terminal pair
is shown in Fig. 5P.19. The electrical terminal relation is

Loi
(1 - ala)4 '

where L o and a are given constants. The system is driven by a voltage Vo + v(t), where Vo
is constant. The mass of the plunger can be ignored. Gravity acts on M as shown.

(a) Write the complete equations of motion for the system. There should be two
equations in the unknowns i and a.
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V

19,

Fig. 5P.19

(b) With v(t) = 0, the current produced by Vo holds the mass M in static equilibrium
at x = x0 . Write the linearized equations of motion for the perturbations from
this equilibrium that result because of v(t).

5.20. The upper of the three plane-parallel electrodes shown in the Fig. 5P.20 is free to move
in the x-direction. Ignore fringing fields, and find the following:

(a) The electrical terminal relations ql(vl, v2, x) and q2(v1, v2, x).

-- , to

Fig. 5P.20

(b) Now the top plate is insulated from the lower plates after a charge q2 = Q has
been established. Also, the potential difference between the lower plates is
constrained by the voltage source v1 = Vo,. Find a hybrid energy function

W"(V,Vo ,, ) such that

= aW"(Vo, Q, )Q,

5.21. In Problem 3.8 the equation of motion was found for a superconducting coil rotating
in the field of a fixed coil excited by a current source. This problem is a continuation of
that development in which we consider the dynamics of the coil in a special case. The
current I is constrained to be I o = constant.

i---F
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(a) Write the equation of motion in the form

d'0 av
J+ -0.

dt" 80

(see Section 5.2.1) and sketch the potential well.
(b) Indicate on the potential-well sketch the angular positions at which the rotor

can be in stable static equilibrium and in unstable static equilibrium.
(c) With the rotor initially at rest at 0 = 0, how much kinetic energy must be imparted

to the rotor to make it rotate continuously?

5.22. The system of Fig. 5P.22 contains a simple pendulum with mass M and length 1.
The pivot has viscous (linear) friction of coefficient B. The mass is made of ferromagnetic
material. It causes a variation of coil inductance with angle 0 that can be represented

ation of
ityg

viscous friction
coefficient B

Fig. 5P.22

approximately by the expression L = Lo(1 + 0.2 cos 0 + 0.05 cos 20), where Lo is a
positive constant. The coil is excited by a constant-current source I at a value such that
ILo = 6Mgl with no externally applied forces other than gravity g.

(a) Write the mechanical equation of motion for the system.
(b) Find all of the possible static equilibria and show whether or not each one is

stable.

5.23. The one-turn inductor shown in Fig. 5P.23 is made from plane parallel plates with a
spacing w and depth (into the paper) D. The plates are short-circuited by a sliding plate in
the position x(t). This movable plate is constrained by a spring (constant K) and has a
mass M.

(a) Find the equation of motion for the plate, assuming that the electrical terminals
are constrained to constant flux A = A = constant.

(b) Find the position(s) x = X o at which the plate can be in static equilibrium.
Determine if each point represents a stable equilibrium. Can you assign an
equivalent spring constant to the magnetic field for small-signal (linear) motions?

-- "-~-~--~U I ~"--"~
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,Frictionless contact
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Fig. 5P.23

(c) Use a potential-well argument to describe the nonlinear motions of the plate.
Include in your discussion how you would use the initial conditions to establish
the constant of the motion E.

(d) Briefly describe the motions of the plate constrained so that i = I = constant.

5.24. The terminals of the device shown in Problem 4.23 are now constrained to a constant
value of A: A= A o = constant. The rotor has a moment of inertia J and is free of damping.

(a) When 0 = 0, the angular velocity dO/dt = 0. Find an analytical expression for
dOldt at each value of 0. (Given the angle 0, this expression should provide the
angular velocity.)

(b) What is the minimum initial angular velocity required to make the rotor rotate
continuously in one direction?

(c) For what values of 0 can the rotor be in static equilibrium? Which of these
equilibria is stable?

(d) Describe quantitatively the angular excursion of the rotor when it is given an
initial angular velocity less than that found in (b).

5.25. A mass M, attached to a weightless string rotates in a circle of radius r on a fixed
frictionless surface as illustrated in Fig. 5P.25. The other end of the string is passed through
a frictionless hole in the surface and is attached to a movable capacitor plate of mass M2.
The other capacitor plate is fixed and the capacitor is excited by a voltage source v(t). The
necessary dimensions are defined in the figure. The length of the string is such that when
x = 0, r = 0. You may assume that a > x and ignore the effects of gravity and electrical
resistance. With v(t) = Vo = constant and r = 1, the mass M1 is given an angular velocity
wo necessary for equilibrium.

(a) Find the force of electromagnetic origin exerted on the capacitor plate.
(b) Determine the equilibrium value of w,.
(c) Show that the angular momentum Mr 2 dO/dt is constant, even if r = r(t) and

0 = 0(t). [See Problem 2.8 for writing force equations in (r, 0) coordinates.]
(d) Use the result of (c) to write the equation of motion for r(t). Write this equation

in a form such that potential well arguments can be used to deduce the dyamics.
(e) Is the equilibrium found in (b) stable?

i
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Fig. 5P.25

5.26. As an example of a lossy nonlinear system, consider the basic actuator for an
electrically damped time-delay relay* illustrated in Fig. 5P.26. The transducer is designed
to operate as follows. With switch S open, the spring holds the plunger against a mechanical
stop at a = ax. When switch S is closed, the magnetic field is excited, but the winding that
is short-circuited through resistance R2 limits the rate of buildup of flux to a low value. As
the flux builds up slowly, the magnetic force increases. When the magnetic force equals the
spring force, the plunger starts to move and close the air gap. The velocity of the plunger
is so low that inertia and friction forces can be neglected; thus, when the plunger is moving,
the spring force is at all times balanced by the magnetic force (see Section 5.2.2).

(a) Write the electrical circuit equations. The magnetic flux ( is defined such that
A1 = Nj1 and )2 = N20. Use these equations to find a single equation involving
(G, x) with V as a driving function.

(b) Define two constants: the flux Do linking the coils with the air gap closed (x = 0),

o = 2powdN1V/gR 1 , and the time constant r, for flux buildup when the air
gap is closed,

2pwd N12 N2 2

g R 2 R

Show that the result of (a) can be written in the form

The transient behavior of this device can be divided into three intervals:

I. The switch S is closed with the plunger at x = xe and with zero initial flux 0. The flux
builds up to a value necessary to provide a magnetic force equal to the spring force that is
holding the plunger against the stop at x = z0.

2. The plunger moves from the stop at x = ao to the stop at X = 0. During this motion
the spring force is the only appreciable mechanical force and is balanced by the magnetic
force.

3. The plunger is held against the stop at x = 0 by the magnetic force, whereas the flux
4 continues to build up to 0 o-

* Standard Handbook for Electrical Engineers, 9th ed., McGraw-Hill, New York, 1957,
Sections 5-150 and 5-168.
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(c) Determine the transient in D during interval (1). Write an equation of force
equilibrium for the plunger to determine the flux 0 = ODwhen interval (1) ends.

(d) Write an equation for Dduring interval (2). Assume the parameters

- = 2, - 4, - 10
X0 g (I

and integrate the equation resulting from (c) to find D(t) in interval (2).
(e) Find the transient in cDduring interval (3).
(f) Sketch Dand x as functions of time throughout the three intervals.

w -
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CHAPTER 6

FIELDS AND
MOVING MEDIA

6.0 INTRODUCTION

In Chapter 1 we reviewed the basic postulates and definitions of electro-
magnetic theory. We defined the quasi-static electromagnetic field theory
suitable for efficient analysis of low-frequency, low-velocity electromechan-
ical systems. In Chapter 2 we used the quasi-static electromagnetic equations
to calculate lumped parameters for important classes of electromechanical
systems. The effect of mechanical motion on the electric or magnetic fields
was accounted for by allowing the electrical lumped parameters to have a
dependence on the mechanical displacements. In Chapter 3 this lumped-
parameter model was used to determine the electric or magnetic forces on the
mechanical system. We were then prepared for the study in Chapters 4 and 5
of the dynamics of lumped-parameter electromechanical systems.

In this chapter we return to the field description introduced in Chapter 1.
This is necessary if we are to extend the class of electromechanical situations
with which we can deal beyond the lumped-parameter systems of Chapters
2 to 5. In subsequent chapters we shall be treating continuum systems,
that is, those in which both the electrical and mechanical parts of the system
are described, at least in part, by partial differential equations. This necessi-
tates a field description of the electromechanical coupling.

Even if we are concerned only with lumped-parameter systems, a field
description of the electromechanical interaction provides a useful alternative
to the lumped-parameter models of Chapters 2 to 5. In many cases forces of
electrical origin can be most easily deduced from the fields themselves, thus
bypassing the computation of lumped parameters and an energy function.
Similarly, the effects of material motion on the electrical system can be
deduced from field considerations. On the other hand, an understanding of
lumped-parameter systems, based on the viewpoint of Chapters 2 to 5,
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provides considerable insight into what is required of a field description that
includes effects of moving media. By the time this chapter is completed, the
reader should be acquainted with Appendix B, in which the subject of
quasi-statics is reviewed.

A simple example explains how the following sections lead to a generaliza-
tion of electromagnetic theory to include the effects of material motion. A
disk of copper is shown in Fig. 6.0.1a as it moves with velocity v into a region
of flux density B imposed by a magnet. (We could do this experiment by
attaching a handle to the disk so that we could wield it through the magnetic
field.) Our lumped-parameter model provides a qualitative description of
what happens. Suppose we model the disk as a one-turn, perfectly conducting
loop shorted through a resistance, as shown in Fig. 6.0.1b. Then, as the loop
enters the magnetic field region, it links an increasing flux 2 from the imposed
magnetic field B, and an induced current i flows in a direction that induces
a magnetic field which tends to cancel the flux of the imposed field B. As the
loop enters the field, this current i, interacting with B, gives rise to a force
tending to retard the motion. As we know from Section 5.1.3, the nature of
this force depends on the resistance R of the loop. For a copper disk ofreason-
able size, as we move it through the magnetic field, it is likely that there
would be an impression of passing it through a visc6us liquid. The important
point is that there is a magnetic force on the disk, hence a current within the
disk.

Suppose that we are to analyze this problem in terms of fields. As discussed
in Chapter 1, we are concerned with solutions to field equations for a quasi-
static magnetic field system (equations summarized in Table 1.2).

V x H = J,, (6.0.1)

V B = 0, (6.0.2)

V iJf = 0, (6.0.3)

aB
Vx E = - (6.0.4)

at'

B = p,(H + M) (M ~ 0 for copper). (6.0.5)

In addition, there are boundary conditions on the surfaces of the disk and
magnet. Also, we need the continuum equivalent of Ohm's law, for that
was used in the lumped parameter model to explain the experiment. The
necessary constituent relation was introduced in Chapter 1 as (1.1.9) and is

J, = aE (6.0.6)

where a is the electrical conductivity of the disk material. One approach to
solving the obviously difficult problem at hand is to guess a reasonable
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Fig. 6.0.1 (a) As the copper disk moves into the
field B, there is an induced current i which interacts
with B to retard the motion; (b) conducting loop
equivalent to the disk of copper.

solution and show that it satisfies all of the equations and boundary condi-
tions. In the absence of the moving conductor we have the fields H = H,,
E = 0, B = • 0oH, and J, = 0, where H, is a function of position but is
independent of time. By definition this solution satisfies (6.0.1) to (6.0.6).
In fact, it satisfies these equations and boundary conditions even as the disk
passes through the magnetic field!

What we have found is that our field equations in the form given do not
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account for the experimental result. If there is no current in the disk, there is
no force. Yet both the simple experiment and the lumped parameter model
show that there is a force.

We might suspect that (6.0.1) to (6.0.6) could not possibly account for the
effect of the moving medium because they do not involve the velocity v. This,
in fact, is true, but note that the boundary conditions could depend on the
mechanical motions.

We are now faced with the question, how do we alter (6.0.1) to (6.0.6) to
account for the effects of the moving medium? At least one of these equations
is not correct if there is material motion. One possibility is that we left out
important effects by approximating the system as quasi-static; but the
lumped parameter model explains the induced force on the disk and that
model is based on (6.0.1) to (6.0.5), the quasi-static field equations. We are
therefore led to the conclusion that the culprit in our description is (6.0.6.)

Equation 6.0.6 is a constituent relation that represents the conduction
process in a certain class of materials discussed in Section 1.1.1. Hence not
only is it a law deduced from experiments [(6.0.1) to (6.0.6) are in that
category] but it is found to hold for certain media in a particular state: the
media are at rest. To analyze our experiment we must know what form this
law will take when the material is in motion. Suffice it to say at this point
that our analysis will be correct when we rewrite (6.0.6) as

Jf = oE', (6.0.7)

where J' and E' are the current density and field intensity that would be
measured by an observer moving with the material. Of course, we wish to
formulate the problem in the laboratory reference frame in which the current
density and electric field intensity are J, and E, respectively. Hence our first
objective is to relate the field variables measured in a frame of reference
moving with a constant velocity to the field variables measured in the labo-
ratory frame. We then discuss constituent relations for moving media.

We confine our attention to quasi-static electric and magnetic field systems.
As discussed in the following sections, this means that we consider Galilean
transformations that are appropriate also for Newtonian mechanics. This
approach is the logical extension of a division of electromechanics into
electric and magnetic field systems. The relationship of Galilean and Lorentz
transformations and the relevance of Einstein relativity are discussed at the
appropriate points.

Our treatment of relative motion is based on two postulates: (a) the
equations of motion, including Maxwell's equations, are always written for
an inertial coordinate system, that is, a coordinate system that is traveling
with a velocity of constant magnitude and fixed direction; and (b) the laws of
physics (e.g., Newton's laws and Maxwell's equations) are the same in every

· __II_ 1~__1__
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inertial coordinate system. These postulates are normally associated with
Einstein relativity but they are also valid for Galilean systems.*

In Sections 6.3 and 6.4 examples that demonstrate how field transforma-
tions, boundary conditions, and constituent relations (the subjects of Sections
6.1 to 6.3) are used in the analysis of practical problems are considered.
Emphasis is given to the magnetic field system; Section 6.4 is devoted to a
class of rotating machines we were not prepared to discuss in detail in Chapter
4. These commutator-type machines, which are also of considerable practical
significance, illustrate the fundamental point of this chapter.

6.1 FIELD TRANSFORMATIONS

In this treatment we are interested in field phenomena that occur in systems
with material media in relative motion. The Lorentz force was introduced
as the definition of the E and B fields in (1.1.28) of Chapter 1:

f = qE + qv x B. (6.1.1)

This expression states that a charge q in motion with velocity v with respect
to an observer will experience the force f when subjected to the fields E and B.
Because Newton's laws must be the same in all inertial reference systems,
another observer in a different reference frame will measure the same force
on the charge but the charge will have a different velocity. It should be clear
then that the two observers will measure different values of electric field
intensity and magnetic flux density. The object of this section is to find the
relations between electromagnetic quantities that are measured by two
observers in uniform relative motion.

We have already stated that when an observer defines electromagnetic
quantities he does so with the understanding that they are defined in his
reference frame (coordinate system). Hence they are related by Maxwell's
equations written in his coordinate system. It is a postulate of special relativity
that physical laws, such as Maxwell's equations, must be the same in all
inertial coordinate systems. We use this postulate to determine the relations
between electromagnetic quantities measured in different inertial coordinate
systems.

We define two inertial coordinate systems r and r' which are moving with a
constant relative velocity vr. The times t and t' measured by observers in the
two coordinate systems are assumed to be the same

t = t'. (6.1.2)

* For discussions of the postulates and consequences of the special theory of relativity see,
for example, J. D. Jackson, ClassicalElectrodynamics, Wiley, New York, 1962, Chapters
11 and 12; L. Landau and E. Lifshitz, The ClassicalTheory of Fields, Addison-Wesley,
Reading, Mass., 1951, Chapters 1 and 2.
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z

Fig. 6.1.1 Two inertial coordinate systems in relative motion.

We select the origins of the coordinate systems to coincide at t = 0. The
relative geometry at a time t is illustrated in Fig. 6.1.1, from which we can
obtain the relation between r and r', the instantaneous position vectors of
point P, as measured in the two coordinate systems

r' = r - v't. (6.1.3)

Equations 6.1.2 and 6.1.3 define a Galileancoordinatetransformationbetween
inertial coordinate systems. We now show that this transformation is con-
sistent with the quasi-static Maxwell equations. An analogous procedure can
be used to show that the Galilean transformation is also consistent with
all mechanical equations of motion introduced in Chapter 2 or in later
chapters.

It is worthwhile to interject at this point that the general form of Maxwell's
equations cannot be transformed consistently by means of the Galilean
transformation. This, in fact, is the basis for a relativistic treatment, which
demands that the transformation be consistent (that the equations be invari-
ant) and results in the Lorentz transformation.* Because the relativistic
terms usually make no significant contribution to the electromechanics, it is
most convenient to work with the quasi-static equations from the outset, as
is done here. This avoids our having to discuss effects that we would end up
neglecting in a practical context.

We obtain our transformations for field variables from the differential
equations; consequently, before we derive the transformations, we need to
consider the differential operators in the two coordinate systems and how
they are related. The space differential operator V for cartesian coordinates

* For the relativistic treatment see, for example, J. A. Stratton, Electromagnetic Theory,
McGraw-Hill, New York, 1941, pp. 59-82.
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z, y, z of the unprimed coordinate system r is

V= (i, -+ il + i ). (6.1.4)

The space differential operator V' for coordinates x', y', z' of the primed
coordinate system r' is

V' = i + - +i, . (6.1.5)Sax' ay' 8z'f

To determine the relation between V and V' we first write out the three
coordinates of the vector equation (6.1.3).

x' = x - v.'t, (6.1.6a)

y' = y - v"rt, (6.1.6b)

z' = z - vz't. (6.1.6c)

Consider a functionf'(x, y, z, t) which can also be written asf'(x', y', z', t')
by making substitutions from (6.1.2) and (6.1.6). The gradient of this function
in the primed coordinate system is

_ af' aj' af'
'f' = i + i + i--. (6.1.7)

ax' ay' az'

The chain rule of differentiation* is used to write

af' af' ax ' f'ay' af' az' af' at'
+ + + (6.1.8)

ax ax, ax ay' ax az' ax at' ax

It is evident from (6.1.2) and (6.1.6) that

ax' ay' az' at'- 1; - - , (6.1.9a)
ax ax ax ax

ay 1 ax 0, (6.1.9b)
ay ay ay ay

az' ax' ay' at,az' 1; ax' a at' - 0. (6.1.9c)
az az az az

We now use (6.1.8) and (6.1.9) with (6.1.7) to establish that

V'f' = Vf'. (6.1.10)

The scalar functionf' may be a component of a vector; therefore we can use

* P. Franklin, Methods of Advanced Calculus, McGraw-Hill, New York, 1944, Chapter 2.

__1·_·1__1~1 · ~I___I__



Fields and Moving Media

this same formalism to establish that for any vector A'(x', y', z', t') the space
derivatives can be written as

V' A' = V A', (6.1.11)

V' x A' = Vx A'. (6.1.12)

The same mathematical techniques are used to establish the relation between
time derivatives. We again assume a function f'(x', y', z', t') and write the
time derivative in the unprimed system as

af' f' at' af' x af' ay' af az'+ + + (6.1.13)at at' at ax' t ay' at az' at
From (6.1.2) and (6.1.6) it follows that

at' ax'
- 1; -- v;,at at

(6.1.14)
ay' az'

-- v,,r; -- v=--at at
Substitution of these results into (6.1.13) yields

af' af' ( a a _Iat- at' v -+- a + v+ f'. (6.1.15)at at, ax' ay, az'
The term in parentheses can be written as v' - V'; thus (6.1.15) is written in
the form

af' af'
- -- (v . V')f'. (6.1.16)at at'

We use (6.1.10) to write this result in the alternative form

af' af'af= + (v V)f'. (6.1.17)
at' at

The functionf' can be a component of a vector; thus, if we define a vector
A'(x', y', z', t'), the same mathematical process leads to

aA' aA'
-= - + (v - V)A'. (6.1.18)at' at

Suppose that the unprimed frame is the fixed or laboratory frame. Then,
from the left-hand side of (6.1.18) it is clear that the right-hand side is the rate
of change with respect to time of A' for an observer moving with velocity v'.
This derivative, written in terms of the coordinates (x, y, z, t) of the fixed
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frame, is used not only in this chapter but in many of the chapters that
follow. Hence it is designated

DA' _ aA'
DA- + (v' -V)A' (6.1.19)
Dt at

and is called the substantial or convective derivative. An example will help
to clarify the significance of this derivative.

Example 6.1.1. To illustrate the significance of (6.1.19) consider an example in which
A' is the displacement of a surface from the x-z plane given by

A' = (z, t)i4, (a)

as shown in Fig. 6.1.2a. The function $ gives the y-coordinate of the surface. At a given
position on the surface this y-coordinate has the same value, no matter whether it is viewed
from the fixed frame or from a (primed) frame moving in the x-direction with velocity
vr = Vi.; that is, A' = A and C' = for this particular case. If we evaluate (6.1.19), using
(a), it follows that

DA' / 8~
- = + V I,. (b)Dt Ft ax Y.

X

vtjY A Y'

F->-X
+ -I-

(b)

Fig. 6.1.2 (a) A surface described by y = ý(x, t) has an elevation above the x-z plane
which is the same whether viewed from the moving (primed) frame or the fixed frame
(6' = ý); (b) $ is independent of position so that only the first term in (6.1.19) makes a
contribution to D/Dt; (c) ý is independent of time and only the second term in (6.1.19)
makes a contribution.

-I-- - -
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The significance of the two terms in this expression can be understood by considering
limiting cases in which they, individually, make the sole contribution to the substantial
derivative.

Figure 6.1.2b shows a surface ý that is independent of position (x or x') but has a dis-
placement that varies with time. Then the second term in (b) is zero and the rate of change
for an observer moving with velocity V is the same as for a stationary observer. This we
would have known from Fig. 6.1.2b without recourse to a mathematical equation.

In Fig. 6.1.2c the surface elevation is independent of time, since ý =-(x) and the rate
of change of ý with respect to time for the fixed observer is zero. By contrast the time rate
of change for an observer moving with the velocity V is

DA' a8.
- -V I,. (c)

This result is not surprising either, because an observer in the moving frame travels to the
right with a velocity V and sees a deflection ý that increases in proportion to the slope of the
surface a8/ax and in proportion to the velocity V. In particular, if

SSx, (d)
then from (c)

DA'
Dt - VSi'. (e)

This result could be obtained by inspection of Fig. 6.1.2c.

We shall find it useful later to write (6.1.18) in a different form. Because vr

is constant, a vector identity* makes it possible to write (6.1.18) in the form

aA' aA'
'- a + v'(V - A') - V x (v' x A'). (6.1.20)

We are now in a position to obtain transformations for electromagnetic

quantities from the field equations for magnetic and electric field systems.

6.1.1 Transformations for Magnetic Field Systems

The differential equations that define the relations of the field quantities to
sources in quasi-static magnetic field systems were given in Section 6.0 (6.0.1)
to (6.0.5) and are repeated here for convenience:

Vx H = Jf, (6.1.21)

V -B = 0, (6.1.22)

V - J = 0, (6.1.23)

aB
Vx E = - (6.1.24)

t'

B = to0(H + M). (6.1.25)

* V x (a x b) = (b V)a - (a . V)b + a(V . b) - b(V . a).
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These equations describe the field quantities measured by an observer who
is fixed in the unprimed inertial coordinate system of Fig. 6.1.1.

It is a postulate of special relativity that physical laws must be the same in
any inertial coordinate system. Consequently, we write the equations to
describe the field quantities measured by an observer who is fixed in the
primed inertial coordinate system of Fig. 6.1.1 as

V' x H' = J;, (6.1.26)

V'- B' = 0, (6.1.27)

V' -J' = 0, (6.1.28)

aB'
V' x E'= - , (6.1.29)

at, '

B' = Mo(H' + M'). (6.1.30)

Use is now made of (6.1.11), (6.1.12), and (6.1.20) to express (6.1.26) to
(6.1.29) in the equivalent forms

V x H' = J', (6.1.31)

V. B' = 0, (6.1.32)

V J; = 0, (6.1.33)

aB'
V x (E' - v' x B') = - (6.1.34)

at

We have made use of (6.1.32) to simplify the form of (6.1.34).
It has been postulated that (6.1.31) to (6.1.34) describe the same physical

laws as (6.1.21) to (6.1.24). A comparison of the two sets of equations
shows that a consistent set of transformations which satisfies this requirement
is

H' = H, (6.1.35)

J = J,, (6.1.36)

B' = B, (6.1.37)

E' = E + v' x B. (6.1.38)

We also use (6.1.35) and (6.1.37) with (6.1.25) and (6.1.30) to obtain the
transformation for magnetization density

M' = M. (6.1.39)

The transformations of (6.1.35) to (6.1.39) relate the values of electro-
magnetic quantities in a quasi-static, magnetic field system that would be

II ___··
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measured by two observers in relative motion with constant relative velocity
v' at a particular point in space at a given instant of time. Note that there is
no contradiction or inconsistency among these transformations as there
would have been had we kept terms such as the displacement current in
Ampbre's law. Note also that the transformation for free current density
(6.1.36) indicates that current flow by the convection of net free charge is
consistently neglected in a magnetic field system. We can now return to the
integral form of the magnetic system equations (Table 1.2) to see that the
definition of E' postulated there is consistent with what we have found here.
Still another derivation of the integral form of Ampere's law for deforming
contours of integration is given in Section B.4.1.

It is interesting to interpret (6.1.38) in terms of the Lorentz force (6.1.1).
Consider a charge q at rest in the primed coordinate system. The force
measured by an observer in that system is simply

f' = qE'.

An observer in the unprimed system who measures fields E and B will see
the charge moving with a velocity v' and will therefore describe the force as

f = qE + qv' x B.

The transformation of (6.1.38) is just the relation between E and E' that must
exist if the force on the charge is to be independent of the coordinate system
in which it is expressed. Some writers actually use the Lorentz force to obtain
the transformation for the electric field rather than the differential equations
as we have.* Although this can be done, it is important to see that there is a
close connection between the field transformations and the field equations.
The field equations for the magnetic field systems do not include the dis-
placement current, and it would be inconsistent to use field transformations
based on equations that did not include this same approximation. For this
reason it is not surprising that in the next section a different set of field trans-
formations is found for the electric field systems.

Example 6.1.2. The most interesting of the field transformations introduced in this
section is given by (6.1.38) and it is important to understand the close connection between
this expression for E' in terms of the fields in the fixed frame and the lumped parameter
models of preceding chapters. For this purpose consider the idealized problem shown in
Fig. 6.1.3, in which a pair of perfectly conducting plates are shorted by a conducting bar.
The bar moves to the right with the velocity Vand there is a uniform magnetic flux density
B imposed in the z-direction by an external source. We assume that the plates are terminated
at the left in an essentially open circuit so that no currents flow to make additions to the
field B.

* R. M. Fano, L. J. Chu, and R. B. Adler. ElectromagneticFields, Energy, and Forces,
Wiley, New York, 1960, p. 390.
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Fig. 6.1.3 A pair of parallel perfectly conducting plates are short-circuited by a moving
perfectly conducting bar. Because of the magnetic field B, a voltage v is induced which
can be computed either by integrating the induction equation around the fixed loop C'
that passes through the bar or by integrating the induction equation around a loop C that
expands in area as the bar moves to the right. The field transformation of (6.1.38) guar-
antees that both integrations will give the same result.

First recall how the voltage v is computed in Chapter 2. A contour C, as shown in Fig.
6.1.3, passes through the perfectly conducting bar. Then the induction equation is written
in the form (2.1.6) and (2.1.7)

E' dl= - B n da, (a)

where E' is the electric field in the frame of the conductor. Hence the integral of E' along
the contour a-c-d-b makes no contribution and (a) reduces to the familiar form

S= , (b)

where

A = B. n da= - hB. (c)

In the viewpoint represented by this derivation the voltage v arises because the contour C
is expanding, thus enclosing more magnetic flux. In particular (b) and (c) give

v = -hBV. (d)

The field transformations make it possible to take an alternative approach to this problem.
The integral form of the induction equation can also be written for a contour that is fixed
in space

E dl= - B.nda (e)

This expression has the same form as (a), but now C' and S' are fixed and E is the electric
field intensity evaluated in the fixed frame. In the present example we can consider the

___·__
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contour C' shown in Fig. 6.1.3, but even though this contour has the same instantaneous
position as before it is now fixed in space rather than moving. As a direct consequence the
right-hand side of (e) vanishes (remember, we assume that B is constant). If we further
recognize that the integral of E through the perfectly conducting plates from a-c and d-b
makes no contribution, (e) reduces to

Edl + fEdl= 0. (f)

In the region in which the terminals are located we assume (as in the preceding approach)
that there is no time-varying magnetic field so that E = -- VO and

fE dl= - ( - = -V- ()

Hence (f) reduces to

v = E- dl. (h)

The remaining integration from c-d must provide the voltage v. Note that this "speed
voltage" is given by the term on the right in (a), but is now accounted for by the term on
the left in (e). This term can be evaluated by recognizing that because E' = 0 in the bar
(6.1.38)

E = -v X B = VBi5 . (i)

This result can be incorporated into (h) to give

v = -hBV, (j)

which will be recognized as the same result obtained with the deforming contour of

integration (d).

6.1.2 Transformations for Electric Field Systems

The differential equations that define the fields and their relations to
sources in quasi-static, electric field systems were given in Table 1.2.

V x E = 0, (6.1.40)

V. D = pf, (6.1.41)

V • J, = - -, (6.1.42)at
aD

V x H = J +-, (6.1.43)
at

D = EOE + P. (6.1.44)

These equations describe the field quantities measured by an observer who is

fixed in the unprimed inertial coordinate system of Fig. 6.1.1.

Our procedure here is analogous to that of the preceding section. We
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recognize, by postulate, that these physical laws must be the same in any
other inertial coordinate system. We write them for the primed inertial
coordinate system of Fig. 6.1.1 as

V' x E' = 0, (6.1.45)

V'. D' = pf, (6.1.46)

J= - , (6.1.47)

atD'

V' x H' = J' + (6.1.48)
at, (6.1.48)

D' = E' + P'. (6.1.49)

We now use (6.1.11), (6.1.12), (6.1.17)*, and (6.1.20) to express (6.1.45) to
(6.1.48) in the forms

V x E' = 0, (6.1.50)

V - D' = p;, (6.1.51)

Vo(J; + pv') -- , (6.1.52)
at

aD'
V x (H' + v' x D') = J; + pfv' + (6.1.53)ft

We have used (6.1.51) to obtain (6.1.53).
Using the postulate that (6.1.40) to (6.1.43) express the same physical

laws as (6.1.50) to (6.1.53) we obtain the following consistent set of trans-
formations:

E' = E, (6.1.54)

D' = D, (6.1.55)

pf = pf, (6.1.56)

H' = H - v' x D, (6.1.57)

Ja = Jf - pv T. (6.1.58)

We use (6.1.54) and (6.1.55) with (6.1.44) and (6.1.49) to obtain the trans-
formation for polarization density

P' = P. (6.1.59)

Note that these transformations are consistent with those postulated in

* Remember vr is constant, so (vr . V)f' = V. (v'f).
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Section 1.1.2b to express the integral form of the equations for an electric
field system. Yet another derivation of these integral laws is given in Section
B.4.2.

Example 6.1.3. The simple significance of the field transformations for the electric
field systems can be illustrated by means of the parallel-plate capacitor shown in Fig. 6.1.4.
Here a battery is used to induce surface charges on the plates, as shown. Hence in the
laboratory (unprimed) frame there is an electric field intensity between the plates related
to the surface charge density by

E = --y,

whereas there is no magnetic field H. (We assume here that there are no external currents
that would induce a magnetic field in the laboratory frame.) For the purpose of the example
consider that the plates have infinite extent in the x-direction. Then, according to the
electric field transformations, an observer in the moving frame of Fig. 6.1.4a would measure
the magnetic field intensity (6.1.57)

H' = - VeEiz = - Vai z.

This magnetic field is present in the moving frame because in that frame of reference the
surface charges give rise to surface currents. These currents induce the field H'. To see this,

F

Kf = afVil

H' OD E'= (o0f/o)iy

+++ +

K' = - or Vix

(b)

Fig. 6.1.4 (a) A parallel-plate capacitor is biased by a voltage source so that surface
charges of opposite polarity are induced; (b) the fields in the moving frame can be found
by computing the magnetic field induced by the convection of the surface charges or by
using the field transformation of (6.1.57).

z'

--z X
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consider that the plates are being viewed from the moving frame of reference, as shown in
Fig. 6.1.4b. In this frame surface currents flow in the x-direction, thus giving rise to the
magnetic field of (b). Note that implicit to this reasoning is the transformation for the free
current density (6.1.58).

In this and the preceding section we have obtained transformations that
describe the relations between the field quantities measured by two observers
in relative motion with a constant relative velocity. These transformations
have been obtained for quasi-static systems and are valid only for such sys-
tems. We have stated that these transformations are consistent. By this we
mean that we can use our transformation relations to transform field quan-
tities repeatedly back and forth between two inertial reference frames without
generating inconsistencies. A summary of transformations is given in Table
6.1.

6.2 BOUNDARY CONDITIONS

It is often found that electrical properties change significantly over dis-
tances that are infinitesimal with respect to significant dimensions of an
electromechanical system. Such changes occur at the surface of a medium or
at an interface between two media. In such cases we can represent the abrupt
changes mathematically as spatial discontinuities in the electromagnetic
variables. It is these discontinuities that provide boundary conditions on the
electromagnetic variables.

The conventional treatment in electromagnetic theory considers conditions
at stationary boundaries.* Because we are interested here in electromechanics
we require boundary conditions at moving boundaries. The conditions
derived are correct only for quasi-static systems.

First, we define the surface 1, illustrated in Fig. 6.2.1, which separates
medium a from medium b. Media a and b move with velocities va and v9
with respect to the inertial coordinate system r in which all field and source
quantities (E, B, P, M, J,, p,) are defined. Superscripts a and b indicate the
medium in which a quantity exists. The normal vector n is defined as normal
to the surface I and has a positive direction from medium b to medium a,
as shown.

In order that the surface Z may be a well-defined boundary between the
two media, the normal components of the two velocities va and vb must be the
same at the surface; thus

n - (va - v b) = 0. (6.2.1)

If this condition is not satisfied, the two materials are diffusing through each
other or moving apart, leaving a vacuum between them. In either case a

* Fano et al., op. cit., pp. 86-89.
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Table 6.1 Differential Equations, Transformations, and Boundary Conditions for Quasi-static Electromagnetic Systems with
Moving Media

Differential Equations

V x H = J, (1.1.1)

V. B = 0 (1.1.2)

V J, 0 (1.1.3)

a13
x E --- (1.1.5)

at

B = po(H + M)

VxE = 0

V.D = pf

(1.1.11)

(1.1.12)

V Ji= -- (1.1.14)at
aD

V x H = J + - (1.1.15)at

Transformations

H' = H (6.1.35)

B' = B (6.1.37)

J; = J, (6.1.36)

Boundary Conditions

n X (H a - Hb) = K_

n (B a - Bb ) = 0

n . (Ja _ J1 b) + V, • Ky = 0

E' = E + vr X B (6.1.38) n X (E a - Eb) = vn(B a - Bb )

M' =M

E' = E

D' = D

P; = py

J; = Ji- pfv
r

(6.1.39)

(6.1.54)

(6.1.55)

(6.1.56)

(6.1.58)

(6.2.14)

(6.2.7)

(6.2.9)

(6.2.22)

n x (E a - Eb) = 0 (6.2.31)

n -(Da - D b) = a0 (6.2.33)

n (Jfa - jfb) + V Kf = (pf(a- p
b) 

_ (6.2.36)at

H' = H - vr x D (6.1.57) n X (Ha - Hb) = Kf + uvn X [n X (Da - Db)] (6.2.38)

(1.1.13) P' = P (6.1.59)

Magnetic
field
systems

Electric
field
systems

D = EOE + P
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well-defined boundary of the type postu- Medium a
lated does not exist. From the electromag-
netic theory viewpoint no requirement is
necessary on the tangential velocities of
the media at the boundary. Consequently,
the media can slide past each other at the
boundary with no restrictions on the tan-
gential components of the velocities. We
shall find that the boundary conditions Medium b
depend on the normal component of the Fig. 6.2.1 Surface separating two
velocity of the boundary. One or both media.
media may be vacuum.

In general, the surface X is not plane and it is moving and deforming.
When a mathematical description of the surface is given, we must be able to
evaluate the normal vector n. In the coordinate system r a surface can be
described by the general functional form

f(r, t) = 0. (6.2.2)

The normal vector n can then be evaluated as

n- f (6.2.3)
fl I

This statement is familiar from electromagnetic field theory; that is, if we
assume that (6.2.2) defines one equipotential surface of the set

f(r, t)= -,

where 0 is the potential, the electric field is the negative gradient of the
potential and is normal to an equipotential surface. Hence we can think of
the normal vector n, defined by (6.2.3) as the negative of the normalized
electric field, evaluated at the zero-potential surface.

Example 6.2.1. To illustrate the manner in which a surface is represented by an expression
like that in (6.2.2), consider the surface defined in Fig. 6.2.2 in which the height of the
surface above the x-z plane is given by

y = A sin wt cos - + B. (a)

where A, B, c, and I are positive constants. This represents a surface whose position is
independent of z and whose height varies as the cosine function with x. The amplitude of
the variation in height at a fixed position x is a sinusoidal function of time.

To obtain the equation for the surface in the form of (6.2.2) we write

2
•r

f(x, y, t) = y - A sin ot cos - B = 0.
I

___I_ _~__ · ~
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wt

z

Fig. 6.2.2 Example of surface that varies in space and time.

Taking the gradient of this expression yields

2-irA 27x
Vf = ix  sin wt sin + i,.

The magnitude of this gradient is

( 4Tr2A 2 2_

IVf= 1 + - -sin2 wt si 2

and the normal vector is

ix(27rA/l) sin ot sin (27rx/l) + i (c)
n = (c)V/1 + (4Tr

2
A

2
/1

2) sin2 wt sin2 
(
2

7rx/l)

This normal vector becomes i, at

2
rrx

- n; n = 0, 1, 2 ....

that is, on the crests and in the troughs of the corrugations the normal vector is vertical.
At other values of x the normal vector is not vertical and its direction can be determined
from (c). The direction of the normal can be reversed by defining f as the negative of (b).
Consequently, we can label media a and b and make sure that the definition off yields a
normal vector as described in Fig. 6.2.1 or we can definef and label the materials after the
direction of the normal has been determined.

6.2.1 Boundary Conditions for Magnetic Field Systems

For studying boundary conditions in a quasi-static, magnetic field system
we assume that the surface I carries a free surface current density Kf (amperes
per meter) and a free surface charge density a, (coulombs per square meter).
The free surface current density Kf is part of the primary excitation, whereas
the surface charge density is a quantity that can be determined from auxiliary
relations after the fields have been determined.

~
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Medium a

Medium b

Fig. 6.2.3 Geometry for calculating discontinuities in normal components of field vectors.

Consider first the equations in integral form that determine how the sources
excite the fields. They were given in (1.1.20) and (1.1.21) and are

H di =fJ, "i~ da, (6.2.4)

B . inda = 0. (6.2.5)

Here we have introduced is as the unit vector perpendicular to the area of
integration so that it can be distinguished from the vector n normal to the
surface X. To find the boundary condition imposed by (6.2.5) we define a
small, right-circular cylindrical volume V, enclosed by a surface S consisting
of the top and bottom surfaces of areas S, and a lateral surface of height 6
and area S 2, as shown in Fig. 6.2.3. The volume V is fixed in the inertial
coordinate system r and is so oriented that it intersects the boundary E as
shown in Fig. 6.2.3. The surface S, is small enough that the boundary Z
can be assumed plane in its vicinity and the top and bottom surfaces S, are
parallel to the boundary E. Hence the vector n is normal to both E and S,.
We assume that the height 6 of the pillbox is so small that the lateral area S,
is much smaller than the area of surface St. When we integrate (6.2.5) over
the surface S and assume that S, is so small that B does not change appreci-
ably over S1, we obtain

(B a . n)St - (BI - n)St = 0. (6.2.6)

We cancel S, from this expression to obtain

n - (Ba - Bb) = 0. (6.2.7)
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Equation 6.2.7 states that the normal component of B must be continuous at
the boundary. This is the same result obtained in the electromagnetic theory
of stationary systems; thus the motion has not affected this boundary
condition.

Like the flux density the free-current density J, in a quasi-static magnetic
field system has no divergence [see (1.1.3) of Table 1.2]. However, when
deriving the boundary condition on J,, the integral expression of (1.1.22)
of Table 1.2 must be used with due regard for surface currents at the dis-
continuity. The current density J,, unlike B, can be singular. If we use
(1.1.22) (f J, i, da = 0) with the pillbox in Fig. 6.2.3 and neglect the
contribution of volume current density J, over the lateral surface S2, we
obtain

(J,f. nn) - (J' n)S1 + K, i dl = 0. (6.2.8)

This is simply an expression of the fact that current into the pillbox from the
two media must equal surface current across the contour C, because no
appreciable free charge density (volume or surface) can exist in a magnetic
field system. Dividing (6.2.8) by S, and taking the limit as Sx --0 yields the
desired boundary condition

n (Ja - Jfb) + VT. K, = 0, (6.2.9)
where

cK,.indl
VE -K,= lim (6.2.10)

1-.o0 St

is the surface (two-dimensional) divergence of K, applied in the plane of the
surface 2: at the point in question.*

We consider next the boundary condition imposed by (6.2.4). For this
purpose we use the contour C which encloses the open surface S and is
fixed in the coordinate system r. The contour instantaneously intersects the
boundary, as illustrated in Fig. 6.2.4. The surface S is a plane rectangle and is
small enough for the boundary I to be assumed plane in its vicinity. The
surface S is perpendicular to E and the height 6 ofthe contour is much smaller
than the length L.

S<< L

* The two-dimensional divergence is simply the sum of the derivatives of the two orthogonal
components of a vector in the surface with respect to the distance in the component direc-
tions; for example, assume a surface Z with normal vector n = iz.A vector A lying in the
surface I will have only x- and y-components A = Adix + Ai, and the surface divergence
of this vector is VE -A = [i,(alax) + i,(alay)l A = 8AA,/ax + aA1/ay. Note that the
surface divergence in this case is just two terms of the volume divergence.
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Medium a

Medium b

Fig. 6.2.4 Contour and surface for determining discontinuities in tangential components
of field vectors.

The three unit vectors n, i,, and i,, shown in Fig. 6.2.4, are mutually orthog-
onal. We assume that the contour C is small enough that fields do not vary
appreciably over its length L. With these assumptions, and ignoring contri-
butions from the ends (6), we integrate (6.2.4) to obtain (after canceling
out the length L)

(H- - Hb) i, = K, i,. (6.2.11)

This expression states that the discontinuity in the tangential component of
H in the direction of i, is equal to the component of K, perpendicular to i,.

Equation 6.2.11 can be put into a more useful form in the following way.
We substitute

i, = i. x n (6.2.12)

into (6.2.11) and use a vector identity* to obtain

[n x (H" - Hb)] . i, = K,. i,. (6.2.13)

By definition, the vector K, lies in the boundary X. The vector [n x (H8 -
HI)] also lies in the boundary Z. The vector i, has an arbitrary direction
except that it also lies in the boundary Z. Therefore from (6.2.13) we obtain
the result

n x (HG - Hb) = K,. (6.2.14)

Note once again that this is the same boundary condition obtained for
stationary systems (it is independent of the boundary velocity).

*a bxc=axb*c.
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We now derive the boundary condition for the electric field by starting
with (1.1.23) written for a fixed contour C:

E  dl= - d f B  i da. (6.2.15)

We integrate (6.2.15) by using the contour C and surface S defined in Fig.
6.2.4. The restrictions on orientation and size in the derivation of (6.2.14)
also apply here. By using the unit vectors and dimensions defined in Fig.
6.2.4 we obtain the contour integral

CE dl = (Ea - E') iL. (6.2.16)

In this expression we have neglected the contribution to this integral from the
sides perpendicular to E because we require that 6 <K L. * The time origin is
defined as the instant in which the surface E coincides with the lower edge
of the contour. Thus, defining the normal component of velocity of the
boundary as

v, = n va = n vb, (6.2.17)

we write the surface integral in (6.2.15) as

B - in da = [B'(6 - vjt) + Bb(vut)] - iL. (6.2.18)

In this expression we have assumed that 6 is small enough that v. does not
change appreciably as the boundary E passes the contour C. Note that this
does not require that v, be a constant, for we shall shortly take the limit in
which -- 0.

We take the time derivative of (6.2.18)

SB - i da = -v,(B - B ). iL

aBa aB b
+ t(B - ") + (6 - vt) + - (V.t) iL. (6.2.19)

at at at I
The time derivatives of the fields are finite in the two media: consequently,
in the limit as 6 --, 0 the term in brackets on the right of (6.2.19) vanishes.
(Note that by definition 6 > vt so that the interval of time during which the
surface is within the volume V is the largest time t with which we are con-
cerned. Hence, as 6 -- 0, so also does the largest value of t.) We equate the
negative of (6.2.19) to (6.2.16) and cancel the length L to obtain

(Ea - Eb) i. = v,(Ba - B) . i. (6.2.20)

* There is the implicit assumption here that although E can be discontinuous at the boundary
it must be finite. Otherwise we could not ignore the contribution to the integral along the
sides of length 6.

~_



_ _ 

Boundary Conditions

By using the relation
i, = in x n

and a vector identity,* we put (6.2.20) in the form

[n x (Ea - Eb)] . i~ = v,(Ba - Bb) in. (6.2.21)

The vector i, lies in the boundary I but otherwise it has an arbitrary direction.
The vector n x (Ea - Eb) also lies in the boundary Z. The normal component
of B is continuous [see (6.2.7)]; consequently, the vector (Ba - Bb) lies in the
boundary Z. Therefore we conclude from (6.2.21) that

n x (El - Eb) = v,(B - Bb). (6.2.22)

This is the desired boundary condition on the electric field.
We indicate an alternative method of deriving (6.2.22) by putting it in a

different form. We define the velocity v as

v = nv,, (6.2.23)

which is simply the normal velocity of the boundary 1. We now write (6.2.22)
in the form

n x (Ea - Eb) = (n v)(Ba - B b) (6.2.24)

and use a vector identityt with the boundary condition on the normal
component of B (6.2.7) to write (6.2.24) as

n x (Ea - E") = -n x [v x (Ba - Bb)]. (6.2.25)

When we define Ea' and Eb' as

Ea' = Ea + v x Ba, (6.2.26)

Eb' = E b + v x Bb, (6.2.27)

we can rewrite (6.2.25) as
n x (E ' - E') = 0. (6.2.28)

From the transformation of (6.1.38) we recognize that E"' and Eb' are the
electric fields that an observer will measure when he is in a coordinate system
moving with the normal velocity of the boundary. In this coordinate system
the boundary is at rest; consequently, as (6.2.24) indicates, the tangential
component of electric field must be continuous, as it must be in any stationary
system. This idea can be used as the basis for an alternative derivation of the
boundary condition on the tangential component of electric field, once the
condition on a fixed boundary has been obtained. Note, however, that our

*a*bxc=axb c.
t (a . b)e = -ax (b x c) + b(a . c).
+ At least any stationary system in which E is finite everywhere.

1__1_1 1_1
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transformations were derived for an inertial coordinate system. The boundary
condition just derived is not restricted to boundaries that move with a
constant velocity.

Example 6.2.2. Consider the system illustrated in Fig. 6.2.5 in which a surface Z that is
perpendicular to the y-axis moves with a speed v in the y-direction

v = iv.

We assume that the surface Z has an infinite extent in the x- and z-directions so we can
write its instantaneous position y, as

y, = vt.

We have chosen t = 0 as the instant when the surface contains the origin.
The surface Z is immersed in vacuum and carries a uniform surface current density

K, = i3 K.

The system is constrained so that to the right of the surface (y > y') the fields are zero. A
simple experiment in which this physical situation arises is shown in Fig. 6.2.5b, in which
a moving conductor shorts parallel electrodes driven by a current source. Here the moving
short is modeled as being very thin and carrying a surface current Kf. In practice, the moving
short could be a sheet of highly ionized gas moving down a shock tube.

The electric and magnetic fields in the region (y < y,) to the left of the surface Y are to
be found.

We select as the normal vector n the vector i,,

n = iy,

Medium b

Medium a

(a) (0)

Fig. 6.2.5 (a) Plane surface in motion and carrying a surface current density; (b) the
moving surface could constitute the moving conductor that short-circuits parallel plates
excited by a current source distributed along the x-axis.
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and thus medium b is y < y, and medium a is y > y,. Our problem is specified such that

Ea-=O and Ha-=O.

We first use (6.2.14) to find the magnetic field intensity Hb:

i,, X (-HW) = izK1 .

If we write H6 in component form,

Hb = i-H- b + i 1H
6b + jIH?,

we can write the boundary condition as

iH/ - izHe
b 

= izK,.

Equating components in this expression yields

H'b = Kf,

H' = 0.

Thus in vacuum B = p0H and we can use the boundary condition on the normal com-
ponent of B (6.2.7) with the given information that Ho = 0 to arrive at the result

H = 0.

Thus the magnetic field intensity adjacent to the surface in region b is completely determined.
To find the electric field intensity to the left of the moving current sheet we use (6.2.22)

to obtain
i, x [-E b] - -vB b,

from which
Eb = ivp 0oK,.

This is the electric field intensity to the left of the current sheet generated by the moving
discontinuity in magnetic field intensity.

The discontinuity in electric field at the moving interface is necessary if concepts intro-
duced earlier in this and preceding chapters are to remain consistent. We have already
pointed out that the same boundary condition follows from the field transformation. If
the moving surface is placed in the context of the problem shown in Fig. 6.2.5b, it is also
possible to find the electric field behind the surface by using lumped parameter ideas to
compute the voltage V, hence the electric field E between the plates.

6.2.2 Boundary Conditions for Electric Field Systems

For studying the boundary conditions in a quasi-static electric field system
we assume a boundary surface I that carries a surface charge density a,
and a surface current density K, (see Figs. 6.2.3 and 6.2.4). The surface charge
density a, is part of the primary excitation, whereas the surface current
density K, simply accounts for the conduction or convection of charge. The
magnetic field generated by K, can be computed once all of the other fields
are known.

_·_ I ___~_
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Two of the integral equations that determine the fields in a quasi-static
electric field system are (see Table 1.2)

Ef*dl = 0, (6.2.29)

SD. ida = p, dV. (6.2.30)

The results derived in the preceding section can be used to obtain the bound-
ary conditions implied by these equations.

In the preceding section the boundary condition on the tangential com-
ponent of E was derived from (6.2.15) by using the contour defined in Fig.
6.2.4 to obtain the result of (6.2.22). We note that (6.2.29) is simply (6.2.15)
with the right side set equal to zero; consequently, by setting the right side of
(6.2.22) equal to zero, we obtain

n x (Ea - Eb) = 0. (6.2.31)

To derive the boundary condition on the normal component ofD we use the
pillbox-shaped surface of Fig. 6.2.3 with the same restrictions on relative
geometry that were used in deriving (6.2.7) in the preceding section. By
performing the integration (6.2.30) and taking the limit as 6 -- 0, we obtain
the result

(D". n)S1 - (Db. n)S1 = otfS, (6.2.32)

where S, is the area of the top and bottom of the closed surface S. Division
of both sides by S, yields the desired boundary condition

n (DI - Db) = oa, (6.2.33)

which is the same as the corresponding boundary condition for stationary
systems.

When the conductivity of a material is uniform, the free charges have only
a transient existence in the bulk of the material. Surface charges play an
important role in such cases. As we shall see in Chapter 7, the conduction
process in the region of an interface is an important factor in many electric
field systems. For this reason the boundary condition associated with the
conservation of charge equation (Table 1.2)

J - i da = - pfv,dV (6.2.34)

assumes primary significance.
The evaluation of this boundary condition is much like the evaluation of

the boundary condition on current density derived for magnetic field systems
in (6.2.8) to (6.2.10), except that now we must include the effects of volume
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and surface charge densities. Using the pillbox-shaped volume of Fig. 6.2.3
and neglecting the contribution of volume current density J, across the
lateral surface S2, we find that (6.2.34) becomes

Sin . (J - J, ) + K, i dl = dtd [pfSl( - Vnt) + pfbSlv, t + Str].
ic d d[ -

(6.2.35)
In the limit, as 6 -* 0, then Sx - 0, this expression becomes

n (Jf - J,1 ) + V . K, = v,(pf - pb) - -t, (6.2.36)at
where we have used the definition of the surface divergence of surface current
density (V, - K,) given in (6.2.10). It should be pointed out here that surface
current density occurs in electric field systems most often as the convection of
free surface charge density, as indicated by the application of the transforma-
tion in (6.1.58) to surface current density and surface charge density.

Equation 6.2.36 is the boundary condition implied by the conservation of
charge equation. An example will help to clarify the significance of the terms.

Example 6.2.3. An application of the conservation of charge boundary condition that
is considered in Section 7.2 is shown in Fig. 6.2.6. Here two slightly conducting materials
form a common boundary that moves to the right with the velocity Ui,. There are no free
charges in the bulk of the materials in which .J, = aE (see Section 7.2.2). Hence in this
particular case the boundary condition (6.2.36) becomes

OaE,a - obEU + K,, + Ka = - (a)

On the interface the only surface current is due to the convection of free charge af; that is,

K, = 0; K1, = Uo. (b)

Moreover, a1 is related to the electric field through the boundary condition (6.2.33) (we
assume that D = eE in both materials):

a, = EaEa - bEb.  (c)

y Cra, ea

j4 - auE,'

tBoundary moving
J,= b Ey , b with velocity, U

>x

Fig. 6.2.6 A boundary between materials with conductivities a, and Gb and permittivities

Ca and Eb moves to the right with velocity U. Boundary condition (6.2.36) accounts for
conservation of charge in a small section of the boundary.

6.2.2
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It follows that (a) can be written as

aEva - abEb L + Uaf =0. (d)
at ax

Note that (c) and (d) together constitute a single boundary condition on the electric field
intensity at the moving surface. Remember that aaa/8t+ U 8a,/ax is the rate of change with
respect to time for an observer traveling with the velocity U [from (6.1.56) af = a'].
Hence (d) simply states that for such an observer the net current into a small section of the
interface goes into an increase in the surface charge cr .

Equations 6.2.31, 6.2.33, and 6.2.36 are the only boundary conditions
needed to solve problems for the electric fields in most quasi-static electric
field systems. In these systems magnetic fields are generated by time-changing
electric fields. Boundary conditions for these magnetic fields can be obtained
from the integral form of Ampire's law (see Table 1.2)

H - di =f J, i , da + D. in da, (6.2.37)

where C and S are fixed as shown in Fig. 6.2.4. The process is analogous to
that used in deriving (6.2.22) in the preceding section and leads to the
boundary condition*

n x (H4 - Hb) = Kf + v,n x [n x (Da - Db)]. (6.2.38)

Note that this boundary condition is essentially that of (6.2.14) for the
magnetic field system, with an added term to account for displacement
current.

A summary of field transformations and boundary conditions is given in
Table 6.1, which is arranged so that the correspondence of transformations
and boundary conditions with differential equations is emphasized. One of
the most important concepts related in this chapter is the consistency that
must exist among differential equations, transformations, and boundary
conditions.

The most obvious effects on boundary conditions from material motion
are brought in through the normal velocity v,. It must be remembered,
however, that the boundary is itself part of a mechanical system that can
often deform in the presence of magnetic or electric forces. This geometric
effect of the boundary conditions is represented by the normal vector n
and illustrated by Example 6.2.4.

Example 6.2.4. Boundary conditions provide a mechanism by which mechanical
motions can alter electrostatic field solutions. In Fig. 6.2.7 one of a pair of perfectly
conducting electrodes is plane, whereas the other has the sinusoidal dependence on (x, t)

y = A sin wt cos kx + B, (a)

* To show this note that -n x (n x A) is the component of A in the surface to which n
is normal.
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Fig. 6.2.7 Perfectly conducting electrodes at y = 0 and y = A sin owt cos kx + B (where
k = 2•/l) constrained to a constant potential difference.

where the dimension A << B, w is the angular frequency, and k = 2/1 (see Example 6.2.1).
We wish to compute the electric field in the region between the electrodes when they are
at the potential difference Vo and to find the surface charge density on the lower electrode.
It is assumed that the plates have infinite extent in the x- and z-directions.

The important boundary condition is (6.2.31). Because the electrodes are perfectly
conducting, they can support no internal electric field. Hence at the surface of the electrodes

n X E = 0, (b)

where we have set E a = E in (6.2.31). On the lower electrode n = i, and (b) reduces to

Ex(x, 0, t) = 0. (c)

Here we have used the fact that the upper surface position does not vary with z to set

E,(x, y, t) = 0.

The normal vector n on the upper electrode is given by the negative of (c) of Example 6.2.1.
We assume that the amplitude A is small enough (47r2 A2 /12 < 1) to justify setting the de-
nominator of this expression equal to 1. Then

n = -- i~A sin wot sin kx - i,. (d)

The boundary condition (b), applied to the upper electrode, reduces to

nE,(x, Y, t) = nzE,(x, Y, t), (e)

where Y = A sin cot cos kx + B is the position of the upper electrode. If A were zero (two
parallel flat plates) the electric field would be E = (V 0/B)i v . Hence we define a perturbation
electric field e(x, y, t) and let

(B

The perturbations ex and e, are proportional to the amplitude A. Introducing (f) into (e)
[with n, and n, defined by (d)], we have

v 7
ex(x, Y,t) = kA sin cot sin kx I U + e,(x, Y, t) I

U'-'I
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and now, if we ignore terms that are proportional to A2 (compared with terms proportional
to A),

e,(x, B, t) = k sin wt sin kx. (h)
B

Here e, has been evaluated at y = B rather than y = Y because the difference in e~evaluated
at these points is proportional to A2 . The approximate effect of the corrugated surface on
the electric field is found by using (h) and (c) as boundary conditions.

Between the plates the divergence and curl of the electric field are zero [(1.1.11) and
(1.1.12) with no free charge)]. For the two-dimensional case under consideration this gives
two expressions for the perturbation components.

ae, ae,
+e--- 0, (i)

ae _ e , 0. (j)
ay ax

If boundary condition (h) is to be satisfied, e, must have the (x, t) dependence sin oit sin kx.
Hence we assume (and later justify) that

e,(x, y, t) = f(y) sin cnt sin kx. (k)

Then (i) and (j) will be satisfied for all values of t and x only if e, has the (x, t) dependence
sin wt cos kx:

e,(x, y, t) = g(y) sin wt cos kx. (I)

The dependence on (x, t) assumed for e, and e, is justified when we substitute (k) and (1)
into (i) and (j) and find that the functions of x and t cancel out. After carrying out this
process there remain the equations

fk + = O, (m)

S+ kg = O. (n)

This pair of ordinary differential equations has the solution

f = C sinh ky + D cosh ky. (o)

where C and D are arbitrary constants. Remember that e, is proportional to f [see (k)].
Hence, if (c) is to hold for all values of y, D = 0. From (k) and (o)

e,(x, y, t) = C sinh ky sin ot sin kx, (p)

where the constant C follows from boundary condition (h) as

kA V,
B sinh kB (q)

Note that it was our foresight in guessing the (x, t) dependence of (k) that allowed us to
satisfy condition (h) for all values of x and t. We now knowfand therefore can find g from
(n). Hence (1) becomes

e, = -C cosh ky sin ot cos kx.
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In the limiting case in which B << I we can calculate these fields much more easily. This
limiting case occurs when the wavelength I of the corrugation on the upper plate is long
compared with the average spacing B between the plates. We expect a small section to
have the same field as a parallel plate capacitor; that is,

Vo vo VA
E = - - sin cat cos kx (s)

S B + A sin ot cos kx B B2

and
Ex = 0. (t)

If B << I1, then kB <( 1; and in this limit our solution [(f), (p), and (r)] reduces to the
"long-wave" approximation of (s) and (t). In this limit all of the perturbation charges
(those additional charges due to the corrugation) on one plate have image charges on the
opposite plate. In the opposite extreme in which kB > 1 (1 << B) there are few perturbation
charges on the flat plate. To see this we can compute the surface charge density on the lower
plate as

af = Co SO + e,(x, 0, t) , (u)

which [from (q) and (r)] is

[Vo kA Vo sin at cos kxz (v)
I B B sinh kB I *

As kB becomes large, the perturbation part of af becomes small (as kB -+ oo, sinh kB -- oo).
A scheme for finding the deflection of a conducting surfade would measure the charge on

an electrode imbedded in the flat plate. Equation v shows that the perturbation surface
charge density provides the (x, t) dependence of the deflection. The amplitude of a1
however, would be inversely proportional to the wavelengths I to be detected.

6.3 CONSTITUENT RELATIONS FOR MATERIALS IN MOTION

Constituent relations, which are mathematical models of the electro-
magnetic properties of matter, were discussed briefly for stationary media in
Section 1.1. At that point specific models that describe materials in a way that
is useful in this study of electromechanical interactions were presented. As
indicated in Section 6.0, however, the constituent relations expressed for
stationary material may not be correct when the material is moving. In the
next two sections we recast the constituent relations in forms that are correct

when describing material that is in motion with respect to the reference
frame in which electromagnetic quantities are measured. In general, a
medium may be in motion relative to a particular inertial coordinate system
in which we wish to define field and source quantities. We postulate that
constituent relations, as conventionally defined for stationary media, still
hold for moving media, provided they use source and field quantities defined
in an inertial coordinate system with the same velocity as the material at the
instant of time in question. It is therefore assumed that acceleration and rate
of deformation do not affect local material properties. Constituent relations

____II_·___·I_ ____C__· I 
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obtained with this postulate yield predictions that agree to a high degree of
accuracy with experimental results.* To apply this postulate we shall use the
transformations of Sections 6.1.1 and 6.1.2 with the constituent relations
for stationary media given in Section 1.1. Because the transformations are
different for quasi-static electric and magnetic field systems we consider
constituent relations for the two systems separately.

6.3.1 Constituent Relations for Magnetic Field Systems

Reference to the differential equations of Section 1.1 (see Table 1.2) and
the boundary conditions of Section 6.2.1 shows that the fields in a quasi-
static magnetic field system are excited by free current density J,, free
surface current density K,, and magnetization density M. Thus we need
consider here only how J,, K,, and M are affected by field quantities in the
presence of material motion.

Consider first a linear isotropic conducting medium, which, when station-
ary, has the constituent relation introduced as (1.1.9),

J, = AE, (6.3.1)

where a is the electrical conductivity.
We now define an inertial coordinate system r in which we measure the

quantities E, B, and J, as functions of space (r) and time (t). The material
medium moves with respect to this coordinate system with a velocity v(r, t).
In general, the velocity v is different for each point within the material because
it can be translating, rotating, and deforming. We wish to express the
constituent relation describing electrical conduction in terms of quantities
measured in the coordinate system r. To do this we use the postulate given
in the preceding section which states that the constituent relation for the
material at rest is applicable in an inertial coordinate system with respect to
which the material is instantaneously at rest. Thus to express the constituent
relation for the material occupying position r at time t we define an inertial
coordinate system having the velocity

v' = v(r, t), (6.3.2)

that is, v' is a constant with a value equal to the material velocity at position
r at time t. We denote electromagnetic quantities as measured in this moving
coordinate system with primes and apply our postulate along with (6.3.1)
to write

J;(r, t) = o(r, t)E'(r, t). (6.3.3)

* A case in which acceleration effects on conduction are computed is discussed in L. D.
Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, Addison-Wesley,
Reading, Mass., 1960, pp. 210-212. These effects are usually ignorable.
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We now use the transformations of (6.1.36) and (6.1.38) to rewrite (6.3.3) as

J,(r, t) = a(r, t)[E(r, t) + v(r, t) x B(r, t)]. (6.3.4)

This equation is the desired result in that it is the relation imposed among
electromagnetic variables expressed in the fixed frame by linear isotropic
electrical conduction in a moving medium.

The functional notation (r, t) has been included in the preceding equations
to make the meanings of the terms more explicit. Equation 6.3.4 is more
compactly expressed without the functional notation as

J, = a(E + v x B). (6.3.5)

Next consider surface conduction on a material with surface conductivity
a, as described for stationary materials by (1.1.10).

K, = as[-n x (n x E)], (6.3.6)

where n is the normal to the surface and [-n x (n x E)J is the component
of E tangent to the surface. When the surface is moving, we use a process
analogous to that used for volume conduction to obtain the result

K, = ao,{-n x [n x (E + v x B)]}. (6.3.7)

The velocity v is the velocity of the surface with respect to the coordinate
system in which the electromagnetic quantities are measured.

The final constituent relation that must be defined for magnetic field
systems is the relation between magnetization density M and magnetic
field intensity H.

The constituent relation for an isotropic, linear, magnetic material was
written as (1.1.6)

M = X,H, (6.3.8)

where X• is the magnetic susceptibility. Using (1.1.4) we wrote

B = pH, (6.3.9)

where the permeability p is defined as

pu = po(1 + XZ•. (6.3.10)

Although the constituent relation as expressed by (6.3.8) or (6.3.9) was
written for stationary material, the transformations of (6.1.35), (6.1.37),
and (6.1.39) show that in a quasi-static magnetic field system B, H, and M
are unaffected by relative motion. Consequently, (6.3.8) and (6.3.9) hold also
when the material is moving with respect to the coordinate system in which
the electromagnetic quantities are to be measured.

-·llll--L·-~llllll --- _·___
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Fig. 6.3.1 A homopolar generator.

Example 6.3.1. As an example of transformations and constituent relations for moving
materials, consider the device illustrated schematically in Fig. 6.3.1. This is a Faraday disk
(also called a homopolar machine or an acyclic machine). Machines with the basic con-
figuration of Fig. 6.3.1 or alternative configurations that operate physically in the same way
are manufactured for supplying dc power at low voltage and high current.* A cutaway
view of one such configuration is shown in Fig. 6.3.2.

With reference to Fig. 6.3.1, the device consists essentially of a right circular cylinder of
conducting material that is rotated about its axis. Electrical contacts, usually made of
liquid metal (see Fig. 6.3.2), are made symmetrically at inner and outer radii. Not shown in
the figure is the electromagnet which produces a uniform axial flux density Bo .

We specify that the applied flux density B0 is constant and that the shaft is driven by a
constant angular velocity source w. The electrical terminals are loaded by a resistance R.
The material of the rotating disk is homogeneous, isotropic, and electrically linear with the
material constants a, o, co. The dimensions are defined in the figure.

We wish to find the terminal voltage and current for all values of load resistance R and
steady-state operation.

It should be clear from an inspection of Fig. 6.3.1 that the current in the disk is radial and
the current density is uniform around the periphery at any radius. Thus the magnetic field
generated by this current density is tangential and has no effect on the terminal voltage.
Hence we neglect the field due to current in the disk. The validity of this assumption
becomes clearer in the analysis to follow.

We select the cylindrical coordinate system r, 0, z shown in Fig. 6.3.1. The cylindrical
symmetry and the uniformity of variables in the z-direction indicate that we can assume

a a
= = 0,

* D. A. Watt, "Development and Operation of a 10KW Homopolar Generator with
Mercury Brushes," Proc. I.E.E. (London), 105A, 33-40, (June 1958). A. K. Das Gupta,
"Design of Self-Compensated High-Current Comparatively Higher Voltage Homopolar
Generators," Trans. AIEE, 80, Part III, 567-573, 1961-1962.
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Fig. 6.3.2 Cutaway view of an acyclic generator. The solid rotor is made of magnetically
soft steel, the flux density is radial, and current is axial between two liquid metal collector
rings, one of which is shown. (Courtesy of General Electric Company.)

so that electromagnetic quantities of interest will vary with radius only. The electromagnetic
equations for this quasi-static magnetic field system are those of Section 1.1.1a (see
Table 1.2).

We first use the conservation of charge in integral form (1.1.22)

JJ- n da = 0, (a)

to establish that the radial component of current density is related to the terminal current
by

I
h' = 2-rrd")

We next write Ohm's law for a grain of matter at the radius r by writing the rcomponent
of (6.3.5).

J, = a(Er + wcrBo), (c)

where B0 is the magnitude (z-component) of Bo and Er is the radial component of electric
field intensity. A tangential (0) component of flux density is parallel to the material velocity
and does not contribute a v x B term. Thus the neglect of the field generated by current in
the disk is justified.
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We now use (b) in (c) to find Er,:

I
Er - 2 - wBor. (d)

Recognizing that there is no time rate of change of magnetic field in the fixed reference
frame, we can write the terminal voltage as

j Ro I Ro wBo
V= - Edr = -- In + (R,2 - Ri). (e)

Thud 1 2

Use of the terminal relation required by the resistance R yields

VoI . (f)
R + Rint

where V0o = (wBo/2)(Ro2 - Ri 2) is the open circuit (R - oo) voltage of the generator,
and Rint = [ln (R,1Ri)J/27rad is the internal resistance of the generator.

To obtain some idea of the kinds of numbers obtainable with real materials consider a
copper disk with the following parameters and dimensions:

a = 5.9 x 107 mhos/m w = 400 rad/sec
d = 0.005 m Bo = 1 Wb/m2

R, = 0.01 m R o = 0 .1 m

The open-circuit voltage is then
Voc = 2V

and the internal resistance is

Rint = 1.25 x 10
- 6 

n.
The short-circuit current is

Vo
Ise - - 1.6 x 106 A.

Rint

The maximum power that can theoretically be delivered by this generator is

Pmax - VoCsc - 8 x 10
5 W.

4

For steady-state operation, however, the output power would be limited to a much lower
value by allowable 12Rint heating of the rotating disk. These figures indicate, though, that
this device is suitable for supplying large pulses of power.*

We now use (d) and (f) to write the radial component of electric field intensity as

[ Rint V0 ooc- ()
r (R + Rint) In (R/R) r - (g)

In the spirit of the discussion of quasi-static systems in Section B.2.2 we can calculate the
volume charge density necessary to satisfy Gauss's law:

pf = Ve CoE. (h)

* T. J. Crawford, "Kinetic Energy Storage for Resistance Welding," Welding Engineer,
33, 36 (1948).
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Using the equation for the divergence in cylindrical coordinates,* we have

p- = -26owB 0 . (i)

This charge density arises from the second term in (g); the first term is divergenceless. The
finite volume charge density results because the electric field is generated by nonuniform
motion in a uniform magnetic field. There is, however, no net charge on the disk because
an equal amount of charge of opposite sign occurs as a surface charge density at r = Ro
and r = Ri.

As discussed in Section B.2.2 this charge density was derived after the field problem was
solved and its presence has negligible effect on the field solutions. To illustrate, consider the
current density that results from the convection of this charge density by the rotating disk.
The result is a 0-component of current density that has the value

Js = -2e0owBor.

We use the 0-component of Ampere's law in cylindrical coordinates to find the change in B,
caused by this current:

6B,
7= -~oJ1 = 2p~oeowaBor.

Integrating this expression, we find the maximum possible fractional change in B, as

Z- _tRoRPo o =

B 2, C2

where c is the speed of light (Section B.2.1). For any disk made of real material the peripheral
speed (R 0) must be much smaller than the speed of light; thus the change in B, due to
convection current is negligible.

We reconsider the homopolar machine and complete its terminal description as an
electromechanical coupling device in Section 6.4.

6.3.2 Constituent Relations for Electric Field Systems

The differential equations in Section 1.1. lb (see Table 1.2) and the bound-
ary conditions of Section 6.2.2 indicate that fields in quasi-static, electric field
systems are excited by free charge density p,, free surface charge density a,,
and polarization density P. The constituent relations for these source quan-
tities are given for stationary media in Section 1.1.lb. We generalize those
constituent relations appropriate for electric field systems to include the
effects of material motion.

In Section 1.1.1b the conduction process in a stationary medium was
modeled by (1.1.16):

J, = (pf,÷+ + p,_p_)E, (6.3.11)

where py+ and pf_ are the densities of free charge and tp+ and Jp_ are the
mobilities of the free charges defined in Section B.3.3. When the material is
moving, (6.3.11) must be modified according to the transformations of

* [d(eorE,)/dr]/r

___· ~-LU-·L-·I^·---L--·~·~·---·-·l---C--·-- -

6.3.2



Fields and Moving Media

(6.1.56) and (6.1.58). Thus, if the material is moving with velocity v, we must
write (6.3.11) in the form

Jf = (Pf+u+ + pf-•_)E + pv, (6.3.12)

where the net charge density p, is given by

Pf = Pi+ + P,-. (6.3.13)

The first term [(p,+,+ + pf__)E] of (6.3.12) describes the motion of
charge carriers with respect to the material and the second term (pfv) describes
the convection of net charge by the motion of the material.

The transformations of (6.1.54), (6.1.55), and (6.1.59) show that in a
quasi-static electric field system D, E, and P are unaffected by relative motion.
Consequently, (1.1.17) and (1.1.19), which were written for stationary mate-
rial, are still valid when the material is moving with respect to the coordinate
system in which electromagnetic quantities are measured. For convenience
we repeat these two equations here:

P = EoXE, (6.3.14)

D = EE, (6.3.15)

where the dielectric susceptibility X,and permittivity e are related by

E= Eo(1 + X,). (6.3.16)

We conclude this section with an example that involves a particularly
simple form of (6.3.12). Other examples of the use of these constituent
relations are given in Chapter 7.

Example 6.3.2. A simple example in which the constituent relation (6.3.12) is used, is
shown in Fig. 6.3.3. Here a cylindrical beam of charge carriers moves with the velocity V
in the z-direction. We assume that the charge density is uniform throughout the beam and
that the carriers (for example electrons) have zero mobility.

In a primed frame moving to the right at the velocity V the current is zero (6.3.12) and
we have the simple fields associated with a uniform cylinder of charge density Po. Note
that we have assumed pf = pf, as given by (6.1.56). In this moving frame there is no
magnetic field because there is no current J. Because the beam is uniform in the z-direction,

r I Line of integration

Fig. 6.3.3 Charged beam moving at velocity V to the right.

I:
V
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the electric field follows from Gauss's law (1.1.25) integrated over a cylinder of radius r
and unit length in the z-direction:

oEr(2-7r) = {p 2 rr dr. (a)

Hence inside the beam

E = , r < a, (b)
2EO

and outside the beam

E P- r > a. (c)
2• r

To find the fields in the fixed frame is a simple matter, for (6.1.54) requires that E = E'
and (6.1.58) gives the current as

J,= p0 ViZ, r < a. (d)

The magnetic field follows from (6.1.57) and (6.1.54) as H = Vi, x eoE or, by use of
(b) and (c),

H = i , r < a,

(e)
Vpoa2H = i , r > a.

The last result could be found alternatively by using the current density J1 from (d) in the
integral form of Ampfre's law (1.1.20). A line integral of H around the beam at a radius r
gives

2nrHs = f.2nfr dr (f)

or

Ho VPr r < a,
2

He - , r > a.
2r

in agreement with (e).

6.4 DC ROTATING MACHINES

As stated in Section 4.1.6c, the dc machine is the most widely used rotating
machine for control applications, especially when precise and versatile
control of mechanical power or torque is required. Control can be achieved
with high efficiency so that dc motors are used widely in high-power systems
such as traction applications for driving locomotives and subway trains,
rolling mills in steel plants, and ship propulsion. In electrically propelled
ships and in diesel-electric locomotives the prime mover produces mechanical
power and an electrical system is used for control rather than a mechanical

__·__1~__1~_ _1 __·I __1__1
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system of gears. The primary reason for this substitution is the versatility of
the electrical power transmission system from the viewpoint of control.

The use of dc motors for controllable drives requires de generators to
supply the necessary power. Moreover, there are many applications of
electric power in which direct current is necessary; for example, the produc-
tion of aluminum is accomplished by the use of large quantities of direct
current. Direct-current generators driven by alternating-current motors
are used to supply power in many of these cases.

Because of the wide and extensive use of dc machines, we consider some of
the important features of the more common types in use. Our treatment is
introductory and intended to provide an understanding of the essential
physics of de machine operation and to indicate how the terminal behavior
can be analyzed. In spite of our special attention to the topic at this point
the reader should remember that although the de machines we treat illustrate
the basic material introduced in this chapter they are also specific examples
of lumped-parameter, magnetic field-type, electromechanical devices in-
troduced in Chapters 2 and 3. As we complete the analyses, we shall
indicate the relation to the earlier chapters.

In the next two sections we treat two configurations of de machines:
commutator machines discussed briefly in Section 4.1.6c and homopolar
machines, an example of which was introduced in Example 6.3.1.

6.4.1 Commutator Machines

6.4.1a Physical Characteristics

As discussed in Section 4.1.6c, a commutator can be viewed as a mechan-
ically controlled frequency changer that causes rotor-current frequencies to
satisfy automatically the condition for average power conversion (4.1.18)
when rotor and stator electrical sources are at the same frequency (usually
zero). To analyze the terminal behavior of a commutator machine, other
viewpoints are used. (In some cases the techniques of Chapter 3 are employed,
but this kind of treatment makes physical insight difficult.) We use a field
approach to obtain equations of motion and indicate how the connection is
made to the techniques of Chapter 3.*

To develop the equations of motion for a commutator machine from a field
viewpoint we need to specify the geometry of the windings, the commutator,
the brushes, and the magnetic material. To do this we use simplified sche-
matic drawings. To put these representations in perspective a cutaway view

* For some alternative viewpoints on analytical techniques to be used with commutators
see, for example, D. C. White and H. H. Woodson, ElectromechanicalEnergy Conversion,
Wiley, New York, 1959, Chapter 4; A. J. Thaler and M. I. Wilcox, Electric Machines,
Wiley, New York, 1966, Chapters 3 and 4; A. E. Fitzgerald and C. Kingsley, Jr., Electric
Machinery, 2nd ed., McGraw-Hill, New York, 1961, Chapter 3.
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Fig. 6.4.1 Cutaway view of a 2250-hp, 300/600-rpm, 600-V, dc motor. (Courtesy of
General Electric Company.)

of a commutator machine is shown in Fig. 6.4.1 with the principal parts
labeled. When using the simplified schematic drawings, frequent reference
should be made to this practical configuration.

First, consider the schematic end view of a two-pole commutator machine
shown in Fig. 6.4.2. This is a salient-pole structure, as defined and discussed
in Section 4.2, with the salient poles on the stator. A commutator machine
can have any even number of poles (see Sections 4.1.8 and 4.2.4), but we
treat a two-pole machine in the interest of simplicity. The rotor is essentially
cylindrical with conductors placed in axial slots as indicated. The stator
winding is excited directly at its terminals and the rotor conductors are
excited through brushes (usually carbon) that make sliding contact with the
commutator.

To follow the usual convention, we call the stator winding thefield winding
and denote quantities associated with it by the subscriptf; we call the rotor
winding the armaturewinding and denote quantities associated with it by the
subscript a.

Currents in the field windings, with directions indicated by dots and crosses
in Fig. 6.4.2, produce a flux density distribution that is symmetrical about the
field magnetic axis, as indicated in the developed view of the machine in Fig.
6.4.3. Currents in the armature conductors, maintained by the commutator
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Field
magnetic

Fig. 6.4.2 Two-pole, commutator machine.

and brushes, have the directions indicated by the dots and crosses in Fig.
6.4.2, independent of armature (rotor) position or speed. Thus armature
current produces a flux density distribution that is symmetrical about the
armature magnetic axis, as indicated in Fig. 6.4.3.

To indicate qualitatively the shapes of the flux density distributions and to
illustrate how armature conductors are connected to the commutator bars,
a developed view of the machine is shown in Fig. 6.4.3. The shape of the
field flux density distribution is understandable in terms of Ampere's law
(1.1.20). For analytical purposes it is often assumed that fringing at the pole
edges can be neglected because the air gap is small, that slot and teeth effects
are negligible, and that there is no magnetic saturation. Then the flux density
distribution has the square shape shown by dashed lines. As developed
subsequently, the important quantity is the total magnetic flux per pole;
consequently, the idealized curve is a good representation of the actual curve
with respect to total flux (area under the curve).



Field axis Armature axis

t

Fig. 6.4.3 Developed views of two-pole commutator machine showing flux distributions
and armature connections.
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The armature flux density distribution in Fig. 6.4.3 is idealized in two ways:
the effects of slots and teeth are neglected and the armature current is assumed
to be uniformly distributed along the armature surface. This approximation
may seem rather gross with respect to the number and size of slots in Fig.
6.4.3; in practical machines, however, the number of slots is much greater
and the slots are smaller; thus the approximate flux density distribution in
Fig. 6.4.3 is quite accurate.

The developed view at the bottom of Fig. 6.4.3 shows how armature
conductors are connected to commutator bars. A tracing of conducting paths
will show that any one-turn coil has its ends connected to adjacent commu-
tator bars and that there are two parallel conducting paths between brushes,
each containing three coils in series. Two coils are short-circuited by the
brushes. In practical machines with lap windings,* the coils may have one
or more turns, with the coil terminals connected as shown in Fig. 6.4.3.
Also, in practical machines each slot normally contains two coil sides, one
each from two different coils, rather than the one we show for simplicity.

By visualizing what happens to the conductor currents in Fig. 6.4.3 as the
armature conductors and commutator bars slide past the brushes, it will
become clear that the armature current pattern will shift back and forth by
about the distance between two slots. In a practical machine with a large
number of armature conductors and commutator bars, this variation will
be much less, and it is quite reasonable to assume that the current pattern is
fixed at its average position. This switching of current pattern by the commu-
tator can be interpreted as the electrical equivalent of a mechanical
ratchet.

As indicated in Fig. 6.4.3 and noted earlier, two coils have no current
because the brushes short-circuit them. As the armature turns, armature
coils are successively shorted by the brushes. Before a coil is shorted it
carries current in one direction, and after the short is removed the current
direction is reversed. The process of current reversal is called commutation,
and it is complicated by speed voltage and inductive voltages in the shorted
coil and by arcing of the contact between brush and commutator. The
process of commutation is complex and its practical realization imposes a
limitation on the characteristics that can be achieved with commutator
machines.t For the purpose of analyzing the terminal behavior of commutator
machines we need to know only the geometry of the windings and the fact

* An alternative scheme is called a wave winding. Both schemes, lap and wave windings,
essentially yield a continuous armature winding. For a discussion of the two schemes see,
for example, A. E. Knowlton, ed., Standard Handbook for Electrical Engineers, 9th ed.,
McGraw-Hill, New York, 1957, Section 8.25.
f" For a discussion of commutation and a list of good references see Knowlton, op. cit.,
Sections 8.33 to 8.55.

_~
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that the commutator keeps the armature current pattern fixed in space with
respect to the brushes, as illustrated in Figs. 6.4.2 and 6.4.3.

6.4.16b Equations of Motion

To develop the equations of motion for commutator machines we use the
field transformations of Section 6.1.1 and the constituent relations of Section
6.3.1. We consider the effects of field flux density and armature flux density
separately and superimpose the results. Such a process provides adequate
accuracy; when the two flux density distributions in Fig. 6.4.3 are super-
imposed, however, they add in some regions and subtract in others. In the
region in which they add, there may be saturation and resulting distortion
of the flux patterns. When this occurs, the armature flux density distribution
is skewed and there is a net linkage of armature flux with the field winding.
This phenomenon is called armature reaction.* We neglect saturation, and
thus the effects of armature reaction, in our analysis.

Consider first the field winding in Fig. 6.4.2. With reference to the flux
density distributions of Fig. 6.4.3, it is clear that the armature produces no
net flux linkage with the field winding because the axes of symmetry of the
flux density distributions are orthogonal. Thus the field winding links only
its own flux and we can write the equation (see Section 2.1.1)

v = Rfi, + L, !i_, (6.4.1)
dt

where R, = the field winding resistance,
L, = the field winding self-inductance.

Effects of armature slots and teeth are neglected in defining the constant
field inductance L,.

Because the armature conductors are in motion with respect to the reference
frame in which we are defining fields, we must be careful when writing the
voltage equation for the armature circuit. We use Faraday's law in integral
form with afixed contour (see Table 1.2):

- E - dl = B - n da. (6.4.2)

The contour C is fixed so the E is measured in the fixed reference frame.
The contour to be used (shown schematically in Fig. 6.4.4) follows one of the
conducting paths through the armature conductors between the brushes
(see Fig. 6.4.3). The contour is fixed and the conductors are moving; thus
they coincide only instantaneously.

* See, for example, Knowlton, op. cit., Sections 8.27 to 8.32.
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To evaluate (6.4.2) we break the contour integration into two parts:

- E - dl -- E - dl = B . n da. (6.4.3)

The first term on the left is the integral between the terminals external
to the machine and is

-- E dl-= va. (6.4.4)

The second integral on the left is taken through the armature circuit of the
machine. If the armature conductor material has a conductivity r, then (6.3.5)
indicates that we must write

J = ar(E + v x B) (6.4.5)

for the armature conductors in which J is the armature conductor current
density and vis the armature conductor velocity. This expression can be used
for all armature circuit conductors, including those from the terminals to the
brushes, because v = 0 and J = aE, as it should be for a conductor at rest.

Solution of (6.4.5) for E and the use of that result in the second term of
(6.4.3) yields

- E dl = -.. dl + (v x B) dl. (6.4.6)

The first term on the right is just the drop in voltage across the armature
resistance and can be written as

dl = -i R , (6.4.7)

where Ra is the armature circuit resistance. To show this for the armature
conductors between brushes, assume that the
current (i/J2) (see Fig. 6.4.3) is distributed
uniformly over the cross section A, of the
wire. Then the magnitude of J is

ia j= i (6.4.8)
2A,

Q +1,'f IntJ lInhk nf n;ire hbtween

Fig. 6.4.4 Illustration of the brushes as l, and
contour for finding an armature fa ~- ia ial
voltage equation. The contour is - -dl = - a dl = -i

completed on the armature, where Jo 2A w 2A ,o

it follows one of the two con- (6.4.9)
ducting paths joining the brushes
in Fig. 6.4.3. The quantity (1,/2Ao) is just the resistance
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of two wires in parallel, each having length 1,, and A,, and conductivity a.
The second term on the right of (6.4.6) is a speed voltage, which is evaluated

as follows. The velocity of a conductor is

v = iOBR, (6.4.10)

where R = the radius measured from the axis of rotation to the conductor
location,

0 = the angular speed of the armature,
i, = the unit vector in the tangential direction taken as positive in

the counterclockwise direction in Fig. 6.4.2.
If we assume that appreciable flux density occurs only over the axial length I
shown in Fig. 6.4.3 and that this flux density is radial and independent of
axial position,* then

B = ir B,(), (6.4.11)

where i, = the unit vector in the radial direction,
S= an angle measured with respect to the fixed reference frame, as

indicated in Fig. 6.4.2.
Equations 6.4.10 and 6.4.11 are used to write

v x B = -i,,RB,(p), (6.4.12)

where i, is the unit vector in the axial direction and is positive out of the
paper in Fig. 6.4.2. Use of this term in the integral

(v x B) . dl,

with the flux density distributions of Fig. 6.4.3 and the contour defined in
Fig. 6.4.4, shows that there is no net contribution from armature flux density
but there is from field flux density. To evaluate this contribution we can
evaluate B, at the value of yi for each conductor, multiply by the length, and
add up the contributions of each conductor to get the total. In real machines
there are many armature conductors such that it is a good approximation to
use the average flux density due to the field winding

fBrxv) dp
(B,,)av = (6.4.13)

7T

and write
v x B = -i,, OR(Bf)av . (6.4.14)

* This restriction is necessary only for simplicity. The method is general and can include
axial variation of radial flux density and effects of the axial component of B on the radially
directed end turns.
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We then take twice the axial length (21) for the voltage generated in one turn
and the total number of turns N in one path between brushes to write

(v x B) dl = -21N OR(B,.,)a. (6.4.15)

Because (Bf,)av is proportional to field current i,, it is conventional to write
this term as

f(v x B) dl = -GO i,, (6.4.16)

where G is the speed coeficient that depends only on geometry and magnetic
material properties.

To evaluate the final term, the right side of (6.4.3), we recognize that

B -n da = A (6.4.17)

is the flux linking the armature circuit. As indicated earlier, all of this flux
linkage is due to armature current, the system is assumed to be electrically
linear, and the effects of slots and teeth are neglected; thus

Aa = Lai,, (6.4.18)

where L. is the constant armature self-inductance and

d dA L diaB * n da = L diL (6.4.19)
dt ns dt dt

The armature voltage equation is now written by combining (6.4.4),
(6.4.6), (6.4.7), (6.4.16), and (6.4.19) in (6.4.3); thus

di
Va = JaRa + La, + GOi,. (6.4.20)

dt

This is the desired armature circuit equation.
It is clear from this result that the electrical consequence of mechanical

motion is represented by the last term on the right of (6.4.20). This term was
derived in (6.4.10) to (6.4.20) with a fixed contour and Ohm's law for a
moving conductor. It could have been derived with a contour that moves with
the armature conductor. In this case we assume a contour from b to a in
Fig. 6.4.4 that is moving with the armature conductors and write (6.4.3) in
the alternate form

- E - dl - E' - dl = - B n da. (6.4.21)
dt s
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We must remember that the contour C is now moving and thus the surface S
varies with time. In the frame moving with the conductor

J' = oE'

and the transformation of (6.1.36) gives

J' = J.

Thus the second term on the left of (6.4.21) produces only the resistive
voltage drop (6.4.7). The speed voltage (6.4.16) is now generated by the
time-varying surface in the term on the right of (6.4.21). This can be verified
in a straightforward manner and is not done here. The method corresponds
to that of Chapter 3 in which speed voltages were obtained from time rates
of change of fluxes. These alternate ways of computing the terminal voltage
were also illustrated in Example 6.1.2.

To complete the terminal description of the commutator machine we must
evaluate the torque of electric origin. There are several equally valid ways of
doing this. The torque is evaluated here by using the Lorentz force density
for magnetic field systems.

We shall use the force density (1.1.30)

F = J x B, (6.4.22)

with current density in the armature conductors and the radial component
of flux density sketched in Fig. 6.4.3. It should be recognized that the teeth
shield the conductors in the slots so that the conductors experience only a
small fraction of the flux, most of which passes through the teeth. The result
is that most of the torque is produced by magnetic forces on the magnetic
material of the teeth. Nonetheless, we still get the correct answer by assuming
that all the magnetic forces act on the conductors. That it is immaterial
whether the force acts on the conductors or teeth but depends only on the
magnetic fields in the air gap adjacent to the armature can be verified by
using the Maxwell stress tensor to be introduced in Section 8.2.1.*

Making assumptions consistent with those in the derivation of the armature
voltage equation, we assume (for mathematical convenience, not necessity)
that appreciable flux density exists only along the length I of axial conductors
(see Fig. 6.4.3 for definition of 1)and that the flux density is radial and does
not vary with axial position

B = iB,(7 o). (6.4.23)

* The fact that the force acts on the armature teeth and not on the conductors has the
practical advantage that the mechanical forces applied to the conductor insulation are
small and the insulation problem is more easily solved.
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The current density in the region of interest is uniform across the conductor
and axial

J = izJz. (6.4.24)

We use (6.4.23) and (6.4.24) in (6.4.22) to get the force density

F = ioJ, B,.(p). (6.4.25)

For uniform current density the magnitude of the current density in one
armature conductor (see Fig. 6.4.3) is

IJzI (6.4.26)
2A,

where A, is the cross-sectional area of the conductor. By integrating through-
out the volume of one conductor over the active length 1,the total force on
one conductor is

F1= jio (6.4.27)
2

The ± is determined by the relative directions of current and flux density.
For the system of Fig. 6.4.2 we could simply superimpose the field and

armature flux density distributions in Fig. 6.4.3, find the force on each
conductor, add the forces, and multiply by the lever arm to get the torque.
It is more instructive, however, to consider the two flux densities separately.
First, it should be evident from the relative shapes of the armature current
distribution and the armature flux density distribution (see Fig. 6.4.3)
that no net torque results from their interaction. Furthermore, the relative
directions of field flux density and armature current are such that each
conductor produces a torque in the +0-direction. Thus, with a lever arm
(conductor radial position) of R, the torque from one conductor in the +0-
direction is

i.lR B,,(V)
T, =- (6.4.28)2

We could add the contributions from the 12 active conductors (six coils)
in Fig. 6.4.2; there are, however, many conductors, and the practice is to
use the average field flux density defined in (6.4.13) and multiply by the num-
ber of active conductors, which is four times the number N ofcoils introduced
in (6.4.15) (remember that there are two parallel paths between the brushes);
thus the total torque is

Te = 2NI R(B,,)avia. (6.4.29)

Note that the coefficient of i, in this expression is the same as the coefficient
of 0 in (6.4.15), and we use the speed coefficient G defined by (6.4.15) and
(6.4.16) to write - dh A i\

Te Gi (64'30A )
= 'Pa- \. r.J
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Fig. 6.4.5 Equivalent circuit of the commutator machine in Fig. 6.4.2.

In addition to the Maxwell stress tensor method mentioned earlier, this
same torque can be derived by the energy method of Chapter 3, although
with the commutator, care must be taken when applying this technique.

We have now completed the description of the electromechanical coupling
properties of the commutator machine of Fig. 6.4.2. We complete the terminal
description in the nomenclature introduced in Chapters 2 and 3 by drawing
the equivalent circuit in Fig. 6.4.5. All losses are taken outside the coupling
network which contains only magnetic field energy storage. On the mechan-
ical side the rotor (armature) moment of inertia is J, and both viscous (B,)
and coulomb (To) damping are included. A commutator machine normally
has significant coulomb damping from the brushes sliding on the commutator.
The sources Tm, va, and v, are general and can be independent or dependent
on some variable.

6.4.1c Machine Properties

We shall now study some properties of the commutator machine by using
the equivalent circuit of Fig. 6.4.5. The instantaneous power converted to
mechanical form by the coupling network is

p, = T-O = Giia6 , (6.4.31)

where (6.4.30) has been used for torque To. The instantaneous power ab-
sorbed from the armature circuit by the speed voltage GOi, is

p, = GOifia, (6.4.32)

which is equal to the mechanical power output. This leads to the following
immediate conclusions:
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1. Power conversion between electrical and mechanical form in a commu-
tator machine occurs instantaneously between the mechanical system and the
speed voltage source in the armature circuit.

2. The power conversion is proportional to field current, but there is no
power conversion between the field circuit and the mechanical system.

Next, assume that the rotor is to be driven by a constant-speed source

0 = Co,, (6.4.33)

open circuit the armature (in = 0), and apply a battery to the field circuit
terminals

v1 = V,. (6.4.34)

The open-circuit armature voltage varies with field voltage, as can be seen
by considering steady-state conditions and (6.4.1) to find

ii = L (6.4.35)
Rf

From (6.4.20) with ia = 0 we find

va =- RV. (6.4.36)
R,

The armature voltage is proportional to the field voltage. This has the
makings of a linear amplifier.

Now with the constraints of (6.4.33) and (6.4.34) applied, put a load
resistance RL across the armature terminals; the armature terminal voltage
in the steady-state is

va= GR (') .V (6.4.37)
\ R, + Ra R,

The load voltage is linear with field voltage and all the load power comes
from the mechanical source. This illustrates the basic mode of operation of a
de generator, but it also indicates that the machine can be operated as an
electromechanical amplifier. Direct-current machines are used as power
amplifiers in many control applications. The power gain in a single machine
is usually in the range of 20 to 30 and the bandwidth over which the amplifica-
tion factor is constant is limited by field inductance to a few Hertz. Nonethe-
less, for control applications in which devices and power requirements are
large, the required bandwidth is often small. It is difficult to think of a more
economical way to make a 100,000-W, linear dc amplifier.

Commutator machines are used widely as electromechanical amplifiers,
especially when considerable power is to be handled in control applications.
Some amplifiers involve special constraints on a machine like that in Fig.
6.4.2 (Rototrol and Regulex); others have special configurations that involve
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Fig. 6.4.6 Constraints for study of energy conversion properties in a dc machine.

a second set of brushes placed 90' from the original set to form a second
armature circuit and a second field circuit placed 900 from the original field
circuit (metadyne and amplidyne). All of these amplifiers are analyzed with
the same basic techniques we used earlier.*

To learn some of the characteristics of the commutator machine as a dc
energy converter we consider a steady-state problem with the constraints
indicated in Fig. 6.4.6. The rotor position is constrained by a constant speed
source

the field is constrained by a direct-current source

i,= I,;

and the armature terminals are constrained by a constant-voltage source

v. = Vr.

We have left out armature inductance because we are treating the steady state.
The use of these constraints with the armature circuit equation (6.4.20)

yields for the armature current

ia = V.- Gcowl (6.4.38)
Ra

* For a good discussion of rotating amplifiers in general and analyses of the specific
configurations named see G. J. Thaler and M. L. Wilcox, Electric Machines, Wiley, New
York, 1966, pp. 135-149.



Fields and Moving Media

The electric power fed into the armature terminals is

p-= -J=- G /"hj (6.4.39)

The torque of electric origin (6.4.30) is

T = GIf( a Gw-mI (6.4.40)

and the mechanical power out of the coupling network (6.4.31) is

Pm = Teom = GIf.,w(1 - GoWI (6.4.41)

The quantities given by (6.4.38) to (6.4.41) are sketched as functions of W,
for constant Va and If in Fig. 6.4.7. As indicated in this figure, there are three
regions of operation as defined by energy flow. Generator operation has
mechanical power input (Pm < 0) and armature power output (Pa < 0)
and occurs at values of speed at which the speed voltage (Gwm,,) is greater
than the armature voltage (Va). The speed voltage then makes current flow
to charge the battery on the armature terminals. Motor operation has arma-
ture power input (pa > 0) and mechanical power output (Pm > 0) and
occurs in a range of speed in which the armature terminal voltage V, is
greater than the speed voltage Gwal, and can feed power into the speed
voltage. Brake operation occurs when power is put into the machine both
from the armature terminals (Pa > 0) and from the mechanical terminals
(p, < 0) and all of this power is dissipated in the armature resistance Ra.
To see this refer to Fig. 6.4.6 and recognize that with w, < 0 the speed
voltage Go,,I and armature battery Va have aiding polarities and both
feed power to Ra.

Figures 6.4.6 and 6.4.7 give the essential features of the operation of a de
machine with separate excitation; that is, the field winding is excited inde-
pendently from a source separate from the armature excitation. The char-
acteristics of a dc generator with separate excitation can be derived quite
easily by using an equivalent circuit like that of Fig. 6.4.6. The transient
performance of a separately excited de generator is limited by field inductance,
armature inductance, load inductance, or capacitance, and prime mover
characteristics. The study of the characteristics is straightforward and is
left to the problems at the end of the chapter.

The principal characteristics of a separately excited dc motor are shown in
Fig. 6.4.8 in the sketch of torque-speed curves with armature voltage as
parameter and field current constant. For practical machines the relatively
small armature resistance leads to the steep slope of the curves. Thus at
constant armature voltage there is little variation of speed with torque and
the speed can be controlled quite closely by controlling the armature voltage.
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Fig. 6.4.7 Terminal characteristics of commutator machine with constant armature
voltage and constant field current: (a) armature current; (b) armature power input; (c)
torque of electric origin; (d) mechanical power out of coupling network.

This is the most common mode of operation of a dc motor when speed
control is required. More precise speed regulation is obtained by using a
feedback control system to sense the speed error and correct the armature
voltage accordingly. When a dc generator is used to supply motor armature
power in such a system it is called a Ward-Leonard system.*
* See, for example, Thaler and Wilcox, op. cit., p. 291.
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Fig. 6.4.8 Torque speed curves of separately excited dc motor.
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Fig. 6.4.9 Methods of self-exciting a dc motor: (a) shunt excitation; (b) series excitation.
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There are two other fundamental ways of providing field excitation in dc
motors; shunt excitation, illustrated schematically in Fig. 6.4.9a, and series
excitation, illustrated in Fig. 6.4.9b. Considering shunt excitation with a
steady state de problem, we neglect the inductance and write

v, = ifR, (6.4.42)

v, = iaR, + GOi,. (6.4.43)

The shunt terminal constraints of Fig. 6.4.9a are

)t = Va = )i

it = ia+ if.

Using these constraints with (6.4.42) and (6.4.43) yields for the armature
current and terminal current

i =( G V (6.4.44)

it = + R a (6.4.45)
(Rf R, RRfia -

The torque of electric origin is (6.4.30)

T = G 1 O 1Ra. (6.4.46)

The torque-speed and terminal-current-speed curves for shunt excitation
are sketched in Fig. 6.4.10. Because of the steep slope of the torque-speed
curve, speed control is most effectively and efficiently achieved by the control
of field resistance R, because it determines the intercept with the speed axis.

Now consider a steady-state dc problem with series excitation as in Fig.
6.4.9b; (6.4.42) and (6.4.43) still hold but now the series connection imposes
the constraints

Vt = Va + VI,

it= i.=iI.

Using these constraints with (6.4.42) and (6.4.43), we get for the terminal
current

it = Vt (6.4.47)
Rf + R, + GO'

and the torque of electric origin is (6.4.30)

Te = Gi Gv (6.4.48)
(R, + Ra + GO) 6

6.4.1
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vt = constant

vt/RRa

Fig. 6.4.10 Torque and terminal current as functions of speed in a shunt-excited dc motor
with constant terminal voltage.

The torque and terminal current are sketched as functions of speed for
constant terminal voltage in Fig. 6.4.11. Series-excited motors are used for
traction drives and other applications in which high starting torque is
required. The starting current is usually limited by variable series resistance,
as is the running current.

A commutator machine like that of Fig. 6.4.2 may have more than one
field winding on the same field structure. Oftentimes two field windings are
used, one for shunt excitation and one for series excitation, in which case
the machine is called a compoundmotor. It should be clear that combinations
of the characteristics of Fig. 6.4.10 and 6.4.11 in varying amounts can lead
to a wide variety of motor characteristics.*

We consider one final example of the possible steady-state characteristics
of the commutator machine in Fig. 6.4.2, and that is as a shunt, self-excited,
dc generator. By self-excited, we mean that only mechanical input is required
to produce an electrical output. The field current is generated by the armature.
The successful operation of this machine depends on saturation in the
magnetic material, which shows up in the speed coefficient G, thus reducing

* See, for example, Fitzgerald and Kingsley, op. cit., pp. 141-142.
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Fig. 6.4.11 Torque and terminal current as functions of speed for series-excited dc motor
with constant terminal voltage.

the value of G as the excitation current i,, hence the speed voltage increase.
This saturation is usually represented by a plot of armature open-circuit volt-
age voc in Fig. 6.4.12 (the speed voltage Gw~i,) as a function of field current
with speed held fixed. Such a curve is sketched in Fig. 6.4.12a. Now connect
the field winding in parallel with the armature terminals with no load con-
nected, as shown in Fig. 6.4.12b; the field current is determined in the steady
state by the field resistance line in Fig. 6.4.12a. The steady-state operating
point at which the circuit equations are satisfied in the steady state is shown
in Fig. 6.4.12a. If the field current is below the steady-state value, the excess
of generated voltage over the iR drop goes into increasing the current as
illustrated. Thus, if a small amount of voltage is produced (usually by residual
field flux), the terminal voltage will build up automatically to the operating
point, the rate of buildup being determined by the relative shapes of the
two curves in Fig. 6.4.12a and by the machine inductances. The addition of a
load causes a little additional voltage drop in Ra but does not change the
essential features of the argument. A moderate range of voltage control is
achieved by varying the field resistance R,, the slope of the field resistance
line, hence the intersection of the two curves in Fig. 6.4.12a.

6.4.1

--
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6= wm = constant

Fig. 6.4.12 Illustrating shunt self-excitation in a dc generator: (a) voltage versus field
current curves; (b) shunt-connected generator with no load.

Generators can be series-excited and can use both series and shunt excita-
tion. The techniques of analysis are similar to those used for shunt excitation
and a great variety of terminal characteristics can be obtained.*

All of our examples have been based on dc excitation. Commutator
machines are also used with alternating current. The techniques of analysis
are essentially the same, but the inductances play a vital role in determining
steady-state characteristics. Some examples of ac commutator machines are
studied in the problems at the end of this chapter.

6.4.2 Homopolar Machines

A physically different type of dc rotating device is the homopolar machine,
but, as we shall see, it has terminal behavior much like that of a commutator
* Fitzgerald and Kingsley, op. cit., pp. 139-141.
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Fig. 6.4.13 Configuration for analysis of homopolar machine.

machine. One version of a homopolar machine is introduced in Example 6.3.1
to illustrate the application of Ohm's law for a moving conductor. A cutaway
view of a practical homopolar generator appears in Fig. 6.3.2.

In Example 6.3.1 a limited analysis is made of the armature characteristics
under steady-state conditions. In this section that analysis is generalized to
include transients in the armature circuit and extended to find the terminal
equations for the field circuit and the mechanical system.

For the analysis we use the configuration of Fig. 6.4.13 which is represent-
ative of a homopolar machine that would use a superconducting field coil.
The system consists of a disk of the dimensions shown and connected to a
shaft that is rotating with angular speed ov. A coaxial fixed conductor makes
sliding electrical contact (conventionally through a liquid metal) with the
outside surface of the disk. Another sliding contact is made with the shaft
as shown and these two connections to the disk form the armature terminals.
The whole assembly is surrounded by a coaxial solenoid that produces an
axial flux density at the disk. The terminals of the solenoid are the field
circuit terminals. The reason for the carefully specified cylindrical symmetry is
mathematical simplicity and is not necessary for the analytical techniques to

6.4.2
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be correct. In many practical cases, however, symmetry is desirable to cut
down on harmful electrical and electromechanical effects like circulating
currents, thrust on bearings, and forces on the solenoid.

Current to and from the disk in the shaft and in the coaxial conductor is
axial and has cylindrical symmetry. (We assume that the armature terminals
are far enough removed from the disk and solenoid that the end effects can
be ignored.) Current in the disk is radial and distributed uniformly at any
radius. Consequently, the flux density produced by armature current is
tangential and none of it will link the field solenoid. Therefore, we can
write the field circuit equation immediately as

vL = Rif + L, !, (6.4.49)
dt

where R, = field circuit resistance,
L, = field circuit inductance.

This is exactly the same form as (6.4.1) for the commutator machine.
The electromagnetic behavior of the disk was analyzed for steady-state

conditions in Example 6.3.1. When we assume that any transients occur
slowly enough not to disturb appreciably the uniformity of current density
in the disk, (we pursue this point in Chapter 7), the results of Example 6.3.1
are still valid, provided we add a self-inductance term. (There is no net field-
produced flux linkage with the armature.) Thus the armature voltage equation
is

va = Rai, + L a _a + Gwi,, (6.4.50)
dt

where Ra is the armature resistance found in Example 6.3.1 (where it is
called Rint)

Ra In (R;/R). (6.4.51)
27rod

La is the armature self-inductance that can be calculated from the geometry
and G is a speed coefficient found from equating the open-circuit voltage in
Example 6.3.1 to the speed voltage.

Gwi, = ! (Ro2 - R1
2). (6.4.52)

As for the commutator machine, this speed coefficient G depends only on
geometry and material properties.

We obtain an approximate value for G by assuming that the solenoid has
N total turns and is axially long with small radial buildup. With an axial

~
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length 1, the value of flux density near the center is (from Ampere's law)

B, = iBo = i. oNi, (6.4.53)
1

The use of this result in (6.4.52) and the solution for G yields

G = I N (R.2 - R1
2). (6.4.54)

21

Equation 6.4.50, which is the armature voltage equation for the homopolar
machine, is the same form as the armature equation for the commutator
machine (6.4.20). We could have derived this equation in a manner analogous
to that used for the commutator machine; for example, if we had chosen a
contour C, illustrated schematically in Fig. 6.4.14, then, with the contour
fixed in the laboratory frame, we could write Faraday's law as

S E dl - E d = B n da. (6.4.55)

The first term on the left is the terminal voltage, the second term on the left
contains the resistive voltage drop and the speed voltage, and that on the right
is the self-inductance term. To complete such an analysis we must simply
follow the steps used in going from (6.4.3) to (6.4.20) for the commutator
machine.

Alternatively, the contour C can be fixed to the disk in Fig. 6.4.14, and
Faraday's law is written as

-.J JE.d- E'.JdlS B. n da. (6.4.56)

In this case the first term is still the terminal voltage, but now the second term
on the left contains only the resistance voltage drop, and because of the time-
varying surface S the term on the right includes both the speed voltage and
voltage of self-inductance.

Fig. 6.4.14 Contour of integration for Faraday's law.
Fig. 6.4.14 Contour of integration for Faraday's law.

· ·I_·

6.4.2
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To complete the description of the homopolar machine, the torque of
electric origin must be obtained. For this we use the force density of electric
origin for magnetic field systems (1.1.30).

F = J x B. (6.4.57)

Using the unit vectors for a cylindrical coordinate system shown in Fig.
6.4.13, the current density in the disk at a radius r is

J = iJ, = - i2 (6.4.58)
27rrd

[See (b) of Example 6.3.1 and note that the assumed positive direction of
armature current has been reversed.] The only flux density that interacts with
this current density to produce a torque about the axis of rotation is the
field flux density given by (6.4.53). The use of these two quantities in (6.4.57)
yields

F = iZoON i, a (6.4.59)
27rldr

The force is tangential; thus we multiply by the lever arm r and integrate
throughout the volume of the disk to find the torque T e in the direction of
positive rotation to

TV =_ o 'oNifi r dr dO. (6.4.60)

Evaluation of the integral yields

Te =i! oN (Ro2 - RI2)ijai = Gi1if, (6.4.61)
21

where the speed coefficient was defined in (6.4.54).
The results of (6.4.61) can be derived also by the energy methods of

Chapter 3, provided great care is exercised in defining the moving circuit.
It is much more reasonable and straightforward to evaluate the torque in the
manner we did.

We now use the results of (6.4.49), (6.4.50), and (6.4.61) to redraw the
equivalent circuit of Fig. 6.4.5. We have included the usual mechanical
elements, and it would be well to remark that with liquid-metal brushes there
is little coulomb friction (To) in a homopolar machine.

The equivalent circuit of Fig. 6.4.5 was originally drawn for the commu-
tator machine discussed in Section 6.4.1. This emphasizes the similarity of
commutator and homopolar machines. All of the discussion of the properties
of commutator machines holds equally well for homopolar machines, with
the qualification that relative parameter values in the two types of machine
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are different; for example, the homopolar machine has essentially a one-turn
armature and is always a low-voltage, high-current device. Thus matching a
wire-wound coil to this low impedance is difficult and few homopolar ma-
chines can be self-excited, either with series field windings or with shunt field
windings. Consequently, most homopolar machines have separately excited
field windings.

Because of the similarity between homopolar and commutator machine
characteristics we terminate the discussion here and treat homopolar ma-
chines further in the problems at the end of this chapter.

6.5 DISCUSSION

In this chapter we have made the necessary generalizations of electro-
magnetic theory that are needed for analyzing quasistatic systems with
materials in relative motion. This has involved transformations for source
and field quantities between inertial reference frames, boundary conditions
for moving boundaries, and constituent relations for moving materials. In
addition to some simple examples, we have made an extensive analysis of dc
rotating machines because they are devices that are particularly amenable to
analysis by the generalized field theory.

Having completed the generalization of field theory with illustrative
examples of lumped-parameter systems, we are now prepared to proceed to
continuum electromechanical problems. In Chapter 7 we consider systems
with specified mechanical motion and in which electromagnetic phenomena
must be described with a continuum viewpoint.

PROBLEMS

6.1. Two frames of reference have a relative angular velocity f, as shown in Fig. 6P.1.
In the fixed frame a point in space is designated by the cylindrical coordinates (r, 0, z).
In the rotating frame the same point is designated by (r', 0', z'). Assume that t = t'.

X2

X1

Fig. 6P.1
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(a) Write the transformation laws [like (6.1.6)] that relate primed coordinates to the
unprimed coordinates.

(b) Given that Vyis a function of (r, 0, z, t), find ap/8at' (the rate of change with respect
to time of vy for an observer in the rotating frame) in terms of derivatives with
respect to (r, 0, z, t).

6.2. A magnetic field distribution B = B0 sin kx1 i2 exists in the laboratory frame. What is
the time rate of change for the magnetic field as viewed from the following:

(a) An inertial frame traveling parallel to the xz-axis with speed V?
(b) An inertial frame traveling parallel to the X2-axis with speed V?

6.3. A magnetic field traveling wave of the form B = iBo cos (wt - kx) is produced in
the laboratory by two windings distributed in space such that the number of turns per unit
length varies sinusoidally in space. The windings are identical except for a 900 separation.
They are excited by currents of equal amplitude but 900 out of time phase. This is a linear
version of Problem 4.10, which was cylindrical.

w = radial frequency = 27rf,

2fr
k = wavenumber = -

-= wavelength,

v•=- = f = phase velocity of wave.

(a) If an observer is in an inertial frame traveling with speed V in the z-direction,
what is the apparent frequency of the magnetic wave?

(b) For what velocity will the wave appear stationary?

6.4. The following equations describe the motions of an inviscid fluid in the absence of
external forces:

av
p -+ p(v. V)v + Vp = 0, (1)

opa + V .pv = 0, (2)

p = p(p), (3)
where p is the pressure, p, the mass density, and v the velocity of the fluid. Equation 1 is
Newton's law for a fluid, (2) is the law of conservation of mass, and (3) is a constitutive
relation relating the pressure and density. Are these equations invariant to a Galilean
transformation to a coordinate system given by r' = r - vt? If so, find v', p', p' as a
function of the unprimed quantities v, p, p.

6.5. A cylindrical beam of electrons has radius a, a charge density Po( 1 - r/a) (Po < 0) in
the stationary frame, and velocity v = voiz. (See Fig. 6P.5.)

r

EO,go

Fig. 6P.5
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(a) Using only the transformation law for charge density, find the electric and
magnetic fields in a reference frame that is at rest with the electrons.

(b) Without using any transformation laws, find the electric and magnetic fields in
the stationary frame.

(c) Show that (a) and (b) are consistent with the electric field system transformation
laws for E, H, and J,.

6.6. A pair of cylinders coaxial with the z-axis, as shown in Fig. 6P.6, forms a capacitor.
The inner and outer surfaces have the potential difference V and radii a and b, re-
spectively. The cylinders are only very slightly conducting, so that as they rotate with the

Fig. 6P.6

angular velocity o they carry along the charges induced on their surfaces. As viewed from
a frame rotating with the cylinders, the charges are stationary. We wish to compute the
resulting fields.

(a) Compute the electric field between the cylinders and the surface charge densities
a. and a, on the inner and outer cylinders, respectively.

(b) Use the transformation for the current density to compute the current density
from the results of part (a).

(c) In turn, use the current density to compute the magnetic field intensity H between
the cylinders.

(d) Now use the field transformation for the magnetic field intensity to check the
result of part (c).

6.7. A pair of perfectly conducting electrodes traps a magnetic field, as shown in Fig. 6P.7.
One electrode is planar and at y = 0, the other has a small sinusoidal variation given as a

y

-too

r no~ ~L_

y = a sin wt cos + urface current

...........

.....

O

A0z

0'-**o* Surface current

Fig. 6P.7
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function of space and time. Both boundaries can be considered perfect conductors, so that
n - B = 0 on their surfaces. In what follows, assume that a << d and that the magnetic
field intensity between the plates takes the form

H = + h(x, y, tA) i + h1,(, y, t)i,

where A is the flux trapped between the plates (per unit length in the z-direction) and h,
and h, are small compared with A/lod.

(a) Find the perturbation components h. and h,.
(b) The solutions in part (a) must satisfy the boundary conditions: n X E = (n . v)B

[boundary condition (6.2.22) of Table 6.1]. Compute the electric field intensity
by using the magnetic field found in part (a). Now check to see that this boundary
condition is satisfied to linear terms.

6.8. The system shown in Fig. 6P.8 consists of a coaxial line of inner radius a and outer
radius b, with an annular conductor that makes perfect electrical contact with the inner and
outer conductors. The annular conductor is constrained to move to the right with constant
velocity v. All conductors can be assumed to have infinite conductivity. A battery V, supplies
a current I to the system through a resistance R. This excitation is physically arranged to

Fig. 6P.8

maintain cylindrical symmetry about the center line. Fringing fields at the left end can be
neglected. A voltmeter is connected between the inner and outer conductors at the extreme
right end as shown.

(a) In terms of the current I, find the fields E and H throughout the length of the line
between the conductors.

(b) Using the constraints imposed by the battery and resistance, find E, H, and the
terminal variables I and V in terms of V0 and the other constants of the system.

(c) What does the voltmeter read? Why can this be different from the terminal voltage
V?

(d) Compute the rate of change of stored magnetic energy and the power VI into the
line. If there is a discrepancy between these values, explain where the power goes
(or comes from).

(e) Treat the problem as a lumped inductor with a mechanical variable. Find L(X)
and the force.fe acting on the sliding short. Use this to explain your answer to
part (d).
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Depth D

D >> a

Fig. 6P.9

6.9. A sheet of metal (with surface conductivity o,) slides between plane-parallel, perfectly
conducting plates, as shown in Fig. 6P.9. The perfectly conducting plates are shorted at the
right end. At time t = 0 a current flows on the inside surfaces of the plates and through the
metal sheet to generate the magnetic field Bo. If the sheet were stationary, we would expect
that the initial magnetic flux would decay with time. The sheet, however, moves to the right
with a constant velocity V, hence tends to compress the magnetic field and prevent its decay.
At what constant velocity V must the sheet move to keep Bo constant?

6.10. A slab of conducting material with mass M and conductivity a has the position
x(t), as shown in Fig. 6P.10. Fixed side and top plates form a closed circuit for currents

QE--o.

Depth D
into paper

- w..--

Bo

d
X..

Mass M
conductivity a

Fig. 6P.10

induced in the movable plate. A uniform magnetic field Bo (directed out of the paper)
extends throughout the system. The system is so constructed that D > w.

(a) Assume that contributions to the magnetic field induced by currents resulting
from motions of the movable slab can be ignored. Find the magnetic force on the
slab in the z-direction as a function of the velocity v.

(b) Given that the initial velocity of the slab is (dz/dt)(t = 0) = vo , find v(t) (ignore
gravity).

(c) Under what conditions will the assumptions used in (a) be valid? (Remember,
v0 is given.)

I 

¢////•"
'//////////////////////•

0

Mass M
•'onductivity •
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RWidth W into page

Vo V d Ho0 M Ho®

T I

Fig. 6P.11

6.11. The system shown in Fig. 6P.11 is composed of a pair of parallel plates of width W
and separation d, connected by a sliding conductor of mass M. The sliding conductor makes
frictionless and perfect electrical contact with the plates. The entire system is immersed in a
static magnetic field Ho into the page and the plates are excited by the battery Vo through the

resistance R and the switch S. All conductors may be assumed to be perfect, fringing fields

may be neglected, and you may assume that if W << H0.

(a) Find the force on the sliding conductor in terms of the current i.
(b) With the system at rest, the switch S is closed at t = 0. Find the velocity of the

sliding conductor v(t) for t > 0.

6.12. The system shown in Fig. 6P.12 consists of two parallel, perfectly conducting plates

with depth D and separation W. Between these plates is placed a perfectly conducting
short-circuit which has mass M and slides with viscous coefficient of friction B. You may
assume that W << D and that fringing fields may be neglected.

(a) Find A = 2(i, x).
(b) Find W'(i, x) or W,.(A, x).
(c) Find the force of electric origin fO (from WQ(i, x) or W.(A, x)) exerted by the

fields on the sliding short.

Assume now that a battery is placed across the electric terminals so that v = Vo = constant.

(d) Write a complete set of differential equations that would allow you to find z(t).
(e) If the system has reached a state in which the velocity of the plate (dx/dt) is a

constant, find (dx/dt).
(f) Under the conditions of (e), find the current supplied by the battery i(t).

You will now repeat this problem and solve it by using field theory. Do not assume that
v = V0 and x = constant until part (1).

(g) Find the magnetic field H between the plates as a function of the current i = i(t).

7-

Fig. 6P.12
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(h) Find the force exerted by this H field on the sliding short in terms of i and x by
using the Lorentz force law to show that it agrees with (c).

(i) Compute the electric field everywhere between the plates. Evaluate the constant
of integration by requiring that the voltage at the terminals be v(t).

(j) Relate the terminal voltage v(t) to the current i(t) and plate position x(t) by
explicitly using Faraday's law in integral form.

(k) Show by using (i) and (j)that the boundary conditions on the electric field at the
moving plate are satisfied.

(1) Convince yourself that the results of (g) through (k) are formally equivalent to
the lumped-parameter approach of parts (a) through (f); that is, again find
(dx/dt) and i(t) by assuming that v = Vo and (dx/dt) = constant.

(m) Under the conditions of part (1)evaluate the electric field of part (i) explicitly.

6.13. The device shown in Fig. 6P.13 is a model of an MHD system that is studied in
greater detail in Chapters 12 to 14. It consists of a rigidannular ring of high but finite
conductivity a, depth D, and inner and outer radii R, and R2, respectively. The entire
system is immersed in an externally applied, uniform, magnetic field H = H0i,. A set of
fixed, perfectly conducting electrodes, each subtending an angle 2cr, closely fits the
conducting shell. The conducting shell rotates without friction and has a moment of
inertia K about the origin (z-axis). The position of the shell is described by the angle 'y.

You may assume that the average radius R of the shell is large compared with its thickness
[R > (R, - Rj)].

1. Ignore the reaction H field produced by the flow of current in the shell between the
electrodes.

2. Since R > (R2 - R1), assume that both the current density andthe electric field exist
only between the electrodes (no fringing) and that they are uniform, radially directed, and
independent of r and 0.

(a) Write the differential equation of motion for the shell in terms of T1
e and T2

e ,

the torques of electric origin produced by the two electrode regions.

les (1)
Electrode!

E2z

Fig. 6P.13
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(b) Find the Lorentz force density in the region between each pair of electrodes in
terms of the currents i1 and i2 and H0.

(c) Find the torques T1
e and T2e you used in part (a) in terms of the currents il, i2,

and Ho by appropriately integrating the force density you found in part (b).
(d) Relate the electrode voltages v1 and v2 to the electric fields E1 and E2 as measured

in a fixed frame.
(e) Use the magnetic field system transformation laws with your answer to part (d)

to find the electrode voltages v, and v, in terms of the currents i1 and i2 and the
velocity of the cylindrical shell R(dy/dt).

Your answers to parts (a), (c), and (e) should give you a set of three differential equations
in y, v1, v2, il, and i2. (If the electrical terminal constraints, namely, relations between v1
and il and v2 and i2 were specified, you should have as many equations as unknowns.)

x
z

Fig. 6P.14
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(f) Suppose i2 = 0 and i1 (t) = iou_l(t); find and sketch Q(t), v2(t), and vl(t) for
t > 0, assuming that for t < 0 the system is at rest (wp= constant = 0).

(g) Suppose i2 = 0 and vl(t) = (vo sin wt)u_(t); find and sketch y(t), v2(t), and
i,(t) for t > 0, again assuming that the system is at rest for t < 0.

(h) A resistance Ro is placed across terminal pair 2. Assuming that i1 (t) = io cos rot,
find the steady-state current i2 (t) = Re (i2ej-t). Plot I2|versus to to show that the
device could be used as a transformer at low frequencies.

6.14. Figure 6P.14 shows a model for a self-excited dc machine. The rotor is laminated in
such a way that i flows only in the z-direction. The brushes have an effective area A, hence
the current density on either side of the rotor is i/A. The rotor has a conductivity a over the
area of the brushes. Neglect the thickness of the brushes compared with r. The far end of the
rotor is assumed to be infinitely conducting, as shown. The rotor is driven at a constant
angular velocity cw; Rint does not include the effect of the conductivity of the rotor.

(a) Find the differential equation for i(t). Neglect the inductance of the rotor.
(b) If i(t = 0) = Io, calculate the power dissipated in the load resistor RL as a function

of time. For what values of the parameters is this power unbounded as t c• ?
(c) In a real system what would prevent the current from becoming infinite?

6.15. A 150-kw, 240-V, separately-excited, dc generator has the following constants (see
Fig. 6P.15):

R I = 30 ohms Ra = 0.02 ohm,
L, = 12 H La = 0.001 H,

G = 0.30 H.

Fig. 6P.15

The generator is driven by a constant speed source at its rated speed of 900 rpm. The field
current is constant at 9.0 A. The purely resistive load of RL = 0.385 ohms is switched onto
the armature at t = 0. Calculate and plot the ensuing transients in load current and shaft
torque.

6.16. The generator of Problem 6.15 is connected as shown in Fig. 6P.16. The constants
are the same as those given in Problem 6.15, plus Vi = 270 V. The machine is driven by a
constant-speed source at 900 rpm.

(a) With switch S2 open, S, is closed at t = 0, calculate and plot the transient in
open-circuit armature voltage v,.

(b) With switch S 2 closed, S, is closed at t = 0, calculate and plot the transient in
armature voltage va.
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Fig. 6P.16

6.17. The generator of Problem 6.15 is connected in the circuit of Fig. 6P.17 and driven
with a speed source having a torque-speed characteristic expressible as

Tm= To (1-- )

where wo = 1000 rpm, co = 0 = shaft speed, To = 1.6 x 104 N-m, Tm = torque applied
to generator shaft. In addition the constant field voltage is V- = 270 V and the rotor moment

Rf

+ LfVf- L

Fig. 6P.17

of inertia is Jr = 12 kg-m2. Neglect mechanical damping. The switch in the armature
circuit is closed at t = 0. Calculate and plot the ensuing transients in load current, shaft
speed, and torque.

6.18. Consider a dc machine with moment of inertia Jo and operating in the steady state at
its rated speed wo . Consider the stopping transient with electrical excitation removed.
This is a purely mechanical transient. Consider three cases and calculate and plot speed as
a function of time for each case.

(a) There is only coulomb friction.
(b) There is only viscous friction.
(c) Both types of friction are present and produce equal torques at rated speed.
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6.19. A dc motor has the following constants and ratings:

Field resistance, Rf = 234
Field inductance,
Armature resistance,
Armature inductance,
Speed coefficient,
Armature inertia,
Rated line voltage

0ohms
L = 90 H
Ra = 0.15 ohm
La = 0.01 H
G = 1.5 H
Jr = 0.5 kg-m2

230 V

The rated supply voltage of 230 V is applied to the field winding and the field current is 1 A.
Assume that the motor shaft is unloaded and neglect mechanical losses.

(a) The 230-V supply is connected to the armature terminals at t = 0. Calculate and
plot the ensuing transients in armature current and shaft speed.

(b) Repeat part (a), but with 1.35 ohms of resistance added in series with the
armature.

6.20. A dc machine is often used as an energy storage element. With constant field current,
negligible mechanical losses, and negligible armature inductance the machine, as viewed
from the armature terminals, appears as the RC circuit of Fig. 6P.20.

(a) Find the equivalent capacitance C in terms of G, If, and J,.
(b) Evaluate C for the machine in Problem 6.19 with If = 1 A.

If-a. aa, RBa

va C

0
Equivalent circuit

Machine

Fig. 6P.20

6.21. Discuss the problem of operating a commutator machine on alternating voltage
from the viewpoint of armature and field currents drawn and torque produced. More
specifically, contrast series and parallel operation of field and armature and explain why
the series arrangement is used almost exclusively.

6.22. A homopolar generator is constructed as shown in Fig. 6P.22. The disk rotates with
the angular velocity to and has a conductivity a. It is connected by slip rings to an N-turn



Conducting
metal disk

Area A

N
00

Fig. 6P.22 Fig. 6P.23
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coil. Under what condition can this system be self-excited (generate its own magnetic
field)? The coil resistance can be taken as negligible.

6.23. Disks of conductivity a rotate with the constant angular velocity 0, as shown in
Fig. 6P.23. Each disk is symmetrically connected to slip rings at the inner radii b and outer
radii a. Magnetic yokes (p - co) impose uniform magnetic fields over the volume of the
disks. These fields are generated by the disks interconnected with the windings.

(a) Find an expression for the terminal voltage v for one of the disks as a function
of 0, i, and the magnetic flux density B.

(b) Determine the condition under which the interconnected disks will deliver
steady-state ac current to the load resistances RL. The disks are constrained to
have a constant angular velocity.

(c) Determine the frequency of this current under the condition of part (b).
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GLOSSARY OF
COMMONLY USED SYMBOLS

Section references indicate where symbols of a given significance are
introduced; grouped symbols are accompanied by their respective references.
The absence of a section reference indicates that a symbol has been applied
for a variety of purposes. Nomenclature used in examples is not included.

Symbol Meaning Section

A
Ai
(A + , An)

A,
a
a, (ae, as)
ab
(a, b, c)
ai

a,

B, Br, B,

B, Bi, Bo
Bi

(Br, Bra, Brb, Brm)

[Brt, (Brf)av]
b

b
C

C, (Ca, Cb), C,
C
C
(C+, C-)

cross-sectional area
coefficient in differential equation
complex amplitudes of components of nth

mode
cross-sectional area of armature conductor
spacing of pole faces in magnetic circuit
phase velocity of acoustic related waves
Alfvyn velocity
Lagrangian coordinates
constant coefficient in differential equation
instantaneous acceleration of point p fixed

in material
damping constant for linear, angular and

square law dampers
magnetic flux density
induced flux density
radial components of air-gap flux

densities
radial flux density due to field current
width of pole faces in magnetic circuit
half thickness of thin beam
contour of integration
capacitance
coefficient in boundary condition
the curl of the displacement
designation of characteristic lines

5.1.1

9.2.1
6.4.1
8.5.1
13.2.1, 11.4.1
12.2.3
11.1
5.1.1

2.2.1c

2.2.1b, 4.1.1, 5.2.2
1.1.1a, 8.1, 6.4.2
7.0

4.1.4
6.4.1
8.5
11.4.2b
1.1.2a
2.1.2, 7.2.1a, 5.2.1
9.1.1
11.4
9.1.1

_~



Glossary of Commonly Used Symbols

Meaning

C,

Cv

D
d
da
df,

dl
dT.
dV
E
E

E, Eo
E,

Ei
e1 1 , eij
eij
F
F

F0

f

f, ffe,fSftfi l

f
f'

f
f
G
G
G
G

g
g, g
(H, H., H,, Hz)
h

I, I, (I, i)s) , if

(i, i , i2 ,.. . , ik),
(iar,ias, ibr, ibs),

(Of,it),('r,Qs

specific heat capacity at constant pressure
specific heat capacity at constant volume
electric displacement
length
elemental area
total elemental force on material in rigid

body
elemental line segment
torque on elemental volume of material
elemental volume
constant of motion
Young's modulus or the modulus of

elasticity
electric field intensity
magnitude of armature voltage generated

by field current in a synchronous
machine

induced electric field intensity
strain tensor
strain-rate tensor
magnetomotive force (mmf)
force density
complex amplitude off(t)
amplitude of sinusoidal driving force
equilibrium tension of string
driving function
force

arbitrary scalar function
scalar function in moving coordinate

system
three-dimensional surface
integration constant
a constant
shear modulus of elasticity
speed coefficient
conductance
air-gap length
acceleration of gravity
magnetic field intensity
specific enthalpy
electrical current

electrical current

13.1.2
13.1.2
l.l.la

1.1.2a

2.2.1c
1.1.2a
2.2.1c
1.1.2b
5.2.1

9.1
1.1.1a, 5.1.2d

4.1.6a
7.0
9.1, 11.2
14.1.1a
13.2.2
1.1.1a

5.1.1
9.1.3
9.2
5.1.1
2.2.1, 2.2.1c, 3.1,

5.1.2a, 3.1.2b, 8.1,
9.1

6.1

6.1
6.2
11.4.2a
5.1.2c
11.2.2
6.4.1
3.1
5.2.1
5.1.2c, 12.1.3
1.1.1a
13.1.2
10.4.3, 12.2.1a, 4.1.2,

6.4.1
2.1,4.1.3, 6.4.1, 4.1.7,

6.4.1, 4.1

Symbol Section
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MeaningSymbol

i,

i,

(i,'I, U, (ix,is,2is)
J,J1

J, J )

K
K,K1
K
K,
k, ke, (kr, k,)
k
k

k.
(L, L2, (La, Lf),

L,, (Lo, LR),
(L,, L ),L.0) L.

1,1,, 1,
M
M
M
M
M
M, M,
M
m
N
N
n
n

n
P
P
P
p

pe, Pg,pPm,Pr

Q
q, qi, qk

unit vector perpendicular to area of
integration

unit vector normal to surface of
integration

unit vectors in coordinate directions
current density
moment of inertia
products of inertia
V-l
loading factor
surface current density
linear or torsional spring constant
induced surface current density
wavenumber
summation index
maximum coefficient of coupling
nth eigenvalue
inductance

length of incremental line segment
value of relative displacement for which

spring force is zero
length
Hartmann number
mass of one mole of gas in kilograms
Mach number
mass
number of mechanical terminal pairs
mutual inductance
magnetization density
mass/unit length of string
number of electrical terminal pairs
number of turns
number density of ions
integer
unit normal vector
polarization density
power
number of pole pairs in a machine
power per unit area
pressure
power

electric charge
electric charge

R, Rj,Ro radius

Section

6.2.1

6.2.1
2.2.1c
7.0, 1.1.1a
5.1.2b, 4.1.1, 2.2.1c
2.2.1c
4.1.6a
13.2.2
7.0, 1.1.1a
2.2.1a
7.0
7.1.3, 10.1.3, 10.0
2.1.1
4.1.6b
9.2
2.1.1, 6.4.1, 2.1.1,

4.2.1, 4.1.1, 4.2.4

6.2.1
2.2.1a

14.2.2
13.1.2
13.2.1
2.2.1c
2.1.1
4.1.1, 4.2.4
1.l.la
9.2
2.1.1
5.2.2
12.3.1
7.1.1
1.1.2
1.1.1a
12.2.1a
4.1.8
14.2.1
5.1.2d and 12.1.4
4.1.6a, 4.1.6b, 4.1.2,

4.1.6b
7.2.1a
1.1.3 and 2.1.2, 8.1,

2.1.2



Glossary of Commonly Used Symbols

Meaning

R, Ra, Rb, R,, Rr, R,
(R, R,)
Re

Rm
r
r
r

rS
S
S
S
S
S.

s,

T
T
T, T, T, Tem, Tm,

To, T,

ui

uo(x - xo)
u
u_-(t)
V, v,
V
V, Va, V1 , Vo, VI
V

resistance
gas constant
electric Reynolds number
magnetic Reynolds number
radial coordinate
position vector of material
position vector in moving reference frame
center of mass of rigid body
reciprocal modulus of elasticity
surface of integration
normalized frequency
membrane tension
transverse force/unit length acting on string
complex frequency
slip
ith root of characteristic equation, a

natural frequency
period of oscillation
temperature
torque

surface force
mechanical stress tensor
the component of the stress-tensor in the

mth-direction on a cartesian surface with
a normal vector in the nth-direction

constant of coulomb damping
initial stress distribution on thin rod
longitudinal stress on a thin rod
transverse force per unit area on

membrane
transverse force per unit area acting on

thin beam

time measured in moving reference frame
gravitational potential
longitudinal steady velocity of string or

membrane
internal energy per unit mass
surface coordinate
unit impulse at x = zo
transverse deflection of wire in x-direction
unit step occurring at t = 0
velocity
volume
voltage
potential energy

13.1.2
7.0
7.0

2.2.1c
6.1
2.2.1c
11.5.2c
1.1.2a
7.2.4
9.2
9.2
5.1.1
4.1.6b
5.1.1

5.2.1
13.1.2
2.2.1c, 5.1.2b, 3.1.1,

4.1.6b, 4.1.1, 6.4.1,
6.4.1

8.4
13.1.2

8.1
4.1.1
9.1.1
9.1.1

9.2

11.4.2b
1.1.1
6.1
12.1.3

10.2
13.1.1
11.3
9.2.1
10.4.3
5.1.2b
7.0, 13.2.3
1.1.2

5.2.1

Symbol Section
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Symbol

v, V

(V,V1. V.k)
v', (vC, Vb, vc),

Vp,Voc, Vj

Un
Vo
V',

vr

Vs

(W5 , WI)

(WI , w ')

W"
w
w
w
X

x

xp

(X1, x2,X 3), (x Y, Z)
(x', y', z')

(W,Y)

(·, P)

x

7

Y,Yo, Y
Ad(t)

Ar

As

6( )

8, (9, d 0
6

Meaning

velocity
voltage
voltage

velocity of surface in normal direction
initial velocity distribution on thin rod
phase velocity
relative velocity of inertial reference frames

V~flm for a string under tensionf and
having mass/unit length m

longitudinal material velocity on thin rod
transverse deflection of wire in y-direction
energy stored in electromechanical

coupling
coenergy stored in electromechanical

coupling
hybrid energy function
width
energy density
coenergy density
equilibrium position
displacement of mechanical node
dependent variable
particular solution of differential equation
cartesian coordinates
cartesian coordinates of moving frame
constants along C' and C- characteristics,

respectively
see (10.2.20) or (10.2.27)
transverse wavenumber
angles used to define shear strain
constant angles
space decay parameter
damping constant
equilibrium angle of torsional spring
ratio of specific heats
piezoelectric constant
angular position
slope excitation of string
amplitude of sinusoidal slope excitation
distance between unstressed material

points
distance between stressed positions of

material points
incremental change in (
displacement of elastic material
thickness of incremental volume element
torque angle

Section

2.1.1

6.2.1
9.1.1
9.1.1 and 10.2
6.1

10.1.1

9.1.1
10.4.3

3.1.1
3.1.2b

5.2.1
5.2.2
11.5.2c
8.5
5.1.2a
2.1.1
5.1.1
5.1.1
8.1, 6.1
6.1

9.1.1

11.4.3
11.2
4.1.6b
7.1.4
5.1.2b
2.2.1a
13.1.2
11.5.2c

10.2.1b
10.2.1b

11.2.1a

11.2.1a
8.5
11.1, 9.1, 11.4.2a
6.2.1
4.1.6a



Glossary of Commonly Used Symbols

Meaning

6Si
(0+, l_)

E

27

O, 0;, Om
0

0

(2,aa,22,).. s,.) AbS
Aa

(Aa, las, Ab, lbs)

jp, ('+,9)
/I

ald

/1is

(5, )

to

Ed

(F,, E-)

P
P1
Ps

a

a,

a,

"r •r

Kronecker delta
wave components traveling in the

Ix-directions
linear permittivity
permittivity of free space
efficiency of an induction motor
second coefficient of viscosity
angular displacement
power factor angle; phase angle between

current and voltage
equilibrium angle

angular velocity of armature
maximum angular deflection
magnetic flux linkage

Lamr constant for elastic material
wavelength
linear permeability
mobility
coefficient of viscosity
coefficient of dynamic friction
permeability of free space
coefficient of static friction
Poisson's ratio for elastic material
damping frequency
continuum displacement
initial deflection of string
amplitude of sinusoidal driving deflection
nth eigenfunctions
amplitudes of forward and backward

traveling waves

initial velocity of string
mass density
free charge density
surface mass density
surface of discontinuity
conductivity
free surface charge density
surface mass density of membrane
surface charge density
surface conductivity
surface charge density
surface traction
diffusion time constant
relaxation time

8.1

9.1.1
l.1.lb
1.1.la
4.1.6b
14.1.1c
2.1.1, 3.1.1, 5.2.1

4.1.6a
5.2.1

6.4.1
5.2.1
2.1.1, 6.4.1, 4.1.7,

4.1.3, 4.1

11.2.3
7.1.4
1.1.la
12.3.1, 1.1.1b
14.1.1
2.2.1b
1.1.1a
2.2.1b
11.2.2
10.1.4
8.5
9.2
9.2
9.2.1b

9.2

9.2
2.2.1c
1.1.1a
11.3
6.2
1.1.1a
1.1.1a
9.2
7.2.3
1.l.1a
7.2.3
8.2.1
7.1.1, 7.1.2a
7.2.1a

Symbol Section
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Symbol Meaning Section

re  electrical time constant 5.2.2

rm  time for air gap to close 5.2.2

70 time constant 5.1.3
rt traversal time 7.1.2a

electric potential 7.2
magnetic flux 2.1.1
cylindrical coordinate 2.1.1
potential for H when J, = 0 8.5.2
flow potential 12.2

Ze electric susceptibility 1.1.1b

Zm magnetic susceptibility 1.1.1a

Y the divergence of the material
displacement 11.4

Y angle defined in Fig. 6.4.2 6.4.1

Y angular position in the air gap measured
from stator winding (a) magnetic axis 4.1.4

V electromagnetic force potential 12.2

V angular deflection of wire 10.4.3
2 equilibrium rotational speed 5.1.2b

rotation vector in elastic material 11.2.1a
2n  real part of eigenfrequency (10.1.47) 10.1.4

w, (we, Ws) radian frequency of electrical excitation 4.1.6a, 4.1.2
w natural angular frequency (Im s) 5.1.2b
W, oW angular velocity 2.2.1c, 4.1.2
) e  cutoff frequency for evanescent waves 10.1.2

Cod driving frequency 9.2

Wn nth eigenfrequency 9.2
coo natural angular frequency 5.1.3

(Or, Oi) real and imaginary parts of co 10.0
V nabla 6.1
VE surface divergence 6.2.1

-- X-~II*LI ..--)---__-_ ~ ~~~~-~-~---------_~----





Appendix B

REVIEW OF
ELECTROMAGNETIC THEORY

B.1 BASIC LAWS AND DEFINITIONS

The laws of electricity and magnetism are empirical. Fortunately they can
be traced to a few fundamental experiments and definitions, which are re-
viewed in the following sections. The rationalized MKS system of units is
used.

B.1.1 Coulomb's Law, Electric Fields and Forces

Coulomb found that when a charge q (coulombs) is brought into the vicinity
ofa distribution of chargedensity p,(r') (coulombs per cubic meter), as shown
in Fig. B.1.1, a force of repulsion f (newtons) is given by

f = qE, (B. 1.1)

where the electricfield intensity E (volts per meter) is evaluated at the position

= qE

Fig. B.1.1 The force f on the point charge q in the vicinity of charges with density Pe(r')
is represented by the electric field intensity E times q, where E is found from (B.1.2).
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r of the charge q and determined from the distribution of charge density by

E(r) = e(r') - r) dV'. (B.1.2)
4E(r) =e r - r'lj

In the rationalized MKS system of units the permittivity eo of free space is

qo = 8.854 x 10- 12 
_ -- X 10- 9 F/m. (B.1.3)

367r

Note that the integration of (B.1.2) is carried out over all the charge dis-
tribution (excluding q), hence represents a superposition (at the location r
of q) of the electric field intensities due to elements of charge density at the
positions r'.

A I- U h Ud s an exampp , suppose tlatiLe cargeL
distribution p,(r') is simply a point charge
Q (coulombs) at the origin (Fig. B.1.2);
that is,

p,= Q 6(r'), (B.1.4)

where 6(r') is the deltafunction defined by

qQI,.1__W4Xeo-]-r

0(r')= 0, r' # 0, Fig. B.1.2 Coulomb's law for point
charges Q (at the origin) and q (at

S6(r') dV' = 1. (B.1.5) the position r).

For the charge distribution of (B.1.4) integration of (B.1.2) gives

E(r) = Qr (B.1.6)
4rreo Ir"

Hence the force on the point charge q, due to the point charge Q, is from
(B. 1.1)

f = qQr (B.1.7)
4 ore0 Irl "

This expression takes the familiar form of Coulomb's law for the force of
repulsion between point charges of like sign.

We know that electric charge occurs in integral multiples of the electronic
charge (1.60 x 10- 19 C). The charge density p., introduced with (B.1.2), is
defined as

Pe(r) = lim - I q,, (B.1.8)
av-o 61 i
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where 6V is a small volume enclosing the point r and Z, q, is the algebraic
sum of charges within 6V. The charge density is an example of a continuum
model. To be valid the limit 6V -- 0 must represent a volume large enough to
contain a large number of charges q1,yet small enough to appear infinitesimal
when compared with the significant dimensions of the system being analyzed.
This condition is met in most electromechanical systems.

For example, in copper at a temperature of 200C the number density of
free electrons available for carrying current is approximately 1023 electrons/
cm3. If we consider a typical device dimension to be on the order of 1 cm,
a reasonable size for 6V would be a cube with 1-mm sides. The number of
electrons. in 6 Vwould be 10", which certainly justifies the continuum model.

The force, as expressed by (B.I.1), gives the total force on a single test
charge in vacuum and, as such, is not appropriate for use in a continuum
model of electromechanical systems. It is necessary to use an electricforce
density F (newtons per cubic meter) that can be found by averaging (B.1.1)
over a small volume.

F = lim = lim I qjEj (B.1.9)
av-o 6V 6v-o 6V

Here q, represents all of the charges in 6V, E, is the electric field intensity
acting on the ith charge, and f, is the force on the ith charge. As in the charge
density defined by (B.1.8), the limit of (B.1.9) leads to a continuum model if
the volume 6V can be defined so that it is small compared with macroscopic
dimensions of significance, yet large enough to contain many electronic
charges. Further, there must be a sufficient amount of charge external to the
volume 6V that the electric field experienced by each of the test charges is
essentially determined by the sources of field outside the volume. Fortunately
these requirements are met in almost all physical situations that lead to useful
electromechanical interactions. Because all charges in the volume 6 V ex-
perience essentially the same electric field E, we use the definition of free
charge density given by (B.1.8) to write (B.1.9) as

F = p,E. (B.1.10)

Although the static electric field intensity E can be computed from (B.1.2),
it is often more convenient to state the relation between charge density and
field intensity in the form of Gauss's law:

soEE.n da = Pe dV. (B.1.11)

In this integral law n is the outward-directed unit vector normal to the surface
S, which encloses the volume V. It is not our purpose in this brief review to
show that (B.1.11) is implied by (B.1.2). It is helpful, however, to note that
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Fig. B.1.3 A hypothetical sphere of radius r encloses a charge Q at the origin. The integral
of eoE, over the surface of the sphere is equal to the charge Q enclosed.

in the case of a point charge Q at the origin it predicts the same electric
field intensity (B.1.6) as found by using (B.1.2). For this purpose the surface
S is taken as the sphere of radius r centered at the origin, as shown in Fig.
B.1.3. By symmetry the only component of E is radial (E7 ), and this is con-
stant at a given radius r. Hence (B.1.11) becomes

47rrEEo= Q. (B.1.12)

Here the integration of the charge density over the volume V enclosed by S
is the total charge enclosed Q but can be formally taken by using (B. 1.4) with
the definition provided by (B.1.5). It follows from (B.1.12) that

E, = 4rEr, (B.1.13)

a result that is in agreement with (B.1.6).
Because the volume and surface of integration in (B.1.11) are arbitrary,

the integral equation implies a differential law. This is found by making use
of the divergence theorem*

A . nda = V. AdV (B.1.14)
to write (B.1.11) as

fv(VU .oE - P) dV = 0. (B.1.15)

* For a discussion of the divergence theorem see F. B. Hildebrand, Advanced Calculusfor
Engineers, Prentice-Hall, New York, 1949, p. 312.
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Since the volume of integration is arbitrary, it follows that

V. - E = P. (B.1.16)

From this discussion it should be apparent that this diferential form of
Gauss's law is implied by Coulomb's law, with the electric field intensity
defined as a force per unit charge.

B.1.2 Conservation of Charge

Experimental evidence supports the postulate that electric charge is con-
served. When a negative charge appears (e.g., when an electron is removed
from a previously neutral atom), an equal positive charge also appears (e.g.,
the positive ion remaining when the electron is removed from the atom).

We can make a mathematical statement of this postulate in the following
way. Consider a volume V enclosed by a surface S. If charge is conserved, the
net rate of flow of electric charge out through the surface S must equal the
rate at which the total charge in the volume V decreases. The current density
J (coulombs per square meter-second) is defined as having the direction of
flow of positive charge and a magnitude proportional to the net rate of flow
of charge per unit area. Then the statement of conservation of charge is

dJtnda =- p dV. (B.1.17)
s dt v

Once again it follows from the arbitrary nature of S (which is fixed in space)
and the divergence theorem (B.1.14) that

V . J + P = 0. (B.1.18)
at

It is this equation that is used as a differential statement of conservation of
charge.

To express conservation of charge it has been necessary to introduce a
new continuum variable, the current density J. Further insight into the relation
between this quantity and the charge density p, is obtained by considering a
situation in which two types of charge contribute to the current, charges
q, with velocity v, and charges q_ with velocity v . The current density J,
that results from the flow of positive charge is

J+ = lim I q+iv+i (B.1.19)
r-o 6V i

If we define a charge-average velocity v+ for the positive charges as

I q+iv+i

V+ -= q+ (B.1.20)
i

~_~~LII__LYIII___I~ -^------11I- ~
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and the density p, of positive charges from (B.1.8) as

P+ = lim 1 1 q+,, (B.1.21)
r--o06V

we can write the current density of (B.1.19) as

J+ = pv+. (B.1.22)

Similar definitions for the charge-average velocity v_ and charge density p_ of

negative charges yields the component of current density

J_ = p_v_. (B.1.23)

The total current density J is the vector sum of the two components

J = J+ + J_. (B.1.24)

Now consider the situation of a material that contains charge densities p,
and p_ which have charge-average velocities v+ and v_ with respect to the
material. Assume further that the material is moving with a velocity v with
respect to an observer who is to measure the current. The net average
velocities of positive and negative charges as seen by the observer are v+ + v
and v + v, respectively. The current density measured by the observer is
then from (B.1.24) J = (pv+ + p_v_) + pv, (B.1.25)

where the net charge density p, is given by

Pe = P+ + P-. (B.1.26)

The first term of (B.1.25) is a net flow of charge with respect to the material
and is normally called a conduction current. (It is often described by Ohm's
law.) The last term represents the transport of net charge and is conven-
tionally called a convection current. It is crucial that net flow of charge be
distinguished from flow of net charge. The net charge may be zero but a
current can still be accounted for by the conduction term. This is the case in
metallic conductors.

B.1.3 Ampire's Law, Magnetic Fields and Forces

The magneticflux density B is defined to express the force on a current
element i dl placed in the vicinity of other currents. This element is shown in
Fig. B.1.4 at the position r. Then, according to Amp6re's experiments, the
force is given byf = i dl x B, (B.1.27)
where

BP=o J x (r - r')4 7 I - r(B.1.28)
4w rv (r -r' 3
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Fig. B.1.4 A distribution of current density J(r') produces a force on the current element
idl which is represented in terms of the magnetic flux density B by (B.1.27) and (B.1.28).

Hence the flux density at the position r of the current element i dl is the super-
position of fields produced by currents at the positions r'. In this expression
the permeability of free space go is

Pl0 = 47r x 10- ' H/m. (B.1.29)

As an example, suppose that the distribution of current density J is com-
posed of a current I (amperes) in the z direction and along the z-axis, as shown
in Fig. B.1.5. The magnetic flux density at the position r can be computed

Fig. B.1.5 A current I (amperes) along the z-axis produces a magnetic field at the position
r of the current element idl.

_·
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from (B.1.28), which for this case reduces to*

B = (r - zi) dz (B.1.30)
47r r - z'i(

Here the coordinate of the source current I is z', as shown in Fig. B.1.5,
whereas the coordinate r that designates the position at which B is evaluated
can be written in terms of the cylindrical coordinates (r, 0, z). Hence (B.1.30)
becomes

B = oIio +S sin P-/(z - z')2 + r'  ,B -- - - ' r dz', (B.1.31)
47 J. [(z - z')

2 
+ r±]2

where, from Fig. B.1.5, sin y = r/• (z - z') 2 + r2 . Integration on z' gives
the magnetic flux density

B =- ,Ii. (B.1.32)
2nr

It is often more convenient to relate the magnetic flux density to the current
density J by the integral of Ampere's law for static fields, which takes the form

cB . dl = uo J . n da. (B.1.33)

Here C is a closed contour of line integration and S is a surface enclosed by
C. We wish to present a review of electromagnetic theory and therefore we
shall not embark on a proof that (B.1.33) is implied by (B.1.28). Our purpose
is served by recognizing that (B.1.33) can also be used to predict the flux
density in the situation in Fig. B.1.5. By symmetry we recognize that B is
azimuthally directed and independent of 0 and z. Then, if we select the
contour C in a plane z equals constant and at a radius r, as shown in Fig.
B.1.5, (B.1.33) becomes

27TrB o = p~o. (B.1.34)

Solution of this expression for B, gives the same result as predicted by (B.1.28).
[See (B.1.32).]

The contour C and surface S in (B.1.33) are arbitrary and therefore the
equation can be cast in a differential form. This is done by using Stokes'
theoremt,

SA.dl- = fn.(V x A)da, (B.1.35)

* Unit vectors in the coordinate directions are designated by i. Thus iz is a unit vector in
the z-direction.
f See F. B. Hildebrand, Advanced Calculus for Engineers, Prentice-Hall, New York, 1949,
p. 318.

~_
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to write (B.1.33) as

(Vx B - o0 J)'nda = 0, (B.1.36)

from which the differential form of Amphre's law follows as

V x B = pJ. (B.1.37)

So far the assumption has been made that the current J is constant in time.
Maxwell's contribution consisted in recognizing that if the sources p, and
J (hence the fields E and B) are time varying the displacement current o8E/fat
must be included on the right-hand side of (B.1.37). Thus for dynamic fields
Amphre's law takes the form

V x B = o0J + uo- (B.1.38)
at

This alteration of (B.1.37) is necessary if conservation of charge expressed
by (B.1.18) is to be satisfied. Because the divergence of any vector having the
form V x A is zero, the divergence of (B.1.38) becomes

V J + oE) = 0. (B.1.39)

Then, if we recall that p. is related to E by Gauss's law (B.1.16), the con-
servation of charge equation (B.1.18) follows. The displacement current in
(B. 1.38) accounts for the rate of change of p. in (B. 1.18).

We shall make considerable use of Ampere's law, as expressed by (B.1.38),
with Maxwell's displacement current included. From our discussion it is
clear that the static form of this law results from the force law of interaction
between currents. The magnetic flux density is defined in terms of the force
produced on a current element. Here we are interested primarily in a con-
tinuum description of the force, hence require (B.1.27) expressed as a force
density. With the same continuum restrictions implied in writing (B.I.10),
we write the magnetic force density (newtons per cubic meter) as

F = J x B. (B.1.40)

In view of our remarks it should be clear that this force density is not some-
thing that we have derived but rather arises from the definition of the flux
density B. Further remarks on this subject are found in Section 8.1.

B.1.4 Faraday's Law of Induction and the Potential Difference

Two extensions of static field theory are required to describe dynamic fields.
One of these, the introduction of the displacement current in Amp6re's
law, was discussed in the preceding section. Much of the significance of this

_~____ I_
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generalization stems from the apparent fact that an electric field can lead to
the generation of a magnetic field. As a second extension of static field theory,
Faraday discovered that, conversely, time-varying magnetic fields can lead
to the generation of electric fields.

Faraday'slaw of induction can be written in the integral form

fE dl = -d B n da, (B.1.41)

where again C is a contour that encloses the surface S. The contour and
surface are arbitrary; hence it follows from Stokes' theorem (B.1.35) that
Faraday's law has the differential form

aB
V x E = (B.1.42)at

Note that in the static case this expression reduces to V x E = 0, which is,
in addition to Gauss's law, a condition on the static electric field. That this
further equation is consistent with the electric field, as given by (B.1.2), is
not shown in this review. Clearly the one differential equation represented by
Gauss's law could not alone determine the three components of E.

In regions in which the magnetic field is either static or negligible the electric
field intensity can be derived as the gradient of a scalar potential 0:

E = -- VO. (B.1.43)

This is true because the curl of the gradient is zero and (B.1.42) is satisfied.
The difference in potential between two points, say a and b, is a measure of
the line integral of E, for

E* dl---- V. dl = O.a- b. (B.1.44)

The potential difference Oa - #b is referred to as the voltage of point a with
respect to b. If there is no magnetic field B in the region of interest, the
integral of (B.1.44) is independent of path. In the presence of a time-varying
magnetic field the integral of E around a closed path is not in general zero,
and if a potential is defined in some region by (B. 1.43) the path of integration
will in part determine the measured potential difference.

The physical situation shown in Fig. B.1.6 serves as an illustration of the
implications of Faraday's law. A magnetic circuit is excited by a current
source I(t) as shown. Because the magnetic material is highly permeable, the
induced flux density B(t) is confined to the cross section A which links a
circuit formed by resistances Ra and R, in series. A cross-sectional view of the
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I(t)

Highly permeable
, magnetic

material

C.C.C

+/(d) I Area A \
Va Ra e B(t) 1Rb Vb

(b)

Fig. B.1.6 (a) A magnetic circuit excited by I(t) so that flux AB(t) links the resistive loop
(b)a cross-sectional view of the loop showing connection of the voltmeters.

circuit is shown in Fig. B.1.6b, in which high impedance voltmeters va and
Vb are shown connected to the same nodes. Under the assumption that no
current is drawn by the voltmeters, and given the flux density B(t), we wish
to compute the voltages that would be indicated by v, and b,.

Three contours ofintegration C are defined in Fig. B. 1.6b and are used with
Faraday's integral law (B.1.41). The integral of E around the contour C, is
equal to the drop in potential across both of the resistances, which carry the
same current i. Hence, since this path encloses a total flux AB(t), we have

i(Ra + Rb) - [AB(t)]. (B.1.45)
dt

The paths of integration Ca and Cb do not enclose a magnetic flux; hence for
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these paths (B.1.41) gives

v,=--iRa - R- d [AB(t)] for C.,
R, + R, dt

(B.1.46)

Vb = iRb =- R b d [AB(t)] for Cb, (B.1.47)
Ra + Rb dt

where the current i is evaluated by using (B. 1.45). The most obvious attribute
of this result is that although the voltmeters are connected to the same nodes
they do not indicate the same values. In the presence of the magnetic induction
the contour of the voltmeter leads plays a role in determining the voltage
indicated.

The situation shown in Fig. B. 1.6 can be thought of as a transformer with a
single turn secondary. With this in mind, it is clear that Faraday's law plays
an essential role in electrical technology.

The divergence of an arbitrary vector V x A is zero. Hence the divergence
of (B. 1.42) shows that the divergence of B is constant. This fact also follows
from (B.1.28), from which it can be shown that this constant is zero. Hence
an additional differential equation for B is

V B = 0. (B.1.48)

Integration of this expression over an arbitrary volume V and use of the
divergence theorem (B. 1.14) gives

B - n da = 0. (B.1.49)

This integral law makes more apparent the fact that there can be no net
magnetic flux emanating from a given region of space.

B.2 MAXWELL'S EQUATIONS

The generality and far-reaching applications of the laws of electricity and
magnetism are not immediately obvious; for example, the law of induction
given by (B. 1.42) was recognized by Faraday as true when applied to a con-
ducting circuit. The fact that (B.1.42) has significance even in regions of
space unoccupied by matter is a generalization that is crucial to the theory of
electricity and magnetism. We can summarize the differential laws introduced
in Section B.1 as

V .Eo• = pe,

V - J + p__- 0,at
aEoEVx B = PoJ + Io
at

aBVxE=--
at'

V. B =0.

(B.2.1)

(B.2.2)

(B.2.3)

(B.2.4)

(B.2.5)
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Taken together, these laws are called Maxwell's equationsin honor of the
man who was instrumental in recognizing that they have a more general
significance than any one of the experiments from which they originate. For
example, we can think of a time-varying magnetic flux that induces an electric
field according to (B.2.4) even in the absence of a material circuit. Similarly,
(B.2.3) is taken to mean that even in regions of space in which there is no
circuit, hence J = 0, a time-varying electric field leads to an induced magnetic
flux density B.

The coupling between time-varying electric and magnetic fields, as pre-
dicted by (B.2.1 to B.2.5), accounts for the existence of electromagnetic
waves, whether they be radio or light waves or even gamma rays. As we might
guess from the electromechanical origins of electromagnetic theory, the
propagation of electromagnetic waves is of secondary importance in the
study of most electromechanical phenomena. This does not mean that
electromechanical interactions are confined to frequencies that are low
compared with radio frequencies. Indeed, electromechanical interactions of
practical significance extend into the gigahertz range of frequencies.

To take a mature approach to the study of electromechanics it is necessary
that we discriminate at the outset between essential and nonessential aspects
of interactions between fields and media. This makes it possible to embark
immediately on a study of nontrivial interactions. An essential purpose of
this section is the motivation of approximations used in this book.

Although electromagnetic waves usually represent an unimportant con-
sideration in electromechanics and are not discussed here in depth, they are
important to an understanding of the quasi-static approximations that are
introduced in Section B.2.2. Hence we begin with a brief simplified discussion
of electromagnetic waves.

B.2.1 Electromagnetic Waves

Consider fields predicted by (B.2.3) and (B.2.4) in a region of free space in
which J = 0. In particular, we confine our interest to situations in which the
fields depend only on (x, t) (the fields are one-dimensional) and write the
y-component of (B.2.3) and the z-component of (B.2.4)

aB aE,
ax Poco at , (B.2.6)

aE___ = _ B. (B.2.7)
ax at

This pair of equations, which make evident the coupling between the dynamic
electric and magnetic fields, is sufficient to determine the field components
B. and E,. In fact, if we take the time derivative of (B.2.6) and use the resulting
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expression to eliminate B, from the derivative with respect to x of (B.2.7),
we obtain

a2E, 1 a2E, - (B.2.8)
ax 2 C2 at 2 '

where

1
c 3 x 108 (m/sec).

This equation for E, is called the wave equation because it has solutions in the
form of

E,(x, t) = E,(x - ct) + E_(x + ct). (B.2.9)

That this is true may be verified by substituting (B.2.9) into (B.2.8). Hence
solutions for E, can be analyzed into components E1 and E_ that represent
waves traveling, respectively, in the +x- and -x-directions with the velocity
of light c, given by (B.2.8). The prediction of electromagnetic wave propaga-
tion is a salient feature of Maxwell's equations. It results, as is evident from
the derivation, because time-varying magnetic fields can induce electric
fields [Faraday's law, (B.2.7)] while at the same time dynamic electric fields
induce magnetic fields [Ampire's law with the displacement current included
(B.2.6)]. It is also evident from the derivation that if we break this two-way
coupling by leaving out the displacement current or omitting the magnetic
induction term electromagnetic waves are not predicted.

Electromechanical interactions are usually not appreciably affected by the
propagational character of electromagnetic fields because the velocity of
propagation c is very large. Suppose that we are concerned with a system
whose largest dimension is I. The time l/c required for the propagation of a
wave between extremes of the system is usually short compared with charac-
teristic dynamical times of interest; for example, in a device in which I = 0.3 m
the time l/c equals 10- 1 sec. If we were concerned with electromechanical
motions with a time constant of a microsecond (which is extremely short
for a device characterized by 30 cm), it would be reasonable to ignore the
wave propagation. In the absence of other dynamic effects this could be done
by assuming that the fields were established everywhere within the device
instantaneously.

Even though it is clear that the propagation of electromagnetic waves has
nothing to do with the dynamics of interest, it is not obvious how to go about
simplifying Maxwell's equations to remove this feature of the dynamics. A
pair of particular examples will help to clarify approximations made in the
next section. These examples, which are considered simultaneously so that
they can be placed in contrast, are shown in Fig. B.2.1.
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Fig. B.2.1 Perfectly conducting plane-parallel electrodes driven at x = -- : (a) i(t) =
io cos wt; (b) v(t) = v, cos wt.

A pair of perfectly conducting parallel plates has the spacing s which is
much smaller than the x-z dimensions I and d. The plates are excited at
x = -1 by

a current source a voltage source

i(t) = io cos wt (amperes). (B.2.10a) v(t) = vo cos wot (volts). (B.2. 10b)

At x = 0, the plates are terminated in

a perfectly conducting short circuit an open circuit.
plate.

If we assume that the spacing s is small enough to warrant ignoring the
effects of fringing and that the driving sources at x = -1 are distributed
along the z-axis, the one-dimensional fields B, and E, predicted by (B.2.6)
and (B.2.7) represent the fields between the plates. Hence we can think of
the current and voltage sources as exciting electromagnetic waves that propa-
gate along the x-axis between the plates. The driving sources impose con-
ditions on the fields at x = -1. They are obtained by

integrating (B.1.33) around the
contour C (Fig. B.2.2a) which en-
closes the upper plate adjacent to the
current source. (The surface S en-
closed by C is very thin so that neg-
ligible displacement current links the
loop).

B,(-1, t) = -ouK = -

integrating the electric field between
(a) and (b) in Fig. B.2.2b to relate
the potential difference of the volt-
age source to the electric field
intensity E,(-l, t).

oi(t) 0 /E, dy = -sE,(- 1, t) = v(t).

(B.2.11a) (B.2.1 1b)

_~_111·___ 
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Surface current
K= ild A/m

S y v(t) C

x=-1 =
(a) x = -

(b)

Fig. B.2.2 Boundary conditions for the systems in Fig. B.2.1

Similar conditions used at x = 0 give the boundary conditions

E,(O, t) = 0 (B.2.12a) I B,(0, t) = 0 (B.2.12b)

It is not our purpose in this chapter to become involved with the formalism
of solving the wave equation [or (B.2.6) and (B.2.7)] subject to the boundary
conditions given by (B.2.11) and (B.2.12). There is ample opportunity to
solve boundary value problems for electromechanical systems in the text,
and the particular problem at hand forms a topic within the context of trans-
mission lines and waveguides. For our present purposes, it suffices to guess
solutions to these equations that will satisfy the appropriate boundary con-
ditions. Then direct substitution into the differential equations will show that
we have made the right choice.

E sin ot sin (cox/c)Ey = -- o
deoc cos (ol/c)

(B.2.13a)

B = --Poiocos cot cos(ow/c)C

d cos (o/llc)

(B.2.14a)

vo cos ot cos (oxZ/c)
s cos (ool/c)

(B.2.13b)

B =-- vo sin wt sin (o.z/c)

cs cos (c,l/c)

(B.2.14b)

Note that at x = -1 the boundary conditions B.2.11 are satisfied, whereas at
x = 0 the conditions of (B.2.12) are met. One way to show that Maxwell's
equations are satisfied also (aside from direct substitution) is to use tri-
gometric identities* to rewrite these standing wave solutions as the super-
position of two traveling waves in the form of (B.2.9). Our solutions are
sinusoidal, steady-state solutions, so that with the understanding that the
amplitude of the field at any point along the x-axis is varying sinusoidally with
time we can obtain an impression of the dynamics by plotting the instantaneous
amplitudes, as shown in Fig. B.2.3. In general, the fields have the sinusoidal
distribution along the x-axis of a standing wave. From (B.2.13 to B.2.14) it

* For example in (B.2.13a) sin wt sin (cox/c) E- {{cos [w(t - x/c)] - cos [w(t + x/c)]}.
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n
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X=--

Fig. B.2.3 Amplitude of the electric field intensity and magnetic flux density along the
x-axis of the parallel-plate structures shown in Fig. B.2.1 For these plots ol/c = 31r/4.

is clear that as a function of time the electric field reaches its maximum am-
plitude when B, = 0 and vice versa. Hence the amplitudes of E, and B,
shown in Fig. B.2.3 are for different instants of time. The fields near x = 0
do not in general have the same phase as those excited at x = -1. If, however,
we can make the approximation that times of interest (which in this case are
l/o) are much longer than the propagation time I/c,

1l/c wl
=- <1.

1/w C
(B.2.15)

The sine functions can then be approximated by their arguments (which are
small compared with unity) and the cosine functions are essentially equal to
unity. Hence, when (B.2.15) is satisfied, the field distributions (B.2.13) and
(B.2.14) become

i, sin cot IN
deoc

Bz,-• _oio cos wt
d

(B.2.16a) E, -- - cos ct, (B.2.16b)

(B.2.17a) B - V sin ct 1•)s (B.2.17b)

The distribution of field amplitudes in this limit is shown in Fig. B.2.4. The
most significant feature of the limiting solutions is that

the magnetic field between the
short-circuited plates has the same
distribution as if the excitation
current were static.

the electric field between the open-
circuited plates has the same dis-
tribution as if the excitation voltage
were constant.

I 1__1_

1
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x= -L x= -1

Fig. B.2.4 The distribution of field amplitudes between the parallel plates of Fig. B.2.1 in
the limit in which (wl/c) << 1.

Note that the fields as they are excited at x = -I retain the same phase every-
where between the plates. This simply reflects the fact that according to the
approximate equations there is no time lag between an excitation at x = --
and the field response elsewhere along the x-axis. It is in this limit that the
ideas of circuit theory are applicable, for if we now compute

the voltage v(t) at x = -- I

v(t) = -sE,(--, t) (B.2.18a)

we obtain the terminal equation for
an inductance

d
v = L- (i, cos rt),

dt
(B.2.19a)

where the inductance L is

L= slot.
d

the current i(t) at x = -I
d

110

(B.2.18b)

we obtain the terminal equation for
a capacitance

d
i(t) = C - (vo cos wt), (B.2.19b)

dt
where the capacitance C is

C = dl
S

A comparison of the examples will be useful for motivating many of the
somewhat subtle ideas introduced in the main body of the book. One of the
most important points that we can make here is that even though we have
solved the same pair of Maxwell's equations (B.2.6) and (B.2.7) for both
examples, subject to the same approximation that collc << 1 (B.2.15), we
have been led to very different physical results. The difference between these
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two examples arises from the boundary condition at x = 0. In the case of

a short circuit a static excitation
leads to a uniform magnetic field
but no electric field. The electric
field is generated by Faraday's law
because the magnetic field is in fact
only quasi-static and varies slowly
with time.

an open circuit a static excitation
results in a uniform electric field
but no magnetic field. The magnetic
field is induced by the displacement
current in Ampere's law because
the electric field is, in fact, only
quasi-static and varies slowly with
time.

B.2.2 Quasi-Static Electromagnetic Field Equations

As long as we are not interested in phenomena related to the propagation
of electromagnetic waves, it is helpful to recognize that most electromechanical
situations are in one of two classes, exemplified by the two cases shown in
Fig. B.2.1. In the situation in which the plates are short-circuited together
(Fig. B.2.1a) the limit wl/c <K 1 means that the displacement current is of
negligible importance. A characteristic of this system is that with a static
excitation a large current results; hence there is a large static magnetic field.
For this reason it exemplifies a magnetic field system. By contrast, in the case
in which the plates are open-circuited, as shown in Fig. B.2.1b, a static
excitation gives rise to a static electric field but no magnetic field. This
example exemplifies an electric field system, in which the magnetic induction
of Faraday's law is of negligible importance. To emphasize these points
consider how we can use these approximations at the outset to obtain the
approximate solutions of (B.2.19). Suppose that the excitations in Fig. B.2.1
were static. The fields between the plates are then independent of x and given

E, = 0,

Bz = Po
d

V
(B.2.20a) E, = - -

(B.2.21a) B, = 0.

(B.2.20b)

(B.2.21b)

Now suppose that the fields vary slowly with time [the systems are quasi-
static in the sense of a condition like (B.2.15)]. Then i and v in these equations
are time-varying, hence

B. is a function of time.
From Faraday's law of induction as
expressed by (B.2.7)

E= d, di (B.2.22a)
ax d dt

E, is a function of time.
From Amp&re's law, as expressed
by (B.2.6)

S _ o dv (B.2.22b)
ax s dt

-CI~-~·-----l~.
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Now the right-hand side of each of these equations is independent of z;
hence they can be integrated on x. At the same time, we recognize that

E,(O, t) = 0, (B.2.23a) B,(0, t) = 0, (B.2.23b)

so that integration gives

E~ = L ox di (B.2.24a) Bý = j°osx do (B.2.24b)
d dt s dt

Recall how the terminal voltage and current are related to these field quantities
(B.2.18) and these equations become

di dv
v(t) = L d i (B.2.25a) i(t) = C - , (B.2.25b)

dt ' dt'

where again the inductance L and capacitance C are defined as following
(B.2.19). Hence making these approximations at the outset has led to the
same approximate results as those found in the preceding section by computing
the exact solution and taking the limits appropriate to wl/c << 1.

The simple example in Fig. B.2.1 makes it plausible that Maxwell's
equations can be written in two quasi-static limits appropriate to the analysis
of two major classes of electromechanical interaction:

Magnetic Field Systems

V x B = •soJ, (B.2.26a)

aB
Vx E = - (B.2.27a)

at'
V - B = 0, (B.2.28a)

V - J = 0, (B.2.29a)

Electric Field Systems

aE
V x B = /uoJ + •o0 oE L-, (B.2.26b)

V x E = 0, (B.2.27b)

V - EE = Pe, (B.2.28b)

V.J + P.,= 0. (B.2.29b)
at

Here the displacement current has been omitted from Ampere's law in the
magnetic field system, whereas the magnetic induction has been dropped from
Faraday's law in the electric field system. Note that if the displacement
current is dropped from (B.2.26a) the charge density must be omitted from
the conservation of charge equation (B.2.29a) because the latter expression
is the divergence of (B.2.26a).

We have not included Guass's law for the charge density in the magnetic
field system or the divergence equation for B in the electric field system
because in the respective situations these expressions are of no interest. In
fact, only the divergence of (B.2.26b) is of interest in determining the dynamics
of most electric field systems and that is (B.2.29b).
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It must be emphasized that the examples of Fig. B.2.1 serve only to motivate
the approximations introduced by (B.2.26 to B.2.29). The two systems of
equations have a wide range of application. The recognition that a given
physical situation can be described as a magnetic field system, as opposed to
an electric field system, requires judgment based on experience. A major
intent of this book is to establish that kind of experience.

In the cases of Fig. B.2.1 we could establish the accuracy of the approxi-
mate equations by calculating effects induced by the omitted terms; for
example, in the magnetic field system of Fig. B.2.1a we ignored the dis-
placement current to obtain the quasi-static solution of (B.2.21a) and
(B.2.24a). We could now compute the correction Bc6 to the quasi-static
magnetic field induced by the displacement current by using (B.2.6), with E
given by (B.2.24a). This produces

aBC 1 o2%ox daiB__. u,2Ex d2i (B.2.30)
ax d dt2"

Because the right-hand side of this expression is a known function of z,
it can be integrated. The constant of integration is evaluated by recognizing
that the quasi-static solution satisfies the driving condition at x = -1;
hence the correction field B.C must be zero there and

B,= 2 - 12) d2 i (B.2.31)
2d dt2

Now, to determine the error incurred in ignoring this field we take the ratio
of its largest value (at x = 0) to the quasi-static field of (B.2.21a):

IBc•I = 1j2 Id2i/dt 2i (B.2.32)
IB.I 2c2  jil

If this ratio is small compared with 1, the quasi-static solution is adequate.
It is evident that in this case the ratio depends on the time rate of change of
the excitation. In Section B.2.1, in which i = i, cos cot, (B.2.32) becomes

IBSI 1 2
=- - <- 1, (B.2.33)

which is essentially the same condition given by (B.2.15).
Once the fields have been determined by using either the magnetic field or

the electric field representation it is possible to calculate the effects of the
omitted terms. This procedure results in a condition characterized by (B.2.33).
For this example, if the device were 30 cm long and driven at 1 MHz (this

___· ~
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is an extremely high frequency for anything 30 cm long to respond to electro-
mechanically) (B.2.33) becomes

(B.2.34)
1 1\c x21- =27r2x 10-68( 1
2 2 3 x 108

and the quasi-static approximation is extremely good.
It is significant that the magnetic and electric field systems can be thought

of in terms of their respective modes of electromagnetic energy storage. In
the quasi-static systems the energy that can be attributed to the electro-
magnetic fields is stored either in the magnetic or electric field. This can be
seen by using (B.2.26 to B.2.27) to derive Poynting's theorem for the con-
servation of electromagnetic energy. If the equations in (B.2.27) are multi-
plied by B/do and subtracted from the equations in (B.2.26) multiplied by
E/lo, it follows that

E B
-VxB ---. VxE=E.J
go go

B aB
+-.-. (B.2.35a)

Po at

E B-. VxB--.VxE=E.J
go Mo

+ EoE . . (B.2.35b)
at

Then, because of a vector identity,* these equations take the form

+ - -!.B (B.2.36a) + coE. E). (B.2.36b)
at 2 go at 2

Now, if we integrate these equations over a volume V enclosed by a surface
S, the divergence theorem (B.1.14) gives

ExB-. nda = E.JdV+ a wdV,
s Po v at v

1B-Bw -
2 Wo
2 gzo

1
(B.2.38a) w = - oE E.

2

(B.2.37)

(B.2.38b)

The term on the left in (B.2.37) (including the minus sign) can be interpreted
as the flux of energy into the volume V through the surface S. This energy
is either dissipated within the volume V, as expressed by the first term on
the right, or stored in the volume V, as expressed by the second term. Hence

* V. (A x C) = C V x A - A -V x C.

where
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(w) can be interpreted as an electromagnetic energy density. The electro-
magnetic energy of the magnetic field system is stored in the magnetic field
alone. Similarly, an electric field system is one in which the electromagnetic
energy is stored in the electric field.

The familiar elements of electrical circuit theory illustrate the division of
interactions into those defined as magnetic field systems and those defined
as electric field systems. From the discussion in this and the preceding section
it is evident that the short-circuited plates in Fig. B.2.1 constitute an inductor,
whereas the open-circuited plates can be represented as a capacitor. This
fact is the basis for the development of electromechanical interactions
undertaken in Chapter 2. From this specific example it is evident that the
magnetic field system includes interactions in which we can define lumped-
parameter variables like the inductance, but it is not so evident that this model
also describes the magnetohydrodynamic interactions of a fluid and some
plasmas with a magnetic field and the magnetoelastic interactions of solids
in a magnetic field, even including electromechanical aspects of microwave
magnetics.

Similarly, the electric field system includes not only the electromechanics
of systems that can be modeled in terms of circuit concepts like the capaci-
tance but ferroelectric interactions between solids and electric fields, the
electrohydrodynamics of a variety of liquids and slightly ionized gases in an
electric field, and even the most important oscillations of an electron beam.
Of course, if we are interested in the propagation of an electromagnetic
wave through an ionospheric plasma or through the slightly ionized wake
of a space vehicle, the full set of Maxwell's equations must be used.

There are situations in which the propagational aspects of the electro-
magnetic fields are not of interest, yet neither of the quasi-static systems is
appropriate. This is illustrated by short-circuiting the parallel plates of Fig.
B.2.1 at x = 0 by a resistive sheet. A static current or voltage applied to the
plates at x = -1 then leads to both electric and magnetic fields between
the plates. If the resistance of the sheet is small, the electric field between the
plates is also small, and use of the exact field equations would show that
we are still justified in ignoring the displacement current. In this case the
inductance of Fig. B.2.1a is in series with a resistance. In the opposite ex-
treme, if the resistance of the resistive sheet were very high, we would still be
justified in ignoring the magnetic induction of Faraday's law. The situation
shown in Fig. B.2. Ib would then be modeled by a capacitance shunted by a
resistance. The obvious questions are, when do we make a transition from the
first case to the second and why is not this intermediate case of more interest
in electromechanics?

The purpose of practical electromechanical systems is either the conversion
of an electromagnetic excitation into a force that can perform work on a

____·____··_ II
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mechanical system or the reciprocal generation of electromagnetic energy
from a force of mechanical origin. From (B.1.10) and (B.1.40) there are two
fundamental types of electromagnetic force. Suppose that we are interested
in producing a force of electrical origin on the upper of the two plates in
Fig. B.2.1. We have the option of imposing a large current to interact with
its induced magnetic field or of using a large potential to create an electric
field that would interact with induced charges on the upper plate. Clearly,
we are not going to impose a large potential on the plates if they are termin-
ated in a small resistance or attempt to drive a large current through the
plates with an essentially open circuit at x = 0. The electrical dissipation in
both cases would be prohibitively large. More likely, if we intended to use the
force J x B, we would make the resistance as small as possible to minimize
the dissipation of electric power and approach the case of Fig. B.2.1a. The
essentially open circuit shown in Fig. B.2.1b would make it possible to use a
large potential to create a significant force of the type peE without undue
power dissipation. In the intermediate case the terminating resistance could
be adjusted to make the electric and magnetic forces about equal. As a
practical matter, however, the resulting device would probably melt before
it served any useful electromechanical function. The power dissipated in
the termination resistance would be a significant fraction of any electric
power converted to mechanical form.*

The energy densities of (B.2.38) provide one means of determining when
the problem shown in Fig. B.2.1 (but with a resistive sheet terminating the
plates at x = 0) is intermediate between a magnetic and an electric field
system. In the intermediate case the energy densities are equal

1 lB.B
SEE E = B B (B.2.39)
2 2 Po

Now, if the resistive sheet has a total resistance of R, then from (B.2.18a)
applied at x = 0

Es = -iR. (B.2.40)
The current can be evaluated in terms of the magnetic field at x = 0 by using
(B.2.18b): Eys = B, dR (B.2.41)

Po

Substitution of the electric field, as found from this expression into (B.2.39),
gives

_ (RdJ = 1 B,o0B (R)= - - (B.2.42)
2 sIo 2 Po

* It is interesting that for this particular intermediate case the electric force tends to pull
the plates together, whereas the magnetic force tends to push them apart. Hence,
because the two forces are equal in magnitude, they just cancel.
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Hence, if the energy densities are equal, we obtain the following relation
among the physical parameters of the system:

dR
(o .(B.2.43)

It would be a digression to pursue this point here, but (B.2.43) is the con-
dition that must be satisfied if an electromagnetic wave launched between the
plates at x = -- l is to be absorbed, without reflection, by the resistive sheet*;
that is, the intermediate case is one in which all the power fed into the system,
regardless of the frequency or time constant, is dissipated by the resistive
sheet.

B.3 MACROSCOPIC MODELS AND CONSTITUENT RELATIONS

When solids, liquids, and gases are placed in electromagnetic fields, they
influence the field distribution. This is another way of saying that the force
of interaction between charges or between currents is influenced by the
presence of media. The effect is not surprising because the materials are
comprised of charged particles.

Problems of physical significance can usually be decomposed into parts
with widely differing scales. At the molecular or submolecular level we may
be concerned with the dynamics of individual charges or of the atoms or
molecules to which they are attached. These systems tend to have extremely
small dimensions when compared with the size of a physical device. On
the macroscopic scale we are not interested in the detailed behavior of the
microscopic constituents of a material but rather only a knowledge of the
average behavior of variables, since only these averages are observable on a
macroscopic scale. The charge and current densities introduced in Section B. I
are examples of such variables, hence it is a macroscopic picture of fields and
media that we require here.

There are three major ways in which media influence macroscopic electro-
magnetic fields. Hence the following sections undertake a review of mag-
netization, polarization, and conduction in common materials.

B.3.1 Magnetization

The macroscopic motions of electrons, even though associated with
individual atoms or molecules, account for aggregates of charge and current

* The propagation of an electromagnetic wave on structures of this type is discussed in
texts concerned with transmission lines or TEM wave guide modes. For a discussion of
this matching problem see R. B. Adler, L. J. Chu, and R. M. Fano, Electromagnetic
Energy Transmission and Radiation, Wiley, New York, 1960, p. 111, or S. Ramo, J. R.
Whinnery, and T. Van Duzer, Fields and Waves in Communication Electronics, Wiley, New
York, p. 27.
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(when viewed at the macroscopic level) that induce electric and magnetic
fields. These field sources are not directly accessible; for example, the equiv-
alent currents within the material cannot be circulated through an external
circuit. The most obvious sources of magnetic field that are inaccessible in
this sense are those responsible for the field of a permanent magnet. The
earliest observations on magnetic fields involved the lodestone, a primitive
form of the permanent magnet. Early investigators such as Oersted found
that magnetic fields produced by a permanent magnet are equivalent to
those induced by a circulating current. In the formulation of electromagnetic
theory we must distinguish between fields due to sources within the material
and those from applied currents simply because it is only the latter sources
that can be controlled directly. Hence we divide the source currents into

free currents (with the density J,) and magnetization currents (with the
density Jm). Amphre's law then takes the form

V x ( = Jm + JP. (B.3.1)

By convention it is also helpful to attribute a fraction of the field induced by
these currents to the magnetization currents in the material. Hence (B.3.1) is
written as

V x - M = Jf, (B.3.2)

where the magnetization density M is defined by

V x M = J,. (B.3.3)

Up to this point in this chapter it has been necessary to introduce only two
field quantities to account for interactions between charges and between
currents. To account for the macroscopic properties of media we have now
introduced a new field quantity, the magnetization density M, and in the
next section similar considerations concerning electric polarization of media
lead to the introduction of the polarization density P. It is therefore apparent
that macroscopic field theory is formulated in terms of four field variables.
In our discussion these variables have been E, B, M, and P. An alternative
representation of the fields introduces the magneticfield intensity H, in our
development defined as

H = B _M. (B.3.4)

From our definition it is clear that we could just as well deal with B and H
as the macroscopic magnetic field vectors rather than with B and M. This is
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particularly appealing, for then (B.3.2) takes the simple form

V x H = J,. (B.3.5)

When the source quantities J, and M are specified independently, the
magnetic field intensity H (or magnetic flux density B) can be found from the
quasi-static magnetic field equations. A given constant magnetization density
corresponds to the case of the permanent magnet. In most cases, however,
the source quantities are functions of the field vectors, and these funtional
relations, called constituent relations, must be known before the problems
can be solved. The constituent relations represent the constraints placed on
the fields by the internal physics of the media being considered. Hence it is
these relations that make it possible to separate the microscopic problem
from the macroscopic one of interest here.

The simplest form of constituent relation for a magnetic material arises
when it can be considered electrically linear and isotropic. Then the per-
meability I is constant in the relation

B = pH. (B.3.6)

The material is isotropic because B is collinear with H and a particular
constant (a) times H, regardless of the direction of H. A material that
is homogeneous and isotropic will in addition have a permeability p that does
not vary with position in the material. Another way of expressing (B.3.6)
is to define a magnetic susceptibility X. (dimensionless) such that

M = XZ,H, (B.3.7)
where

P = Po(l + Xm). (B.3.8)
Magnetic materials are commonly found with B not a linear function of H
and the constitutive law takes the general form

B = B(H). (B.3.9)

We deal with some problems involving materials of this type, but with few
exceptions confine our examples to situations in which B is a single-valued
function of H. In certain magnetic materials in some applications the B-H
curve must include hysteresis and (B.3.9) is not single-valued.*

The differential equations for a magnetic field system in the presence of
moving magnetized media are summarized in Table 1.2.

B.3.2 Polarization

The force between a charge distribution and a test charge is observed to
change if a dielectric material is brought near the region occupied by the test

* G. R. Slemon, MagnetoelectricDevices, Wiley, New York, 1966, p. 115.
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charge. Like the test charge, the charged particles which compose the di-
electric material experience forces due to the applied field. Although these
charges remain identified with the molecules of the material, their positions
can be distorted incrementally by the electric force and thus lead to a polariza-
tion of the molecules.

The basic sources of the electric field are charges. Hence it is natural to
define a polarizationcharge density p, as a source of a fraction of the electric
field which can be attributed to the inaccessible sources within the media.
Thus Gauss's law (B.1.16) is written

V - EoE = Pf + P,, (B.3.10)

where the free charge density p, resides on conducting electrodes and other
parts of the system capable of supporting conduction currents. The free
charges do not remain attached to individual molecules but rather can be
conducted from one point to another in the system.

In view of the form taken by Gauss's law, it is convenient to identify a
field induced by the polarization charges by writing (B.3.10) as

V. (EOE + P) = pf, (B.3.11)

where the polarizationdensity P is related to the polarization charge density
by

pV = -V - P. (B.3.12)

As in Section B.3.1, it is convenient to define a new vector field that serves
as an alternative to P in formulating the electrodynamics of polarized media.
This is the electric displacement D, defined as

D = E0E + P (B.3.13)

In terms of this field, Gauss's law for electric fields (B.3.11) becomes

V. D = pf. (B.3.14)

The simple form of this expression makes it desirable to use D rather than P
in the formulation of problems.

If a polarization charge model is to be used to account for the effects of
polarizable media on electric fields, we must recognize that the motion of
these charges can lead to a current. In fact, now that two classes of charge
density have been identified we must distinguish between two classes of current
density. The free current density J, accounts for the conservation of free
charge so that (B.1.18) can be written as

V - J, + p_ = 0. (B.3.15)at
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In view of (B.3.11), this expression becomes

V J,+ tV (eoE + P) = 0. (B.3.16)at
Now, if we write Ampire's law (B.2.26b) as

VX + J + oE, (B.3.17)

where J, is a current density due to the motion of polarization charges, the
divergence of (B.3.17) must give (B.3.16). Therefore

V .J,+ (-V- P) = 0. (B.3.18)
at

which from (B.3.12) is an expression for the conservation of polarization
charge. This expression does not fully determine the polarization current
density J,, because in general we could write

BP
J, = + Vx A, (B.3.19)at

where A is an arbitrary vector, and still satisfy (B.3.18). At this point we
could derive the quantity A (which would turn out to be P x v, where v is the
velocity of the polarized medium). It is important, however, to recognize that
this represents an unnecessary digression. In the electric field system the mag-
netic field appears in only one of the equations of motion-Ampire's law. It
does not appear in (B.2.27b) to (B.2.29b), nor will it appear in any constitutive
law used in this book. For this reason the magnetic field serves simply as a
quantity to be calculated once the electromechanical problem has been solved.
We might just as well lump the quantity A with the magnetic field in writing
Amptre's law. In fact, if we are consistent, the magnetic field intensity H
can be defined as given by

aD
V x H = J, + - (B.3.20)

at
with no loss of physical significance. In an electric field system the magnetic
field is an alternative representation of the current density J,. A review of the
quasi-static solutions for the system in Fig. B.2.1b illustrates this point.

In some materials (ferroelectrics) the polarization density P is constant.
In most common dielectrics, however, the polarization density is a function of
E. The simplest constituent relation for a dielectric is that of linear and
isotropic material,

P = o-XE, (B.3.21)
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where X, is the dielectric susceptibility (dimensionless) that may be a function
of space but not of E. For such a material we define the permittivity e as

S= o(1 + Xe). (B.3.22)

and then write the relation between D and E as [see (B.3.13)]

D = EE. (B.3.23)

This mathematical model of polarizable material is used extensively in this
book.

The differential equations for the electric field system, in the presence of
moving polarized media, are summarized in Table 1.2.

B.3.3 Electrical Conduction

In both magnetic and electric field systems the conduction process accounts
for the free current density J, in a fixed conductor. The most common model
for this process is appropriate in the case of an isotropic, linear, conducting
medium which, when stationary, has the constituent relation (often called
Ohm's law)

J, = aE. (B.3.24)

Although (B.3.24) is the most widely used mathematical model of the con-
duction process, there are important electromechanical systems for which it
is not adequate. This becomes apparent if we attempt to derive (B.3.24),
an exercise that will contribute to our physical understanding of Ohm's law.

In many materials the conduction process involves two types of charge
carrier (say, ions and electrons). As discussed in Section B.1.2, a macro-
scopic model for this case would recognize the existence of free charge den-
sities p+ and p_ with charge average velocities v, and v_, respectively. Then

J, = pv, + p_v_. (B.3.25)

The problem of relating the free current density to the electric field intensity
is thus a problem in electromechanics in which the velocities of the particles
carrying the free charge must be related to the electric fields that apply forces
to the charges.

The charge carriers have finite mass and thus accelerate when subjected to a
force. In this case there are forces on the positive and negative carriers,
respectively, given by (B.1.10) (here we assume that effects from a magnetic
field are ignorable):

F+ = p+E, (B.3.26)

(B.3.27)F_ = p_E.
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As the charge carriers move, their motion is retarded by collisions with other
particles. On a macroscopic basis the retarding force of collisions can be
thought of as a viscous damping force that is proportional to velocity. Hence
we can picture the conduction process in two extremes. With no collisions
between particles the electric force densities of (B.3.26 and B.3.27) continually
accelerate the charges, for the only retarding forces are due to acceleration
expressed by Newton's law. In the opposite extreme a charge carrier suffers
collisions with other particles so frequently that its average velocity quickly
reaches a limiting value, which in view of (B.3.26 and B.3.27) is proportional
to the applied electric field. It is in this second limiting case that Ohm's law
assumes physical significance. By convention mobilities y, and It_ which
relate these limiting velocities to the field E are defined

v = ýP+E, (B.3.28)

v = /_E. (B.3.29)

In terms of these quantities, (B.3.25) becomes

Jf = (p+,a+ + p __)E. (B.3.30)

It is important to recognize that it is only when the collisions between carriers
and other particles dominate the accelerating effect of the electric field that
the conduction current takes on a form in which it is dependent on the in-
stantaneous value of E. Fortunately, (B.3.30) is valid in a wide range of
physical situations. In fact, in a metallic conductor the number of charge
carriers is extremely high and very nearly independent of the applied electric
field. The current carriers in most metals are the electrons, which are detached
from atoms held in the lattice structure of the solid. Therefore the negatively
charged electrons move in a background field of positive charge and, to a good
approximation, p, = -p_. Then (B.3.30) becomes

J = aE, (B.3.31)

where the conductivity is defined as

p+(P+ - _). (B.3.32)

The usefulness of the conductivity as a parameter stems from the fact that
both the number of charges available for conduction and the net mobility
(essentially that of the electrons) are constant. This makes the conductivity
essentially independent of the electric field, as assumed in (B.3.24).*

* We assume here that the temperature remains constant. A worthwhile qualitative descrip-
tion of conduction processes in solids is given in J. M. Ham and G. R. Slemon, Scientific
Basis of Electrical Engineering, Wiley, New York, 1961, p. 453.

I I_ I~~ 



_ __

Review of Electromagnetic Theory

In some types of material (notably slightly ionized gases) which behave
like insulators, the conduction process cannot be described simply by Ohm's
law. In such materials the densities of charge carriers and even the mobilities
may vary strongly with electric field intensity.

B.4 INTEGRAL LAWS

The extensive use of circuit theory bears testimony to the usefulness of the
laws of electricity and magnetism in integral form. Physical situations that
would be far too involved to describe profitably in terms of field theory have
a lucid and convenient representation in terms of circuits. Conventional
circuit elements are deduced from the integral forms of the field equations.
The description of lumped-parameter electromechanical systems, as under-
taken in Chapter 2, requires that we generalize the integral laws to
include time-varying surfaces and contours of integration. Hence it is natural
that we conclude this appendix with a discussion of the integral laws.

B.4.1 Magnetic Field Systems

Faraday's law of induction, as given by (B.1.42), has the differential form

0B
Vx E = (B.4.1)

at
This expression can be integrated over a surface S enclosed by the contour
C. Then, according to Stokes's theorem,

Edl = -- n da. (B.4.2)t is 8at
Now, if S and C are fixed in space, the time derivative on the right can be
taken either before or after the surface integral of B • n is evaluated. Note

that RB . n da is only a function of time. For this reason (B.1.41) could be

written with the total derivative outside the surface integral. It is implied in
the integral equation (B.1.41) that S is fixed in space.

Figure B.4.1 shows an example in which it is desirable to be able to use
(B.4.2), with S and C varying in position as a function of time. The contour
C is a rectangular loop that encloses a surface S which makes an angle 0(t)
with the horizontal. Although the induction law is not limited to this case, the
loop could comprise a one-turn coil, in which case it is desirable to be able
to use (B.4.2) with C fixed to the coil. The integral law of induction would be
much more useful if it could be written in the form

E' . dl = - A B -n da. (B.4.3)
c dt fs
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B(t)

-e- x

Fig. B.4.1 Contour C enclosing a surface S which varies as a function of time. The
rectangular loop links no magnetic flux when 0 = 0, r, . . . .

In this form the quantity on the right is the negative time rate of change of
the flux linked by the contour C, whereas E' is interpreted as the electric field
measured in the moving frame of the loop. An integral law of induction in
the form of (B.4.3) is essential to the lumped-parameter description of
magnetic field systems. At this point we have two choices. We can accept
(B.4.3) as an empirical r~sult of Faraday's original investigations or we can
show mathematically that (B.4.2) takes the form of (B.4.3) if

E'= E + vx B, (B.4.4)

where v is the velocity of dl at the point of integration. In any case this topic
is pursued in Chapter 6 to clarify the significance of electric and magnetic
fields measured in different frames of reference.

The mathematical connection between (B.4.2) and (B.4.3) is made by
using the integral theorem

d t A n da = M + (V -A )v n da + (Axv). dl, (B.4.5)
dt JSJf , L[at j] JOc

where v is the velocity of S and C and in the case of (B.4.3), A -- B. Before
we embark on a proof of this theorem, an example will clarify its significance.

Example B.4.1. The coil shown in Fig. B.4.1 rotates with the angular deflection O(t) in
a uniform magnetic flux density B(t), directed as shown. We wish to compute the rate of

change of the flux linked by the coil in two ways: first by computing B -n da and takingchangetakin
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its derivative [the left-hand side of (B.4.5)], then by using the surface and contour integra-
tions indicated on the right-hand side of (B.4.5). This illustrates how the identity allows us
to carry out the surface integration before rather than after the time derivative is taken.
From Fig. B.4.1 we observe that

LB n da = -B 0(t)2adsin 0, (a)

so that the first calculation gives

JfB •nda = -- 2adsin0 d -- Bo2adcos0 (b)Wat-d" (b)

To evaluate the right-hand side of (B.4.5) observe that V •B = 0 and [from (a)]

-f. nda = -2adsin 0dB . (c)
S at dt

The quantity B x v is collinear with the axis of rotation in Fig. B.4.1; hence there is no
contribution to the line integral along the pivoted ends of the loop. Because both the
velocity v = i4a (dO/dt) and line elements dl are reversed in going from the upper to the
lower horizontal contours, the line integral reduces to twice the value from the upper
contour.

dO

BBx v.dl= -2Boadcos 0 (d)

From (c) and (d) it follows that the right-hand side of (B.4.5) also gives (b). Thus, at least
for this example, (B.4.5) provides alternative ways of evaluating the time rate of change
of the flux linked by the contour C.

The integral theorem of (B.4.5) can be derived by considering the de-
forming surface S shown at two instants of time in Fig. B.4.2. In the incre-
mental time interval At the surface S moves from S, to S 2, and therefore by

-v At x dl

Fig. B.4.2 When t = t, the surface S enclosed by the contour C is as indicated by S, and
C1. By the time t = t + At this surface has moved to S2, where it is enclosed by the contour
C2.



·_ ____ · ___ ___.

Appendix B

definition

-d A.n da = lim -t A t n da - 1 A n da . (B.4.6)
dt s -o At s2 _Ats l It

Here we have been careful to show that when the integral on S, is evaluated
t = t + At, in contrast to the integration on S, which is carried out when
t = t.

The expression on the right in (B.4.6) can be evaluated at a given instant
in time by using the divergence theorem (B.1.14) to write

fv.'AdV f A 'nda -- A nda -At A x dl (B.4.7)

for the volume V traced out by the surface S in the time At. Here we have
used the fact that -v At x dl is equivalent to a surface element n da on the
surface traced out by the contour C in going from C, to C2 in Fig. B.4.2.
To use (B.4.7) we make three observations. First, as At -- 0,

fA +A .nda_ A -nda + A At.nda +-. (B.4.8)
2t+t s2 f at t

Second, it is a vector identity that

A. vx dl = Ax v. dl. (B.4.9)

Third, an incremental volume dV swept out by the surface da is essentially
the base times the perpendicular height or

dV = Atv * n da. (B.4.10)

From these observations (B.4.7) becomes

At (V - A)v n da - A n da At • - n da

- sA n da -At eA x v. dl. (B.4.11)

This expression can be solved for the quantity on the right in (B.4.6) to give

d A.n da = lim[ (V A)v + a- ] da + A x xdl.
dt f- ft

(B.4.12)

The limit of this expression produces the required relation (B.4.5).
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Use of (B.4.5) to express the right-hand side of (B.4.2) results in

f-. nda=- Bdtnda- V.B)v n da - B v)dl.
sg t dt (aV. n fcB

(B.4.13)

Because V . B = 0, (B.4.2) then reduces to (B.4.3), with E' given by (B.4.4).
The integral laws for the magnetic field system are summarized in Table 1.2

at the end of Chapter 1. In these equations surfaces and contours of
integration can, in general, be time-varying.

B.4.2 Electric Field System

Although the integral form of Faraday's law can be taken as an empirical
fact, we require (B.4.5) to write Ampere's law in integral form for an electric
field system. If we integrate (B.3.20) over a surface S enclosed by a contour C,
by Stokes's theorem it becomes

aDH - dl = fJ .n da . n da. (B.4.14)

As with the induction law for the magnetic field system, this expression can
be generalized to include the possibility of a deforming surface S by using
(B.4.13) with B -- D to rewrite the last term. If, in addition, we use (B.3.14)
to replace V - D with p,, (B.4.14) becomes

H' dl = J'- n da + f D. n da, (B.4.15)

where

H'= H - vx D, (B.4.16)

Jf = Jf - pv. (B.4.17)

The fields H' and Ji can be interpreted as the magnetic field intensity and free
current density measured in the moving frame of the deforming contour.
The significance of these field transformations is discussed in Chapter 6.
Certainly the relationship between Jf (the current density in a frame moving
with a velocity v) and the current density J, (measured in a fixed frame),
as given by (B.4.17), is physically reasonable. The free charge density appears
as a current in the negative v-direction when viewed from a frame moving at
the velocity v. If was reasoning of this kind that led to (B. 1.25).

As we have emphasized, it is the divergence of Amphre's differential law
that assumes the greatest importance in electric field systems, for it accounts
for conservation of charge. The integral form of the conservation of charge
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Fig. B.4.3 The sum of two surfaces S1 and S2 "spliced" together at the contour to enclose
the volume V.

equation, including the possibility of a deforming surface of integration, is
obtained by using (B.4.15). For this purpose integrations are considered over
two deforming surfaces, S, and S2, as shown in Fig. B.4.3. These surfaces
are chosen so that they are enclosed by the same contour C. Hence, taken
together, S, and S2 enclose a volume V.

Integration of (B.4.15) over each surface gives

H' . dl== J. n da + D *n da. (B.4.18)

H' . dl = JfJ'•n da +d D n da. (B.4.19)

Now, if n is defined so that it is directed out of the volume V on each surface,
the line integral enclosing S, will be the negative of that enclosing S2. Then
the sum of (B.4.18 and B.4.19) gives the desired integral form of the conser-
vation of charge equation':

J . n da + d1 dfV= 0. (B.4.20)

In writing this expression we have used Gauss's theorem and (B.3.14) to
show the explicit dependence of the current density through the deforming
surface on the enclosed charge density.

The integral laws for electric field systems are summarized in Table 1.2 at
the end of Chapter 1.

B.5 RECOMMENDED READING

The following texts treat the subject of electrodynamics and provide a
comprehensive development of the fundamental laws of electricity and mag-
netism.



Review of Electromagnetic Theory

R. M. Fano, L. J. Chu, and R. B. Adler, ElectromagneticFields, Energy, and
Forces, Wiley, New York, 1960; J. D. Jackson, Classical Electrodynamics,
Wiley, New York, 1962: S. Ramo, J. R. Whinnery, and T. Van Duzer,
Fields and Waves in Communication Electronics, Wiley, New York, 1965;
W. K. H. Panofsky and M. Phillips, Classical Electricity and Magnetism,
Addison-Wesley, Reading, Mass., 1956; J. A. Stratton, Electromagnetic
Theory, McGraw-Hill, New York, 1941.

Many questions arise in the study of the effects of moving media on electric
and magnetic fields concerning the macroscopic representation of polarized
and magnetized media; for example, in this appendix we introduced the
fields E and B as the quantities defined by the force law. Then P and M (or
D and H) were introduced to account fof the effects of polarization and
magnetization. Hence the effect of the medium was accounted for by equiv-
alent polarization charges p, and magnetization currents J,. Other represen-
tations can be used in which a different pair of fundamental vectors is taken,
as defined by the force law (say, E and H), and in which the effects of media
are accounted for by an equivalent magnetic charge instead of an equivalent
current. If we are consistent in using the alternative formulations of the field
equations, they predict the same physical results, including the force on
magnetized and polarized media. For a complete discussion of these matters
see P. Penfield, and H. Haus, Electrodynamics of Moving Media, M.I.T.
Press, Cambridge, Mass., 1967.
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Appendix C

SUMMARY OF PARTS I AND II

AND USEFUL THEOREMS

IDENTITIES

AxB.C= AB x C,

Ax (B x C)= B(A-C)- C(A.B)

V( + V) = vO + vP,

V. (A + B) = V .A + V .B,

Vx (A + B)=Vx A-+ V x B,

V(o,) = 0 Vv, + v' V•,

V. p(A)= A. Vy + pV. -A,

V.(A x B)= B.V x A - A V x B,

V . V = V0,

V *V x A=0,

VxV = 0,

V x (V x A)= V(V -A) - V 2A,

(V x A)' x A = (A V)A - JV(A - A),

V(A B) = (A - V)B + (B . V)A + Ax (V x B) + B x (V x A)

V x (#A)= V# x A + OV x A,

V x (A x B) = A(V -B) - B(V - A) + (B. V)A - (A. V)B.

Cl

· _I ___·_________



THEOREMS

V. - dl = 5 - 4,.

Divergence theorem A • n da = fV A dV

Stokes's theorem AA dl = (V x A) . n da nd

b
CA
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INDEX

Numbers preceded by letters are Appendix references. Appendices A, B, and C are in
Part One; Appendices D and E, Part Two; and Appendices F and G, Part Three.

Acceleration, centrifugal fluid, 729
centripetal, 59
Coriolis, 59
Eulerian variable, 727
fluid, 727
instantaneous, 45

Accelerator, electric field, 776
MHD, 825
particle, 608

Acoustic delay lines, 480
Acoustic waves, compressional in solid, 673

dilatational in solid, 673
elastic media, 671
fluid, 544
gases, 845
guided, 679, 683, 693
magnetic fields and, 846
membrane, 509
shear elastic, 675
string, 509
thin beam, 683
thin rod, 487, 681

Acyclic machine, 286
Air-gap magnetic fields, 114
Alfv6n velocity, 763
Alfv6n waves, 759

compressible fluids and, 841
cylindrical geometry, 767
effect of conductivity on, 772
mechanical analogue to, 766
nature of, 764
numerical example of, 771
resonances and, 771
standing, 771
torsional, 765

Amortisseur winding, 164
Ampere, 1
Ampere's law, B6, C3, E3, G3

dynamic, B9
electromechanical, 304
example of, B7
integral form of, B36, C3, E3, G3
magnetization and, B26

Amplifying wave, coupled system and, 608
electric field induced, 605
evanescent wave and, 607
space-time behavior of, 604, 606

Angular frequency, 513
Angular momentum, 248
Angular velocity, 47
Applications of electromechanics, 2
Approximations, electromechanical, 206
Armature, ac machine, 120

de machine, 141, 293
Armuture reaction, 297

Astrophysics and MHD, 552
Attenuation, microwave, 561
Average power converted, salient pole ma-

chine, 155
smooth-air-gap machine, 124

Beats in space, 595
Bernoulli's equation, 738

example of, 752
Bessel functions, 408

roots of, 409
Bias, linear transducer operation and, 201

piezoelectricity and, 711
Bode plot, 206
Boundary, analytic description of, 269, 668

examples of moving, 269, 276, 279, 280,
364, 392, 397, 451, 460, 563, 574, 605,
627, 704, 783

moving, 267
well defined, 267

Boundary condition, Alfv6n waves, 769
causality and, 491, 592, 607
conservation of charge, 279, 374, 376, 394,

399
convection and, 267, 587, 598
dispersion and, 618
elastic media, 671, 676
electric displacement, 278
electric field intensity, 275, 278
electric field systems, 277, E6, G6
electromagnetic field, 267
electromechanical, 668
field transformations and, 275
geometric effect of, 280
initial condition and, 513
inviscid fluid, 752
inviscid fluid slip, 740
longitudinal and transverse, 680
magnetic field intensity, 273, 280
magnetic field systems, 270, E6, G6
magnetic field system current, 272
magnetic fluid, 774
magnetic flux density, 271
MHD, 769
motion and, 267, 491, 587, 592, 598, 607
string and membrane, 522
summary of electromagnetic, 268, E6, G6
thin rod, 493
viscous fluid, 873

Boundary layer dynamics, 602
Brake, induction, 134

MHD, 744
Breakdown, electrical, 576, 782
Breakdown strength of air, 576

I __I__·~



2 Ind,

Brush, dc machine, 292
liquid-metal, 316, 878
metal-graphite, 883

Bullard's equation, 336

Cables, charge relaxation in high voltage, 380
nonuniform conductivity in, 380

Capability curve of synchronous generator,
170

Capacitance, electrical linearity and, 30
example for calculation of, 32, 33
generalized, 28
quasi-static limit and, B18

Causality, boundary conditions and, 592,
607

condition of, 491, 592, 607
Center of mass, 46
Channel, variable-area MHD, 751
Characteristic dynamical times, excitation

and, 332
material motion and, 332

Characteristic equation, 181
Characteristics, wave fronts and, 618

wave propagation and, 488, 490
waves with convection and, 586

Charge, B 1
conservation of, B5
net flow and flow of net, B6
test, 12
total, 29

Charge-average velocity, B5
Charge carriers, effect of motion on, 290
Charge conservation, differential form of,

B5
integral form of, B5

Charge density, B1
effect of motion on, 290, 334, 382, 387,

388, 392, 397, 401
free, 7, B28
magnetic field system and, 288

Charge distribution, effect of motion on,
334, 382, 387, 388, 392, 397, 401

Charge relaxation, 330, 370
electrical transient, 372
examples of, 372, 375
excitation frequency and, 378, 400
frequency in frame of material and, 399
general equation for, 371
lumped-parameter models for, 331, 375
magnetic diffusion and, 401
motion sinusoidal excitation with, 392
moving frame and, 381
nonuniform properties and, 378
sources of charge and, 372
spatially and temporally periodic fields

and, 397
steady motion and, 380
thunder storms, and, 388
traveling wave in a moving material and,

397
uniform properties and, 372

Choking, constant area flow, 824

ex

Circuit breaker, transducer for a, 22
Circuit theory, 16
Coefficient, of sliding friction, 42

of static friction, 42
Coefficients of viscosity, independence of,

870
Coenergy, 73, E5, G5

electrical linearity and, 76
potential well motions and, 217

Coenergy density, electric field system, 464,
714

magnetic field system, 456
Collector rings, 120
Commutation in dc machines, 296
Commutator, 140

of dc machines, 292
Commutator bars, 142
Commutator machines, 140

ac generator, 329
brake operation of, 306
compound wound, 310
electrical power input of, 303
equation for armature of, 300
equation for field of, 297
equation of motion for, 297
generator operation of, 306
linear amplifier, 304
mechanical power output of, 303
motor operation of, 306
operation with alternating currents and,

312
properties of, 303
separately excited, 306
series excitation of, 309
shunt excitation of, 309
speed curves of, shunt excited, 310
speed regulation of, 307
summary of equations for, 303
torque-current curves of series excited, 311
torque-speed curves of shunt excited, 310
transient performance of, 306

Compensating networks, 198
Compensation in feedback loops, 198
Compressibility constant, 845
Compressibility of fluid, 725
Compressible fluids, 813

electromechanical coupling to, 820
Conduction, electrical, 7, B30

in electric field system, effect of motion
on, 371

heat, 815
motion and electrical, 284, 289

Conduction current, B6
absence of net free charge and, 374

Conduction machine, MHD, 740
variable area, MHD, 753
see also Commutator machine; DC machines

Conductivity, air and water, 388
electrical, 7
electrical surface, 7
mechanical strength and, 698
nonuniform, 380
numerical values of, 345, 377
Conductor, electric field perfect, 29, 213,
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390, 400, 401
magnetic field perfect, 18, 211, 223,

354, 401, 563
Confinement, electromechanical, 4, 407
Conservation, of charge, B5

displacement current and, B9
integral form of, B37

of energy, 63, 66
continuum, 456, 464
continuum coupling and, 455
equation, steady state, 820
fluid, 814
incompressible fluid, 757
integral form of, 819

of flux, lumped-parameter, 211, 220
perfectly conducting fluid and, 761

of mass, differential law of, 731
example of, 730
fluid, 729, 814
integral form of, 730

of momentum, fluid, 731, 814
integral form of, 733, 734
interfacial, 671
stress and, 733

Conservative systems, 213
Constant charge dynamics, 205, 213
Constant-current constant-flux dynamics,

220
Constant-current constraint, continuum, 628
Constant-current dynamics, 220
Constant flux, lumped and continuum, 212
Constant flux dynamics, fluid, 761

lumped-parameter, 211, 220
Constant of the motion, fluid, 738
Constant voltage dynamics, 204, 212, 226
Constituent relations, electromagnetic, 283,

B25
fluid, 815
fluid mechanical, 735
materials in motion and, 283
moving media in electric field systems

and, 289
moving media in magnetic field systems

and, 284
Constitutive law, mobile ion, 778

piezoelectric slab, 712
Contact resistance, MHD, 750
Contacts, sliding, 42
Continuity of space, 35
Continuum and discrete dynamics, 553
Continuum descriptions, 727
Continuum electromechanical systems, 251
Contour, deforming, 11, B32
Control, dc machines and, 291
Controlled thermonuclear reactions, 354
Convection, dynamical effect of, 584

and instability, 593
Convection current, B6
Convective derivative, 259, 584

charge relaxation and, 381
example of, 729
magnetic diffusion and, 357
see also Substantial derivative

Convective second derivative, 585
Coordinate system, inertial, 254
Corona discharge, 776, 782
Corona wind, demonstration of, 782
Couette flow, plane, 876
Coulomb's law, B1

point charge, B2
Coupling, electromechanical, 15, 60
Coupling to continuous media at terminal

pairs, 498
Coupling network, lossless and conserva-

tive, 63
Creep, failure in solids by, 704
Critical condition for instability, 568
Crystals, electromechanics of, 651

piezoelectric materials as, 711
Current, balanced two-phase, 113

conduction, B6
convection, B6
displacement, B9
electric field system, 29
free, B25
magnetization, B25
polarization, B29

Current density, B5
diffusion of, 343
distribution of, 332
free, 7

Current law, Kirchhoff's, 16
Currents as functions of flux linkages, 26
Current transformation, examples of, 226
Cutoff condition, 559
Cutoff frequency, 559

elastic shear waves, 695
membrane, 623

Cutoff waves, 556
electromagnetic plasma, 638
membrane, 623
power flow and, 637
thin beam, 684
see also Evanescent wave

Cyclic energy conversion processes, 79
Cylindrical coordinates, stress components

in, 437
'Cylindrical modes, 648

Damped waves, driven response of, 577
Damper, linear ideal, 40

lumped element, 36, 40
square-law, 43, 229

Damper winding in rotating machine, 164
Damping, magnetic fluid, 750

negative, 198
spatial decay and, 560
wave dynamics with, 576

Damping constant, 41
Damping frequency, 577
DC generator, magnetic saturation in, 310

self-excited, 310
DC machines, 140; see also Commutator

machines
DC motor, self-excited, 308

series excited, 311



Index

starting torque of, 310
torque-speed curves for, 306

Definitions, electromagnetic, 7, B1
Deforming contours of integration, 10, 18,

262, B32, 761
Degree of freedom, 49
Delay line, acoustic, 480

acoustic magnetostrictive, 708
fidelity in, 501
mechanical, 499
shear waves and, 696

Delta function, B2
Kronecker, 421

Derivative, convective, 259, 584, 726
individual, 728
particle, 728
Stokes, 728
substantial, 259, 584, 728
total, 728

Dielectrophoresis, 783
Difference equation, 620
Differential equation, order of, 180

linear, 180
Differential operators, moving coordinates

and, 257
Diffusion, magnetic, 576

magnetic analogous to mechanical, 580
of magnetic field and current, 335

Diffusion equation, 337
Diffusion time constant, 341

numerical values of, 344
Diffusion wave, magnetic, 358

picture of, 581
space-time behavior of, 359

Dilatational motion of fluid, 866
Direction cosines, definition of, 435

relation among, 439
Discrete systems, electromechanics of, 60
Discrete variables, mechanical, 36

summary of electrical, 35
Dispersion equation, absolutely unstable

wire, 567
Alfvyn wave, 769
amplifying wave, 602
convective instability, 602
damped waves, 577
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557
kink instability, 629
magnetic diffusion with motion, 357
membrane, 623
moving wire destabilized by magnetic

field, 602
moving wire stabilized by magnetic

field, 596
ordinary waves, 513

with convection, 594
on wire, 555
on wires and membranes, 513

resistive wall interactions, 609
sinusoidal steady-state, and 514
wire with convection and damping, 609

Displacement, elastic materials, 486
elastic media, 652
lumped parameter systems, 36
one-dimensional, 483
relative, 657
and rotation, 657
and strain, 658
transformation of, 659
translational, 657

Displacement current, B9
Displacement current negligible, B19
Distributed circuits, electromechanical, 651
Divergence, surface, 272

tensor, 422, G9
theorem, B4, C2, E2, G2, G9

Driven and transient response, unstable
system, 569

Driven response, one-dimensional con-
tinuum, 511

unstable wire, 568
Driving function, differential equation, 180

sinusoidal, 181
Dynamics, constant charge, 205, 213

constant current, 220
constant flux, 211, 220
constant voltage, 204, 212, 226
lumped-parameter, 179
reactance dominated, 138, 211, 220, 242,

336, 354, 368, 563
resistance dominated, 138, 209, 233, 242,

336, 354, 368, 503, 583, 611
two-dimensional, 621

Dynamics of continua, x-t plane, 488, 586
omega-k plane, 511, 554

Dynamo, electrohydrodynamic, 388

Eddy currents, 342, 628
Efficiency of induction machine, 134
EHD, 3, 552, 776
EHD pump, demonstration of, 783
Eigenfrequencies, 518

electromechanical filter, 707
magnetic field, shift of, 562
not harmonic, 563, 684
wire stiffened by magnetic field, 562

Eigenfunction, 518
Eigenmode, 517

complex boundary conditions and, 533
orthogonality of, 341, 519, 520

Eigenvalues, 518
dispersion and, 562
graphic solution for, 526
kink instability, 630

Elastic beam, resonant circuit element, 688
Elastic constants, independence of, 664

numerical values of, 486
Elastic continua, 479
Elastic failure, example of electromechani-

cal, 701
Elastic force density, 667
Elastic guiding structures, 693
Elasticity, summary of equations of, 666, 668
Elasticity equations, steps in derivation of,

651

I
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Elastic material, ideal, 485
linear, 485

Elastic media, 651
electromechanical design and, 697
electromechanics of, 696
equations of motion for, 653
quasi-statics of, 503

Elastic model, membrane, 509
thin rod, 480
wire, 509

Elastic waves, lumped mechanical elements
and, 507

shear, 543
thin rod, 543
see also Acoustic waves

Electrical circuits, 16
Electric displacement, 7, B28
Electric field, effect of motion on, 334,

382, 387, 388, 392, 397, 401
Electric field coupling to fluids, 776
Electric field equations, periodic solution

to, 281
Electric field intensity, 7, B1
Electric field system, B19

differential equations for, 8, E3, G3
integral equations for, 11, E3, G3

Electric field transformation, example of,
262

Faraday's law and, 262
Electric force, field description of, 440

fluids and, 776
stress tensor for, 441

Electric force density, 418, 463
Electric Reynolds number, 335, 370, 381,

383, 395, 399, 401, 575, 780
mobility model and, 780

-Electric shear, induced surface charge and,
400

Electric surface force, 447
Electrification, frictional, 552
Electroelasticity, 553
Electrogasdynamic generator, 782
Electrohydrodynamic orientation, 785
Electrohydrodynamic power generation, 782
Electrohydrodynamics, 3, 552, 776
Electrohydrodynamic stabilization, 786
Electromagnetic equations, differential, 6,

B12, B19, E3, G3
integral, 9, B32, E3, G3
quasi-static, 5, B19, B32, E3, G3
summary of quasi-static, 13, E3, G3

Electromagnetic field equations, summary
of, 268, E6, G6

Electromagnetic fields, moving observer
and, 254

Electromagnetic theory, 5, B1
summary of, 5, E6, G6

Electromagnetic waves, B13
absorption of, B25

Electromechanical coupling, field descrip-
tion of, 251

Electromechanics, continuum, 330
of elastic media, 651
incompressible fluids and, 737

lumped-paramete;, 60
Electron beam, 4, 552, 600, 608

magnetic field confinement of, 601
oscillations of, 600

Electrostatic ac generator, 415
Electrostatic self-excited generator, 388
Electrostatic voltmeter, 94
Electrostriction, incompressibility and, 784
Electrostriction force density, 465
Elements, lumped-parameter electrical, 16

lumped-parameter mechanical, 36
Energy, conservation of fluid, 814

electrical linearity and, 76
electric field system conservation of, 66
internal or thermal gas, 813
internal per unit mass, 815
kinetic per unit mass, 815
magnetic field system conservation of, 63
magnetic stored, 64
potential and kinetic, 214

Energy conversion, cyclic, 79, 110
electromechanical, 79
lumped-parameter systems, 79

Energy density, B23
equal electric and magnetic, B24

Energy dissipated, electromagnetic, B22
Energy flux, B22
Energy function, hybrid, 220
Energy method, 60, 450, E5, G5
Energy relations, summary of, 68, E5, G5
Enthalpy, specific, 820
Equation of motion, elastic media, 668

electromechanical, 84
examples of lumped-parameter, 84, 86
incompressible, irrotational inviscid flow,

738
linearized, 183
lumped mechanical, 49

Equilibrium, of continuum, stability of, 574
dynamic or steady-state, 188
hydromagnetic, 561
kink instability of, 633
potential well stability of, 216
static, 182

Equipotentials, fluid, 752
Eulerian description, 727
Evanescence with convection, 596
Evanescent wave, 556

appearance of, 559
constant flux and, 563
dissipation and, 560
elastic shear, 695
equation for, 557
example of, 556
membrane, 560, 623
physical nature of, 560
signal transmission and, 639
sinusoidal steady-state, 558
thin beam, 684

Evil, 697

Failure in solids, fatigue and creep, 704
Faraday, 1

_·_ _~__~_
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Faraday disk, 286
Faraday's law, B9

deforming contour of integration and, 262,
300, 315, 565, B32, E3, G3

differential form, 6, B10, E3, G3
example of integral, 262, 276, 286, 297,

315
integral form of, 810, B32
perfectly conducting fluid and, 761

Fatigue, failure in solids by, 704
Feedback, continuous media and, 548

stabilization by use of, 193
Ferroelectrics, B29

piezoelectric materials and, 711
Ferrohydrodynamics, 552, 772
Field circuit of dc machine, 141
Field equations, moving media, generalization

of, 252
Fields and moving media, 251
Field transformations, 268, E6, G6;

see also Transformations
Field winding, ac machine, 120

dc machine, 293
Film, Complex Waves I, xi, 516, 559, 571,

634
Film, Complex Waves II, xi, 573, 606
Filter, electromechanical, 2, 200, 480, 704
First law of thermodynamics, 63
Flow, Hartmann, 884

irrotational fluid, 737
laminar, 725
turbulent, 725

Flowmeter, liquid metal, 363
Fluid, boundary condition for, 725

boundary condition on, inviscid, 752
compressibility of, 725
effect of temperature and pressure on, 724
electric field coupled, 776
electromechanics of, 724
ferromagnetic, 552, 772
highly conducting, 760
incompressible, 724, 735
inhomogeneous, 735
internal friction of, 724
inviscid, 724, 725
laminar and turbulent flow of, 725
magnetic field coupling to incompressible,

737
magnetizable, 772
Newtonian, 861
perfectly conducting, 563
solids and, 724
static, 735
viscous, 861

Fluid dynamics, equations of inviscid com-
pressible, 813

equations of inviscid, incompressible, 726
equations of viscous, 871

Fluid flow, accelerating but steady, 753
around a corner, 751
potential, 751
unsteady, 746
variable-area channel, 751

Fluid-mechanical examples with viscosity,
875

Fluid orientation systems, 785
Fluid pendulum, electric-field coupled, 784

magnetic damping of, 750
Fluid pump or accelerator, 776
Fluid stagnation point, 752
Fluid streamlines, 752
Fluid transformer, variable-area channel

as, 756
Flux amplification, plasmas and, 354
Flux conservation, lumped-parameter, 211,

220
magnetic fields and, 352
perfectly conducting gas and, 849

Flux density, mechanical amplification of,
354

Flux linkage, 19, E4, G4
example of, 22, 23

Force, charge, B1
derivative of inductance and, 453
electric origin, 67, E5, G5
electromagnetic, 12
field description of, 418
fluid electric, 776
Lorentz, 12, 255, 419
magnetic, B6
magnetization with one degree of free-

dom, 451
physical significance of electromagnetic,

420
polarized fluids, 463, 572, 784
single ion, 778
surface integral of stress and, 422

Force-coenergy relations, 72, E5, G5
Force density, 7

averaging of electric, 440
averaging of magnetic, 419
divergence of stress tensor and, 422,

427, G9
effect of permeability on, 455, 456
elastic medium, 667
electric, 12, B3, 440, Gil
magnetic field systems, 419, 462, Gl
electromagnetic fluid, 732
electrostriction, 465, G11
fluid mechanical, 732
fluid pressure, 736
free current, 419, Gl
inviscid fluid mechanical, 737
lumped parameter model for, 455
magnetic, 12, 419, B9
magnetization, 448, 450, 462, Gil
magnetostriction, 461, 462, Gil
polarization, 450, 463, Gil
summary of, 448, Gl

Forced related to variable capacitance, 75
Force-energy relations, 67, E5, G5

examples of, 70
Force equations, elastic media, 653
Force of electric origin, 60, E5, G5
Fourier series, 340
Fourier transform, two-dimensional, 617
Fourier transforms and series, diffusion
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equation and, 340
eigenmodes as, 517
linear continuum systems and, 511, 554,

617
linear lumped systems and, 200
mutual inductance expansions and, 108,

153
Frame of reference, laboratory, 254
Free-body diagram, 49
Free charge density, B28
Free charge forces, avoidance of, 787
Frequency, complex, 181, 554

complex angular, 554
natural, 181, 515
voltage tuning of, 704

Frequency conditions for power conversion,
111, 155

Frequency response of transducer, 204
Friction, coulomb, 42
Frozen fields, perfectly conducting gas and,

849
Fusion machines, instability of, 571

Galilean transformation, 584
Gamma rays, B13
Gas, perfect, 816
Gas constant, 816

universal, 816
Gases, definition of, 724

ionized, 813
Gauss's law, differential form of, B5

example of, B4
integral form of, B3
magnetic field, B12
polarization and, B28

Gauss's theorem, tensor form of, 423, G9
Generators, electric field, 778

electrohydrodynamic applications of, 3
hydroelectric, 152
induction, 134
magnetohydrodynamic applications of, 3
MHD, 744
Van de Graaff, 3, 383, 385

Geometrical compatibility, 53
Geophysics and MHD, 552
Gravitational potential, 733
Gravity, artificial electric, 785

force density due to, 732
waves, 794

Group velocity, 614
power flow and, 638
unstable media and, 617

Guiding structures, evanescence in, 560

Hartmann flow, 884
Hartmann number, 887
Heat transfer, EHD and, 552
Homogeneity, B27
Homogeneous differential equation, solu-

tion of, 180
Homopolar machine, 286, 312

armature voltage for, 314
speed coefficient for, 314

summary of equations for, 316
torque for, 316

Hunting transient of synchronous machine, 192
Hydraulic turbine, 151
Hydroelectric generator, 152
Hydromagnetic equilibria, 561, 571
Hysteresis, magnetic, B27

Identities, Cl, El, G1
Impedance, characteristic, 497
Incompressibility, fluid, 735
Incompressible fluids, MHD, 737
Incompressible media, 380
Incremental motions, see Linearization
Independence of variables, 69, 97 (see

Problem 3.16)
Independent variables, change of, 72
Index notation, 421, G7
Inductance, calculation of, 22

electrical linearity and, 20
generalized, 17
quasi-static limit and, B18

Induction, demonstration of motional, 253
law of, B9; see also Faraday's law

Induction brake, 134
Induction generator, 134

electric, 400
Induction interaction, 367
Induction law, integral, B32; see also

Faraday's law
Induction machine, 127

coefficient of coupling for, 135
distributed linear, 368
efficiency of, 134
equivalent circuit for, 131
loading of, 137
lumped-parameter, 368
MHD, 745
power flow in, 133
reactance and resistance dominated, 137
single phase, 138
squirrel-cage, 129
starting of, 137, 139
torque in, 132
torque-slip curve of, 135
variable resistance in, 136
wound rotor, 106

Induction motor, 134
Inductor, 17
Inelastic behavior of solids, 699
Influence coefficients, MHD, 822

variable-area MHD machine, 832
Initial and boundary conditions, 513
Initial conditions, convection and, 587

one-dimensional continuum, 488, 512
Initial value problem, continuum, 488
Instability, absolute, 566

and convective, 604
aeroelastic absolute, 793
convective, 601
dynamic, 192
electrohydrodynamic, 571
engineering limitations from convective, 604

_____·__ ____~
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and equilibrium, example of, 185
failure of a static argument to predict, 192
fluid pendulum, 785
fluid turbulence and, 725
graphical determination of, 184
heavy on light fluid, 571
and initial conditions, 184
kink, 627
linear and nonlinear description of, 216
nonconvective, 566
nonlinearity and, 570
omega-k plot for, 569
plasma, 553
in presence of motion, 583
Rayleigh-Taylor, 571
resistive wall, 576, 608
space-time dependence of absolute, 570
static, 182
in stationary media, 554

Integral laws, electromagnetic, 9, B32, E3,
G3

Integrated electronics, electromechanics
and, 688

Integration contour, deforming, 11, B32
Internal energy, perfect gas, 816
Invariance of equations, 256
Inviscid fluid, boundary condition for, 752
Ion beams, 552
Ion conduction, moving fluid and, 778
Ion drag, efficiency of, 782
Ion-drag phenomena, 776
Ionized gases, acceleration of, 746
Ion source, 776
Isotropic elastic media, 660
Isotropy, B27

Kinetic energy, 214
Kirchhoff's current law, 16
Kirchhoff's laws, 15

electromeclianical coupling and, 84
Kirchhoffs voltage law, 16
Klystron, 601
Kronecker delta function, 421, G7

Lagrangian coordinates, 652
surface in, 669

Lagrangian description, 727
Lagrangian to Eulerian descriptions, 483
Lam6 constant, 667

numerical values of, 677
Laplace's equation, fluid dynamics and, 737

two-dimensional flow and, 751
Leakage resistance of capacitors, 377
Legendre transformation, 73
Length expander bar, equivalent circuit

for, 716
piezoelectric, 712

Levitating force, induction, 369
Levitation, electromechanical, 4, 195, 365,

370
demonstration of magnetic, 370
and instability, 574
of liquids, EHD, 552
MHD, 552

solid and liquid magnetic, 365
Light, velocity of, B14
Linearity, electrical, 20, 30, B27
Linearization, continuum, 483, 510, 556,

652, 842
error from, 224
lumped-parameter, 182

Linear systems, 180
Line integration in variable space, 64, 67
Liquid drops, charge-carrying, 388
Liquid level gauge, 416
Liquid metal brush, 878

numerical example of, 883
Liquid metal MHD, numerical example of

750
Liquid metals, pumping of, 746
Liquid orientation in fields, 785
Liquids, definition of, 724
Liquids and gases, comparison of, 724
Loading factor, MHD machine, 833
Lodestone, B25
Long-wave limit, 283, 574

thin elastic rod and, 683
Lord Kelvin, 389
Lorentz force, 419
Loss-dominated dynamics, continuum, 576
Loss-dominated electromechanics, 229, 249
Loss-dominated systems, 227
Losses, fluid joule, 815
Loudspeaker, model for, 527
Lumped-parameter electromechanics, 60
Lumped-parameter variables, summary of,

35, E4, G4

Mach lines, 624
Mach number, 624, 823
Macroscopic models, electromagnetic, B25
Magnet, permanent, 27
Magnetic axes of rotating machines, 105
Magnetic circuit, example of, 22, 23
Magnetic diffusion, 330, 335

charge relaxation compared to, 401
competition between motion and, 351
cylindrical geometry and, 408
effect of motion on, 354
electrical transient, 338
induction machines and, 746
initial conditions for, 339
limit, of infinite conductivity in, 343

of small conductivity in, 343
liquid metals and, 354
lumped-parameter models for, 331, 334,

336
sinusoidal steady-state, 358
sinusoidal steady-state with motion, 355
steady-state, 337, 347

steady-state in the moving frame, 351
traveling-wave moving media, 364

Magnetic diffusion time, 341, 772
Magnetic field, air-gap, 114

induced and imposed, 212, 286, 332
origin of earths, 336, 552

Magnetic field compression, 354
Magnetic field equations, insulating me-

I
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dium, 773
Magnetic field intensity, 7, B25
Magnetic field system, 6, B19

differential equations for, 6, B20, E6, G6
integral equations for, 10, B32, E3, G3

Magnetic field transformation, example of,
266; see also Transformations

Magnetic fluid, demonstration of, 777
Magnetic flux density, 7, B6
Magnetic flux lines, frozen, 763
Magnetic force, field description of, 418,

Gll
stress tensor for, 422, G11

Magnetic forces and mechanical design, 697
Magnetic induction negligible, B19
Magnetic piston, 354
Magnetic pressure, 369
Magnetic Reynolds numbers, 333, 349, 351,

353, 357, 401, 628, 741, 821
MHD flow, 754
numerical value of, 354

Magnetic saturation in commutator ma-
chines, 297

Magnetic surface force, 447
Magnetic tension, 767
Magnetization, B25

effect of free current forces on, 455
Magnetization currents, B25
Magnetization density, 7, B25
Magnetization force, fluids and, 772

one degree of freedom and, 451
Magnetization force density, changes in

density and, 461
example of, 460
inhomogeneity and, 460
in moving media, 285
summary of, 448, G11

Magnetoacoustic velocity, 850
Magnetoacoustic wave, 846

electrical losses and, 860
flux and density in, 851
numerical example, in gas, 852

in liquid, 853
Magnetoelasticity, 553
Magnetofluid dynamics, 551
Magnetogasdynamics, 551
Magnetohydrodynamic conduction ma-

chine, 740
Magnetohydrodynamic generator, constant-

area, 821
variable-area, 828

Magnetohydrodynamics, 551
constant-area channel, 740
viscosity and, 725

Magnetohydrodynamics of viscous fluids,
878

Magnetostriction, 697
one degree of freedom and, 452

Magnetostriction force, incompressible
fluid and, 776

Magnetostrictive coupling, 707
Magnetostrictive transducer, terminal repre-

sentation of, 711
Mass, conservation of fluid, 729

elastic continua, quasi-static limit of, 507
lumped-parameter, 36, 43
total, 46

Mass conservation, 731
Mass density, 45

elastic materials, numerical values of, 486
of solid, 486

numerical values of, 486, G12
Mass per unit area of membrane, 509
Mass per unit length of wire, 511
Matched termination, 497
Material motion, waves and instabilities

with, 583
Matter, states of, 724
Maxwell, 1
Maxwell's equations, B12

limiting forms of, B14
Maxwell stress tensor, 420, 441, G7, G11
Mechanical circuits, 36
Mechanical continuum, 479
Mechanical equations, lumped-parameter,

49
Mechanical input power, fluid, 756

variable-area channel, 756
Mechanical lumped-parameter equations,

examples of, 49, 51, 53
Mechanics, lumped-parameter, 35

rigid body, 35
transformations and Newtonian, 254

Membrane, elastic continua and, 509, 535,
electric field and, 574
equations of motion for, 511, 535, G13
two-dimensional modes of, 622

Membrane dynamics with convection, 584
Mercury, density and conductivity of, 750

properties of, 883
Meteorology, EHD and, 552
MFD, 551; see also MHD
MGD, 551; see also MHD
MHD, 551

compressible fluids and, 813
liquid metal numerical example of, 750
magnetic damping in, 750
transient effects in, 746, 759
transient example of, 750
variable-area channel in, 751
of viscous fluids, 878

MHD conduction machine, 821, 828
equivalent circuit for, 742
pressure drop in, 742
terminal characteristics of, 742

MHD constant-area channel, 740, 820
MHD flows, dynamic effects in, 746
MHD generator, comparison of, 839

compressibility and, 820
constant voltage constrained, 743
distribution of properties in, 827
end effects in, 797
examples of, 840, 841
Mach number in, 823
numerical example of, 826
temperature in, 823
variable-area channel, 828
viscosity and, 725, 884

_·_ 1 -1----11_-1-----··-



10 Ind

MHD machine, compressible and incom-
pressible, 825

constant velocity, loading factor and
aspect ratio, 834

dynamic operation of, 746
equivalent circuit for variable area, 756
loading factor of, 833
operation of brake, pump, generator, 744
quasi-one-dimensional, 828
steady-state operation of, 740
velocity profile of, 891

MHD plane Couette flow, 884
MHD plane Poiseuille flow, 878
MHD pressure driven flow, 884
MHD pump or accelerator, 824
MHD transient phenomena, 759
MHD variable-area channel equations,

conservation of energy and, 831, 833
conservation of mass and, 831, 833
conservation of momentum and, 831, 833
local Mach number and, 823, 833
local sound velocity and, 822, 833
mechanical equation of state and, 816, 833
Ohm's law and, 830, 833
thermal equations of state and, 820, 833

MHD variable-area machine, equations
for, 833

MHD variable-area pumps, generators and
brakes, 751

Microphone, capacitor, 201
fidelity of, 204

Microphones, 200
Microwave magnetics, 553
Microwave power generation, 552
Mobility, 289, B31

ion, 778
Model, engineering, 206
Modulus of elasticity, 485

numerical values of, 486, G12
Molecular weight of gas, 816
Moment of inertia, 36, 48
Momentum, conservation of, see Conserva-

tion of momentum
Momentum density, fluid, 734
Motor, commutator, 140, 291

induction, 134
reluctance, 156
synchronous, 119

Moving media, electromagnetic fields and,
251

Mutual inductance, calculation of, 22

Natural frequencies, 515
dispersion equation and, 517

Natural modes, dispersion and, 561
kink instability, 635
of membrane, 624, 625
overdamped and underdamped, 583
of unstable wire, 569

Navier-Stokes equation, 872
Negative sequence currents, 144
Networks, compensating, 198
Newtonian fluids, 861

[ex

Newton's laws, 15, 35
elastic media and, 653

Newton's second law, 44, 50
electromechanical coupling and, 84
fluid and, 729, 731

Node, mechanical, 36, 49
Nonlinear systems, 206, 213
Nonuniform magnetic field, motion of

conductor through, 367
Normal modes, 511

boundary conditions and, 524
Normal strain and shear stress, 662
Normal stress and normal strain, 661
Normal vector, analytic description of, 269

Oerstad, 1, B25
Ohm's law, 7, B30

for moving media, 284, 298
Omega-k plot, absolutely unstable wire, 567

amplifying wave, 603
convective instability, 603
damped waves, complex k for real omega,

579
elastic guided shear waves, 695
electron oscillations, 601
evanescent wave, 557, 559, 597, 615, 695
moving wire, with destabilizing magnetic

force, 603
with resistive wall, complex k for real

omega, 611
with resistive wall, complex omega for

real k, 610
ordinary wave, with convection, 594

on wires and membranes, 514
ordinary waves, 514, 555
unstable eigenfrequencies and, 569
waves with damping showing eigenfre-

quencies, 582
wire stabilized by magnetic field, 557

Orientation, electrohydrodynamic, 571
electromechanical, 4
of liquids, dielectrophoretic, 785

EHD, 552
Orthogonality, eigenfunctions and, 341, 519,

520
Oscillations, nonlinear, 226

with convection, 596
Oscillators in motion, 599
Overstability, 192

Particles, charge carriers and, 782
Particular solution of differential equation,

180
Pendulum, hydrodynamic, 746

simple mechanical, 214
Perfect conductor, no slip condition on, 769
Perfect gas law, 816
Perfectly conducting gas, dynamics of, 846
Perfectly conducting media, see Conductor
Permanent magnet, in electromechanics, 27

example of, 28
as rotor for machine, 127

Permanent set, solids and, 700
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Permeability, 7, B27
deformation and, 459
density dependence of, 454
free space, 7, B7

Permittivity, 9, B30
free space, 7, 9, B2

Perturbations, 183
Phase sequence, 144
Phase velocity, 613

diffusion wave, 358
dispersive wave, 598
membrane wave, 512
numerical elastic compressional wave, 677
numerical elastic shear wave, 677
numerical thin rod, 486, G12
ordinary wave, 487
thin rod, 487
wire wave, 512

Physical acoustics, 553, 651
Piezoelectric coupling, 711

reciprocity in, 712
Piezoelectric devices, example of, 717
Piezoelectricity, 553, 711
Piezoelectric length expander bar, 712
Piezoelectric resonator, equivalent circuit

for, 716
Piezoelectric transducer, admittance of,

714
Piezomagnetics, 553
Plane motion, 44
Plasma, confinement of, 552

electromechanics and, 4
evanescent waves in, 561, 638
heating of, 552
lumped-parameter model for, 223
magnetic bottle for, 563
magnetic diffusion and, 408
MHD and, 553
solid state, 553

Plasma dynamics, 553
Plasma frequency, 600
Poiseuille flow, plane, 878
Poisson's ratio, 662

numerical values of, 666
Polarization, effect of motion on, 290

current, B29
density, 7, B28
electric, B27
force, 463, 571, G11

Polarization force, one degree of freedom,
464

Polarization interactions, liquids and, 783
Polarization stress tensor, 463, G11
Pole pairs, 148
Poles in a machine, 146
Polyphase machines, 142
Position vector, 45
Positive sequence currents, 144
Potential, electric, B9

electromagnetic force, 738
gravitational, 733
mechanical, 214
velocity, 737

Potential difference, B10
Potential energy, 214
Potential flow, irrotational electrical

forces and, 738
Potential fluid flow, two-dimensional, 751
Potential plot, 214
Potential well, electrical constraints and, 217

electromechanical system and, 217
temporal behavior from, 224

Power, conservation of, 64
Power density input to fluid, 818
Power factor, 126
Power flow, group velocity and, 638

ordinary and evanescent waves and, 638
rotating machines and, 110

Power generation, ionized gases and, 552
microwave, 552, 553

Power input, electrical, 64
fluid electrical, 818
mechanical, 64
mechanical MHD, 743

Power input to fluid, electric forces and,
819

electrical losses and, 818, 819
magnetic forces and, 818
pressure forces and, 818

Power output, electric MHD, 743
Power theorem, wire in magnetic field, 637,

644
Poynting's theorem, B22
Pressure, density and temperature depen-

dence of, 816
hydrostatic, 735
hydrostatic example of, 736
incompressible fluids and significance of,

753
isotropic, 735
magnetic, 369
normal compressive stress and, 735
significance of negative, 753
velocity and, 753

Principal axes, 49
Principal modes, 681

elastic structure, 679
shear wave, 695

Principle of virtual work, see Conservation,
of energy

Products of inertia, 48
Propagation, 613
Propulsion, electromagnetic, 552

electromechanical, 4
MHD space, 746

Pulling out of step for synchronous ma-
chine, 125

Pump, electric field, 776
electrostatic, 778
liquid metal induction, 365
MHD, 744, 746
variation of parameters in MHD, 825

Pumping, EHD, 552
MHD, 552

Quasi-one-dimensional model, charge relaxa-
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tion, 392, 394
electron beam, 600
gravity wave, 794
magnetic diffusion, 347
membrane, 509, 648

and fluid, 793
MHD generator, 828
thin bar, 712
thin beam, 683
thin rod, 480, 681
wire or string, 509

in field, 556, 563, 574, 605, 627
Quasi-static approximations, 6, B17
Quasi-static limit, sinusoidal steady-state

and, 515, 534
wavelength and, B17
wire and, 534

Quasi-statics, conditions for, B21
correction fields for, B21
elastic media and, 503
electromagnetic, B19

Quasi-static systems, electric, 8
magnetic, 6

Radiation, heat, 815
Rate of strain, 864
Reactance-dominated dynamics, 138, 211,

220, 242, 336, 354, 368, 563, 759
Reciprocity, electromechanical coupling

and, 77
piezoelectric coupling and, 713

Reference system, inertial, 44
Regulation, transformer design and, 699
Relative displacement, rotation, strain and,

658
Relativity, Einstein, 254

Galilean, 255
postulate of special, 261
theory of, 44

Relaxation time, free charge, 372
numerical values of, 377

Relay, damped time-delay, 229
Reluctance motor, 156
Resistance-dominated dynamics, 138, 209,

233, 242, 336, 354, 368, 503, 583, 611
MHD, 750

Resistive wall damping, continuum, 583
Resistive wall instability, nature of, 612
Resistive wall wave amplification, 608
Resonance, electromechanically driven

continuum and, 533
response of continua and, 515

Resonance frequencies, magnetic field
shift of, 563

membrane, 624
natural frequencies and, 515

Resonant gate transistor, 688
Response, sinusoidal steady-state, 181, 200,

514
Rigid body, 44
Rigid-body mechanics, 35
Rotating machines, 103

air-gap magnetic fields in, 114

applications of, 3
balanced two-phase, 113
classification of, 119
commutator type, 140, 255, 292
computation of mutual inductance in, 22
de, 140, 291
differential equations for, 106
effect of poles on speed of, 149
electric field type, 177
energy conversion conditions for, 110
energy conversion in salient pole, 154
equations for salient pole, 151
hunting transient of synchronous, 192
induction, 127
losses in, 109
magnetic saturation in, 106
mutual inductance in, 108
number of poles in, 146
polyphase, 142
power flow in, 110
salient pole, 103, 150
single-phase, 106
single-phase salient-pole, 79
smooth-air-gap, 103, 104
stresses in rotor of, 697
superconducting rotor in, 92
synchronous, 119
two-phase, smooth-air-gap, 111
winding distribution of, 108

Rotating machines, physical structure,
acyclic generator, 287

commutator type, 292
dc motor, 293
development of dc, 295
distribution of currents and, 166, 169
four-pole, salient pole, 164
four-pole, single phase, 147
homopolar, 313
hydroelectric generator, 152
multiple-pole rotor, 146
rotor of induction motor, 107
rotor of salient-pole synchronous, 151
synchronous, salient-pole, 152
salient-pole, two phase, 158
salient-pole, single phase, 150
smooth-air-gap, single phase, 104
stator for induction motor, 106
three-phase stator, 145
turboalternator, 120
two-pole commutator, 294

Rotation, fluid, 865
Rotation vector, 658
Rotor of rotating machines, 104, 107, 112,

120, 146, 147, 150, 151, 152, 158,
164, 166, 169

Rotor teeth, shield effect of, 301

Saliency in different machines, 156
Salient-pole rotating machines, 103, 150
Salient poles and dc machines, 293
Servomotor, 140
Shading coils in machines, 139
Shear flow, 862, 864, 875
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magnetic coupling, 878
Shear modulus, 664

numerical values of, 666
Shear rate, 866
Shear strain, 543, 655

normal strain and, 663
shear stress and, 664

Shear stress, 543
Shear waves, elastic slab and, 693
Shearing modes, beam principal, 683
Shock tube, example related to, 276
Shock waves, supersonic flow and, 592
Sinusoidal steady-state, 181, 200, 514

convection and establishing, 592
Sinusoidal steady-state response, elastic con-

tinua, 514
Skin depth, 357

numerical values of, 361
Skin effect, 358
effect of motion on, 361

Slip of induction machine, 131
Slip rings, 120

ac machines and, 120
Slots of dc machine, 296
Sodium liquid, density of, 771
Solids, definition of, 724
Sound speed, gases, 844

liquids, 845
Sound velocity, see Velocity
Sound waves, see Acoustic waves
Source, force, 37

position, 36
velocity, 37

Space charge, fluid and, 780
Space-charge oscillations, 601
Speakers, 200
Specific heat capacity, constant pressure, 817

constant volume, 816
ratio of, 817

Speed coefficient, of commutator machine,
300

torque on dc machine and, 302
Speed control of rotating machines, 149
Speedometer transducer, 170
Speed voltage in commutator machine, 299
Spring, linear ideal, 38

lumped element, 36, 38
quasi-static limit of elastic continua and, 505
torsional, 40

Spring constant, 39
Stability, 182, 566, 583
Stagnation point, fluid, 752
Standing waves, electromagnetic, B16

electromechanical, 516, 559, 596, 771
State, coupling network, 61, 65

thermal, 816
Stator, of rotating machines, 104, 106, 120,

145, 147, 150, 152, 158, 164, 166, 169
smooth-air-gap, 103

Stinger, magnetic, 193
Strain, formal derivation of, 656

geometric significance of, 654
normal, 654
permanent, 700
shear, 543, 654

as a tensor, 659
thin rod, normal, 484

Strain components, 656
Strain-displacement relation, 653

thin-rod, 485
Strain rate, 724, 864

dilatational, 869
Strain-rate tensor, 864
Streaming electron oscillations, 600
Streamline, fluid, 752
Stress, fluid isotropy and, 868

fluid mechanical, 872
hydrostatic, 724
limiting, 700
normal, 432
shear, 432, 543
and traction, 424, G9

Stress components, 425
Stress-strain, nonlinear, 700
Stress-strain rate relations, 868
Stress-strain relation, 660, 668

thin-rod, 485
Stress-tensor, elastic media and, 667

example of magnetic, 428
magnetization, 462, G11
Maxwell, 420
physical interpretation of, 425, G7
polarization, 463, G11
pressure as, 735
properties of, 423, G7
surface force density and, 446, G9
symmetry of, 422
total force and, 444, G9

Stress tensors, summary of, 448, G11
String, convection and, 584

equation of motion for, 511, 535
and membrane, electromechanical

coupling to, 522
see also Wire

Subsonic steady MHD flow, 823
Subsonic velocity, 587
Substantial derivative, 259, 584, 726; see

also Convective derivative
Summation convention, 421, G7
Superconductors, flux amplification in, 354
Supersonic steady MHD flow, 823
Supersonic steady-state dynamics, 524
Supersonic velocity, 587
Surface charge density, free, 7
Surface conduction in moving media, 285
Surface current density, free, 7
Surface force, example of, 449

magnetization, 775
Surface force densities, summary of, 448,

G11
Surface force density, 445, G11

free surface charge and, 447, G11
free surface currents and, 447, Gll

Surface tension, 605
Susceptance, electromechanical driving, 531
Susceptibility, dielectric, 9, B30

electric, 9, B30
magnetic, 7, B27

Suspension, magnetic, 193
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Symbols, Al, D1, F1
Symbols for electromagnetic quantities, 7
Synchronous condenser, 127
Synchronous machine, 119

equivalent circuit of, 123
hunting transient of, 192
phasor diagram for, 124, 162
polyphase, salient-pole, 157
torque in, 122, 123, 125
torque of salient-pole, two-phase, 160, 162

Synchronous motor, performance of, 126
Synchronous reactance, 123
Synchronous traveling-wave energy conver-

sion, 117

Tachometer, drag-cup, 363
Taylor series, evaluation of displacement

with, 483
multivariable, 187
single variable, 183

Teeth of dc machine, 296
Temperature, electrical conductivity and, 380
Tension, of membrane, 509

of wire, 511
Tensor, first and second order, 437

one-dimensional divergence of, 482
surface integration of, 428, 441, 444, G9
transformation law, 437, G10
transformation of, 434, G9

Tensor strain, 659
Tensor transformation, example of, 437
Terminal pairs, mechanical, 36
Terminal variables, summary of, 35, E4, G4
Terminal voltage, definition of, 18
Theorems, C2, E2, G2
Thermonuclear devices, electromechanics

and, 4
Thermonuclear fusion, 552
Theta-pinch machine, 408
Thin beam, 683

boundary conditions for, 687
cantilevered, 688
deflections of, 691, 692
eigenvalues of, 692
electromechanical elements and, 688, 691,

701, 704
equation for, 687
resonance frequencies of, 692
static loading of, 701

Thin rod, 681
boundary conditions for, 494
conditions for, 683
equations of motion for, 485, G13
force equation for, 484
longitudinal motion of, 480
transverse motions of, 682

Three-phase currents, 143
Time constant, charge relaxation, 372

magnetic diffusion, 341
Time delay, acoustic and electromagnetic, 499
Time-delay relay, electrically damped, 249
Time derivative, moving coordinates and, 258
Time rate of change, moving grain and, 727
Torque, dc machine, 302

electrical, 66

Lorentz force density and, 301
pull-out, 124

Torque-angle, 123
Torque-angle characteristic of synchronous

machine, 125
Torque-angle curve, salient-pole synchronous

machine, 163
Torque-slip curve for induction machine, 135
Torque-speed curve, single phase induction

machine, 139
Torsional vibrations of thin rod, 543
Traction, 424, 432

pressure and, 735
stress and, 432, G9

Traction drives, 310
Transducer, applications of, 2

continuum, 704
example of equations for, 84, 86
fidelity of, 203
incremental motion, 180, 193, 200
Magnetostrictive, 708

Transfer function capacitor microphone, 204
electromechanical filter, 706

Transformations, electric field system, 264
Galilean coordinate, 254, 256
integral laws and, 11, 276, 300, 315, B32
Lorentz, 254
Lorentz force and, 262
magnetic field system, 260
primed to imprimed frame, 439
summary of field, 268, E6, G6
vector and tensor, 434, G9

Transformer, electromechanical effects in, 697
step-down, 698
tested to failure, 698

Transformer efficiency, mechanical design
and, 699

Transformer talk, 697
Transient response, convective instability, 621

elastic continua, 517
MHD system, 751
one-dimensional continua, 511
superposition of eigenmodes in, 518
supersonic media, 593

'Transient waves, convection and, 587
Transmission line, electromagnetic, B16

parallel plate, B15
thin rod and, 488

Transmission without distortion in elastic
structures, 696

Traveling wave, 487
convection and, 586
magnetic diffusion in terms of, 357
single-phase excitation of, 118
standing wave and, 116
two-dimensional, 622
two-dimensional elastic, 694
two-phase current excitation of, 116

Traveling-wave induction interaction, 368
Traveling-wave MHD interaction, 746
Traveling-wave solutions, 554
Traveling-wave tube, 602
Turboalternator, 120
Turbulence in fluids, 725
Turbulent flow, 43
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Ultrasonic amplification, 602
Ultrasonics in integrated electronics. 688
Units of electromagnetic quantities, 7

Van de Graaff generator, example of, 383,
385

gaseous, 778
Variable, dependent, 180

independent, differential equation, 180
thermodynamic independent, 64

Variable capacitance continuum coupling,704
V curve for synchronous machine, 125
Vector, transformation of, 434, 659
Vector transformation, example of, 435
Velocity, absolute, 44

acoustic elastic wave, 673, 677
acoustic fluid wave, 844, 846
Alfv6n wave, 763, 772
charge-average, B5
charge relaxation used to measure, 396
charge relaxation wave, 395
compressional elastic wave, 673, 677
dilatational elastic wave, 673, 677
elastic distortion wave, 675, 677
fast and slow wave, 586
light wave, B14
magnetic diffusion wave, 358
magnetic flux wave, 114
magnetoacoustic wave, 850, 852
measurement of material, 356, 362
membrane wave, 512
phase, 488
shear elastic wave, 675, 677
thin rod wave, 486, 487, 682
wavefront, 618

with dispersion, 598
wire or string wave, 512

Velocity potential, 737
Viscosity, 862

coefficient of, 863
examples of, 875
fluid, 724
mathematical description of, 862
second coefficient of, 871

Viscous flow, pressure driven, 877
Viscous fluids, 861
Viscour losses, turbulent flow, 725
Voltage, definition of, B10

speed, 20, 21
terminal, 18
transformer, 20, 21

Voltage equation, Kirchhoff, 16

Ward-Leonard system, 307
Water waves, 794
Wave amplification, 601
Wave equation, 487
Wavenumber, 357, 513

complex, 554, 607
Wave propagation, 487

characteristics and, 487, 586, 618
group velocity and, 616
phase velocity and, 613

Wave reflection at a boundary, 493
Waves, acoustic elastic, 673

acoustic in fluid, 544, 841, 842, 845
Alfv6n, 759
compressional elastic, 673
convection and, 586
cutoff, see Cutoff waves
damping and, 576
diffusion, 355, 576
dilatational, 672
dispersionless, 555
dispersion of, 488
of distortion, 675
elastic shear, 678
electromagnetic, B13, 488
electromechanical in fluids, 759
evanescent, see Evanescent waves
fast and slow, 586
fast and slow circularly polarized, 631
fluid convection and, 860
fluid shear, 760
fluid sound, 813
incident and reflected at a boundary, 494
light, B13
longitudinal elastic, 673
magnetoacoustic, 841, 846
motion and, 583
plasma, 553, 600, 638
radio, B13
rotational, 671
shear elastic, 675
stationary media and, 554
surface gravity, 794
thin rod and infinite media, 673

Wave transients, solution for, 490
Wind tunnel, magnetic stinger in, 193
Windings, balanced two-phase, 113

dc machine, 292
lap, 296
wave, 296

Wire, continuum elastic, 509, 535
convection and dynamics of, 584
dynamics of, 554
equations of motion for, 511, G13
magnetic field and, 556, 566, 627
two-dimensional motions of, 627

Yield strength, elastic, 700
Young's modulus, 485, G12

Zero-gravity experiments, KC-135 trajec-
tory and, 787
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