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CHAPTER 10

Infinite Series

Infinite series can be a pleasure (sometimes). They throw a beautiful light on sin x
and cos x. They give famous numbers like 7= and e. Usually they produce totally
unknown functions—which might be good. But on the painful side is the fact that
an infinite series has infinitely many terms.

It is not easy to know the sum of those terms. More than that, it is not certain
that there is a sum. We need tests, to decide if the series converges. We also need
ideas, to discover what the series converges to. Here are examples of convergence,
divergence, and oscillation:

1+3+3+=2 1+1+1++=00 1-1+1-1:-=?

The first series converges. Its next term is 1/8, after that is 1/16—and every step
brings us halfway to 2. The second series (the sum of 1’s) obviously diverges to infinity.
The oscillating example (with 1’s and —1’s) also fails to converge.

All those and more are special cases of one infinite series which is absolutely the
most important of all:

1
1—x

The geometric series is 1 + x + x> + x>+ - =

This is a series of functions. It is a “power series.” When we substitute numbers for
x, the series on the left may converge to the sum on the right. We need to know when
it doesn’t. Choose x=3and x=1and x= — 1:

. . .1
1+ 3+ (3)? + - is the convergent series. Its sum is — =2

1—-3
- .1 1
1+1+1+ -is divergent. Its sum is =1 =6=oo
14+ (—1)+ (—1)> + - is the oscillating series. Its sum should be - t_ ) = %

The last sum bounces between one and zero, so at least its average is . At x=2
there is no way that 1 + 2+ 4+ 8 + --- agrees with 1/(1 — 2).
366 This behavior is typical of a power series—to converge in an interval of x’s and
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to diverge when x is large. The geometric series is safe for x between —1 and 1.
Outside that range it diverges.
The next example shows a repeating decimal 1.111...:

1 . L. 1 1\2 1\
Set x 10 The geometric series is 1+ 10 + (10) + (10) +
The decimal 1.111... is also the fraction 1/(1—+;), which is 10/9. Every
fraction leads to a repeating decimal. Every repeating decimal adds up (through the
geometric series) to a fraction.
To get 3.333..., just multiply by 3. This is 10/3. To get 1.0101..., set x = 1/100.
This is the fraction 1/(1 — t35), which is 100/99.

Here is an unusual decimal (which eventually repeats). I don’t really understand it:

1
3 004 115226 337 448 ...
Most numbers are not fractions (or repeating decimals). A good example is 7:

NS T SR B B
777107 100 " 1000 " 10000
This is 3.1415..., a series that certainly converges. We happen to know the first billion
terms (the billionth is given below). Nobody knows the 2 billionth term. Compare
that series with this one, which also equals n:

n=4—-+-—-+
3 5 7
That alternating series is really remarkable. It is typical of this chapter, because its
pattern is clear. We know the 2 billionth term (it has a minus sign). This is not a
geometric series, but in Section 10.1 it comes from a geometric series.

Question Does this series actually converge? What if all signs are + ?
Answer The alternating series converges to 7 (Section 10.3). The positive series
diverges to infinity (Section 10.2). The terms go to zero, but their sum is infinite.

This example begins to show what the chapter is about. Part of the subject deals
with special series, adding to 10/9 or 7 or e*. The other part is about series in general,
adding to numbers or functions that nobody has heard of. The situation was the
same for integrals—they give famous answers like In x or unknown answers like
{ x* dx. The sum of 1 + 1/8 + 1/27 + - is also unknown—although a lot of mathema-
ticians have tried.

The chapter is not long, but it is full. The last half studies power series. We begin
with a linear approximation like 1+ x. Next is a quadratic approximation like
1 + x + x2. In the end we match all the derivatives of f(x). This is the “ Taylor series,”
a new way to create functions—not by formulas or integrals but by infinite series.

No example can be better than 1/(1 — x), which dominates Section 10.1. Then we
define convergence and test for it. (Most tests are really comparisons with a geometric
series.) The second most important series in mathematics is the exponential series
=1+ x+4x%+L1x3+ . It includes the series for sin x and cos x, because of the
formula e = cos x + i sin x. Finally a whole range of new and old functions will
come from Taylor series.

In the end, all the key functions of calculus appear as “infinite polynomials’ (except
the step function). This is the ultimate voyage from the linear function y = mx + b.
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We begin by looking at both sides of the geometric series:

1
I+x+x2+x3+ = .
x+x?+x =% ey

How does the series on the left produce the function on the right? How does 1/(1 — x)
produce the series? Add up two terms of the series, then three terms, then n terms:
2 — 3 1—x"

1
1+x+x2=—2> 1+ +x""1= :
-Xx 1-x 1—x

1+x=

@

For the first, 1 + x times 1 — x equals 1 — x2 by ordinary algebra. The second begins
to make the point: 1+ x+ x?2 times 1 — x gives 1 — x+ x — x2+ x2 — x>. Between
1 at the start and — x? at the end, everything cancels. The same happens in all cases:
1+ -+ x""?! times 1 —x leaves 1 at the start and —x" at the end. This proves
equation (2)—the sum of » terms of the series.

For the whole series we will push n towards infinity. On a graph you can see what
is happening. Figure 10.1 shows n=1and n=2and n=3 and n= .

Fig. 10.4 Two terms, then three
terms, then full series:

1

l+x+x24 - = .
1—x
l+y+x2
T+x+x% 4
PPRL I PN 1-x/1
4 1—x
X
| x—x?
L 2
7 x
x?—x3

The infinite sum gives a finite

answer, provided x is between

—1 and 1. Then x" goes to zero:
1—x" 1

1—x 1—x’

'
'
'
'
'
'
'
‘
'
1
1
'
'
1
'
'

-1 _12 0 1223 1

Now start with the function 1/(1 — x). How does it produce the series? One way is
elementary but brutal, to do “long division” of 1— x into 1 (next to the figure).
Another way is to look up the binomial formula for (1 — x)~*. That is cheating—we
want to discover the series, not just memorize it. The successful approach uses cal-
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culus. Compute the derivatives of f(x)= 1/(1 — x):
f,=(1_x)_2 f”=2(1—x)’3 f"'=6(1—x)‘4 (3)

At x = 0 these derivatives are 1, 2, 6, 24, .... Notice how —1 from the chain rule keeps
them positive. The nth derivative at x =0 is n factorial:

=1 fO=1 f1O=2 f"0=6 - f0)=n
Now comes the idea. To match the series with 1/(1 — x), match all those derivatives at
x = 0. Each power x" gets one derivative right. Its derivatives at x = 0 are zero, except
the nth derivative, which is n! By adding all powers we get every derivative right—
so the geometric series matches the function:

1+ x+x2+x3+ - has the same derivatives at x=0 as 1/(1 — x).

The linear approximation is 1 + x. Then comes 1 f”(0)x? = x2. The third derivative
is supposed to be 6, and x? is just what we need. Through its derivatives, the function
produces the series.

With that example, you have seen a part of this subject. The geometric series
diverges if |x|>1. Otherwise it adds up to the function it comes from (when
—1 < x <1). To get familiar with other series, we now apply algebra or calculus—to
reach the square of 1/(1 — x) or its derivative or its integral. The point is that these
operations are applied to the series.

The best I know is to show you eight operations that produce something useful.
At the end we discover series for In 2 and 7.

1. Multiply the geometric series by a or ax:

_ 2 3 __ax
=— axtax“t+ax’+ = .
1—x 1—x
The first series fits the decimal 3.333.... In that case a = 3. The geometric series for
= {g gave 1.111... = 10/9, and this series is just three times larger. Its sum is 10/3.
The second series fits other decimals that are fractions in disguise. To get 12/99,
choose a=12 and x = 1/100:

2 2 12 12100 _ 12
100 100  100° 1-1/100 99
Problem 13 asks about .8787... and .123123.... It is usual in precalculus to write

a+ar+ar*+--=aj(1—r). But we use x instead of r to emphasize that this is a
function—which we can now differentiate.

atax+ax*+ -

“

21212, =

2. The derivative of the geometric series 1 + x + x> + - is 1/(1 — x)*%

d({ 1 1
14+ 2x+3x2+4x3+ = — = _
2x+3x*+4x dx(l — x) A=x7 %)

At x = 15 the left side starts with 1.23456789. The right side is 1/(1 — £5)* = 1/(9/10)%,
which is 100/81. If you have a calculator, divide 100 by 81.
The answer should also be near (1.11111111)%, which is 1.2345678987654321.

3. Subtract 1 + x + x>+ -+ from 1 + 2x + 3x2 + - as you subtract functions:

1 _ - x
1-x? (1-x) (1-x?*
Curiously, the same series comes from multiplying (5) by x. It answers a question left
open in Section 8.4—the average number of coin tosses until the result is heads. This

x+2x2+3x3+ - = (6)

369
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is the sum 1(p,) + 2(p,) + -+ from probability, with x = }:

1)+ 27+ 307+ = A =2 @

The probability of waiting until the nth toss is p, = (3)". The expected value is two
tosses. I suggested experiments, but now this mean value is exact.

4. Multiply series: the geometric series times itself is 1/(1 — x) squared:
A+x+x2+-)1+x+x2+)=1+2x+3x2+ . 8)

The series on the right is not new! In equation (5) it was the derivative of y = 1/(1 — x).
Now it is the square of the same y. The geometric series satisfies dy/dx = y2, so the
function does too. We have stumbled onto a differential equation.

Notice how the series was squared. A typical term in equation (8) is 3x?, coming
from 1 times x? and x times x and x2 times 1 on the left side. It is a lot quicker to
square 1/(1 — x)—but other series can be multiplied when we don’t know what func-
tions they add up to.

5. Solve dy/dx = y* from any starting value—a new application of series:

Suppose the starting value is y =1 at x =0. The equation y’ = y? gives 1? for the
derivative. Now a key step: The derivative of the equation gives y" =2yy'. At x=0
that is 21+ 1. Continuing upwards, the derivative of 2yy is 2yy” +2(y)%. At x=0
that is y"=4+2=6.

All derivatives are factorials: 1, 2, 6, 24, .... We are matching the derivatives of the
geometric series 1+ x + x?+ x* +.... Term by term, we rediscover the solution to
y' = y2. The solution starting from y(0)=11is y=1/(1 — x).

A different starting value is —1. Then y’ = (—1)> = 1 as before. The chain rule gives
y" =2yy' = — 2 and then y” = 6. With alternating signs to match these derivatives, the
solution starting from —1 is

y=—1+x—x%+x3=—1/1+x). @

It is a small challenge to recognize the function on the right from the series on the
left. The series has — x in place of x; then multiply by —1. The sum y= —1/(1 + x)
also satisfies y' = y2. We can solve differential equations from all starting values by
infinite series. Essentially we substitute an unknown series into the equation, and
calculate one term at a time.

6. The integrals of 1+ x+ x*+ -~ and 1—x+ x>— - are logarithms:
x+1x2+1x3+---= dx =—In(1—x) (10a)
2 3 Ol—x
1, 14 * dx
— _ —_ e = - =4 1+ 10b
XTaXT3X Ll+x n (14 ) (10b)

The derivative of (10a) brings back the geometric series. For logarithms we find 1/n
not 1/n! The first term x and second term $x? give linear and quadratic approxi-
mations. Now we have the whole series. I cannot fail to substitute 1 and 3, to find
In(1 — 1) and In(1 + 1) and In(1 — %):

x=1 l+i+i+i+e=—-n0=+o (Ha)
x=1 1-3+§-%++= In2=.693 (11b)
x=% l+i+4+&+=—-Ini=h2 (12)
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The first series diverges to infinity. This harmonic series 1 +1 + %+ -+ came into the
earliest discussion of limits (Section 2.6). The second series has alternating signs and
converges to In 2. The third has plus signs and also converges to In 2. These will be
examples for a major topic in infinite series—tests for convergence.

For the first time in this book we are able to compute a logarithm! Something
remarkable is involved. The sums of numbers in (11) and (12) were discovered from the
sums of functions in (10). You might think it would be easier to deal only with numbers,
to compute In 2. But then we would never have integrated the series for 1/(1 — x) and
detected (10). It is better to work with x, and substitute special values like § at the
end.

There are two practical problems with these series. For In 2 they converge slowly.
For In e they blow up. The correct answer is In e = 1, but the series can’t find it. Both
problems are solved by adding (10a) to (10b), which cancels the even powers:

1+x
1—x

2(x+ X} X ) =In(l+x)—In(l-x)=In (13)

3 5

At x = 4, the right side is In § — In 4 = In 2. Powers of § are much smaller than powers
of 1 or §, so In 2 is quickly computed. All logarithms can be found from the improved
series (13).
7. Change variables in the geometric series (replace x by x* or — x?):
1+x2+x*+ x5+ =1/(1-x?) (14)
1=x2+x*=x%4+ - =1/1+x?). (15)

This produces new functions (always our goal). They involve even powers of x. The
second series will soon be used to calculate n. Other changes are valuable:

X x  (xV 1 2

2 fx 1+Z+(2) +-= =

5 in place of x 5 (2) o) 2-x (16)
1 1 1 1 x

=i fx: 14+=4 — +-= =

xln place of x > I—(x) x—1 (17

Equation (17) is a series of negative powers x~". It converges when |x| is greater than
1. Convergence in (17) is for large x. Convergence in (16) is for |x| < 2.

8. The integral of 1 — x>+ x* — x® + -+ yields the inverse tangent of x:

1,1 1 dx
—=x3+x3 x4 = =tan"! x.
X=X A gxT T ox j1+x2 tan” " x (18)

We integrated (15) and got odd powers. The magical formula for = (discovered by
Leibniz) comes when x = 1. The angle with tangent 1 is n/4:
1 1 1 T

1 3 + 577 + 2 (19)
The first three terms give 7 ~ 3.47 (not very close). The 5000th term is still of size
.0001, so the fourth decimal is still not settled. By changing to x = 1 /\/3, the astrono-
mer Halley and his assistant found 71 correct digits of n/6 (while waiting for the
comet). That is one step in the long and amazing story of calculating . The Chudnov-
sky brothers recently took the latest step with a supercomputer—they have found
more than one billion decimal places of n (see Science, June 1989). The digits look
completely random, as everyone expected. But so far we have no proof that all ten
digits occur & of the time.

371
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Historical note Archimedes located = above 3.14 and below 3%. Variations of his
method (polygons in circles) reached as far as 34 digits—but not for 1800 years. Then
Halley found 71 digits of n/6 with equation (18). For faster convergence that series
was replaced by other inverse tangents, using smaller values of x:

1 1 1 1
§=tan"1 §+tan'1 §=4 tan~! g—tan’1 739"

A prodigy named Dase, who could multiply 100-digit numbers in his head in 8 hours,
finally passed 200 digits of n. The climax of hand calculation came when Shanks
published 607 digits. I am sorry to say that only 527 were correct. (With years of
calculation he went on to 707 digits, but still only 527 were correct.) The mistake was
not noticed until 1945! Then Ferguson reached 808 digits with a desk calculator.

Now comes the computer. Three days on an ENIAC (1949) gave 2000 digits. A
hundred minutes on an IBM 704 (1958) gave 10,000 digits. Shanks (no relation)
reached 100,000 digits. Finally a million digits were found in a day in 1973, with a
CDC 7600. All these calculations used variations of equation (20).

The record after that went between Cray and Hitachi and now IBM. But the
method changed. The calculations rely on an incredibly accurate algorithm, based
on the “arithmetic-geometric mean iteration” of Gauss. It is also incredibly simple,
all things considered:

(20)

an+b" // 1
Ap+1 = 2 bn+1 = anbn n,,=2a,%+1/<1 —quO 2k(af—bf)>

The number of correct digits more than doubles at every step. By n=9 we are far
beyond Shanks (the hand calculator). No end is in sight. Almost anyone can go past
a billion digits, since with the Chudnovsky method we don’t have to start over again.

It is time to stop. You may think (or hope) that nothing more could possibly be
done with geometric series. We have gone a long way from 1/(1 — x), but some
functions can never be reached. One is ¢* (and its relatives sin x, cos x, sinh x, cosh x).
Another is /1 — x (and its relatives 1/ _/1 — x2, sin~ 'x, sec " 'x, ...). The exponentials
are in 10.4, with series that converge for all x. The square-roots are in 10.5, closer to
geometric series and converging for |x| < 1. Before that we have to say what con-
vergence means.

The series came fast, but 1 hope you see what can be done (subtract, multiply,
differentiate, integrate). Addition is easy, division is harder, all are legal. Some un-
expected numbers are the sums of infinite series.

Added in proof By e-mail I just learned that the record for 7 is back in Japan:
239 digits which is more than 1.07 billion. The elapsed time was 100 hours (75 hours
of CPU time on an NEC machine). The billionth digit after the decimal point is 9.

10.1 EXERCISES

Read-through questions

The geometric series 1 + x + x? + - adds to _a . It con- The derivative of the geometric series is _ j] = _ k

verges provided |x]<__b_ . The sum of n terms is _¢ . This also comes from squaring the _ I __series. By choosing
The derivatives of the series match the derivatives of 1/(1 — x)
at the point x =

by _h . The decimal .999... is the same as

x =.01, the decimal 1.02030405 is close to
d , where the nth derivative is _e . differential equation dy/dx = y?

The decimal 1.111... is the geometric series at x=__t  and series, going term by term starting from y(0) =

equals the fraction __g . The decimal .666... multiplies this

is solved by the geometric



10.1 The Geomefric Series 373

The integral of the geometric seriesis _ 0 _=_p . At
x =1 this becomes the __q  series, which diverges. At x=

t_wefindln2=__s .Thechangefromxto —x produ-
ces the series 1/(1 + x)= and In(1 + x) =

In the geometric series, changing to x? or —x? gives

1/1—x%=_v  and 1/(1+x?)=_w . Integrating the
last one yields x —$x3+4x3---=_ x . The angle whose
tangentis x=1istan™' 1=_y . Then substituting x =1
gives the series 7= __2

1 The geometric series is 1 + x + x? + - = G. Another way
to discover G is to multiply by x. Then x +x? + x3 + - =
xG, and this can be subtracted from the original series. What
does that leave, and what is G?

2 A basketball is dropped 10 feet and bounces back 6 feet.
After every fall it recovers 2 of its height. What total distance
does the ball travel, bouncing forever?

3 Find the sums of § +§+ 2 + -
10—1+.1—.01... and 3.040404....

4 Replace x by 1 — x in the geometric series to find a series
for 1/x. Integrate to find a series for In x. These are power
series “around the point x = 1.” What is their sum at x =(?

and 1 —}+ ¢ — - and

5 What is the second derivative of the geometric series, and
what is its sum at x =4?

6 Multiply the series (1 +x+x%+-)(1—x+x2—-) and
find the product by comparing with equation (14).

7 Start with the fraction 4. Divide 7 into 1.000... (by long
division or calculator) until the numbers start repeating.
Which is the first number to repeat? How do you know that
the next digits will be the same as the first?

Note about the fractions 1/q, 10/q, 100/q, ... All remainders are
less than g so eventually two remainders are the same. By
subtraction, ¢ goes evenly into a power 10¥ minus a smaller
power 107", Thus gc = 10" — 107" for some c and 1/q has
a repeating decimal:

1 c c 1

g 10" —10" " 10"1—-10""

1+ 1 _1_+
10” 102" ’

Conclusion: Every fraction equals a repeating decimal.

8 Find the repeating decimal for {5 and read off c. What is
the number n of digits before it repeats?

9 From the fact that every g goes evenly into a power 10¥
minus a smaller power, show that all primes except 2 or 5 go
evenly into 9 or 99 or 999 or ---

10 Explain why .010010001...
number of zeros increases).

11 Show that .123456789101112...

cannot be a fraction (the

is not a fraction.

12 From the geometric series, the repeating decimal
1.065065... equals what fraction? Explain why every repeating
decimal equals a fraction.

13 Write .878787... and .123123...
metric series.

14 Find the square of 1.111...

as fractions and as geo-
as an infinite series.

Find the functions which equal the sums 15-24.

16 1—2x 4+ 4x% — -
18 3x —gx? +4x3— -
20 x—2x?+43x3— -

15 x+x>+x° 4 -
17 x>+ x5+ x% 4 -
19 In x+(In x)*>+(In x)*+

1 1 1 X

Sl AR NI R 2 =
A -+ 5+5+ X+ +(1+x)2
23 tan x—$tan®x +$tan’x —-- 24e"+e2"+e3"+

25 Multiply the series for 1/(1 — x) and 1/(1 + x) to find the
coefficients of x, x2, x* and x™.

26 Compare the integral of 1 4+ x% 4+ x* + -
and find [dx/(1 — x?).

27 What fractions are close to .2468 and .9876543217
28 Find the first three terms in the series for 1/(1 — x)*.

to equation (13)

Add up the series 29—34. Problem 34 comes from (18).

293+322+323+ 30 .14.02+.003 + -
31 .1+4(.01)+3(.001)+ 32 .1—4(.01)+4(.001)— -
1 1
1
33 .1+4(.001)+4(.00001)+ 341 T3t53—

35 Compute the nth derivative of 1 4 2x + 3x® + -+ at x=0.

Compute also the nth derivative of (1 —x)~2

36 The differential equation dy/dx = y? starts from y(0) = b.
From the equation and its derivatives find y’, y”, y” at x =0,
and construct the start of a series that matches those deriva-
tives. Can you recognize y(x)?

37 The equation dy/dx = y? has the differential form dy/y? =
dx. Integrate both sides and choose the integration constant
so that y=b at x=0. Solve for y{(x) and compare with
Problem 36.

38 In a bridge game, what is the average number u of deals
until you get the best hand? The probability on the first deal
is p; =%. Then p, =) = (probability of missing on the
first) times (probability of winning on the second). Generally
Pa=3""'@). The mean value p is p; +2p, +3p;+ =

39 Show that (Xa,)(Zb,) = Za,b, is ridiculous.

40 Find a series for In § by choosing x in (10b). Find a series
for In 3 by choosing x in (13). How is In § related to In 3, and
which series converges faster?
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41 Compute In 3 to its second decimal place without a calcu-
lator (OK to check).

42 To four decimal places, find the angle whose tangent is

x=15.

43 Two tennis players move to the net as they volley the ball.
Starting together they each go forward 39 feet at 13 feet per
second. The ball travels back and forth at 26 feet per second.
How far does it travel before the collision at the net? (Look
for an easy way and also an infinite series.)

44 How many terms of the series 1—3+3—4+ - are
needed before the first decimal place doesn’t change? Which
power of 4 equals the 100th power of 4? Which power 1/a”
equals 121999

10.2 Convergence Tests: Positive Series

45 If tan y=4 and tanz=4%, then the tangent of y+z is
(tany-+tanz)/(1 —tany tanz)=1. If tan y=% and tanz=

, again tan(y + z)=1. Why is this not as good as
equation (20), to find n/4?

46 Find one decimal of = beyond 3.14 from the series for

4tan! { and 4 tan~! 4. How many terms are needed in each
series?

47 (Calculator) In the same way find one decimal of =
beyond 3.14159. How many terms did you take?

48 From equation (10a) what is Ze™/n?

49 Zeno’s Paradox is that if you go half way, and then half
way, and then half way..., you will never get there. In your
opinion, does 4 +4 + 4 + - add to 1 or not?

This is the third time we have stopped the calculations to deal with the definitions.
Chapter 2 said what a derivative is. Chapter 5 said what an integral is. Now we say
what the sum of a series is—if it exists. In all three cases a limit is involved. That is
the formal, careful, cautious part of mathematics, which decides if the active and
progressive parts make sense.

The series 3 + 3 + 4 + -+~ converges to 1. The series 1 +4 + 4 + - diverges to infin-
ity. The series 1 — 4+ } — --- converges to In 2. When we speak about convergence or
divergence of a series, we are really speaking about convergence or divergence of its
“partialsums.”

DEFINITION 1 The partial sum s, of the series a, +a, + a5 + -+ stops at a,:
s, = sum of the first n terms=a, +a, + - +a,.

Thus s, is part of the total sum. The example 4+ 4 + 4 + -~ has partial sums

= E §; = Z §3 = g Sp = .
Those add up larger and larger parts of the series—what is the sum of the whole
series? The answer is: The series + 1+ ... converges to 1 because its partial sums s,
converge to 1. The series a, + a, + a3 + ... converges to s when its partial sums—
going further and further out—approach this limit s. Add the a’s, not the s’s.

§1

DEFINITION 2  The sum of a series is the limit of its partial sums s, .

We repeat: if the limit exists. The numbers s, may have no limit. When the partial
sums jump around, the whole series has no sum. Then the series does not converge.
When the partial sums approach s, the distant terms a, are approaching zero. More
than that, the sum of distant terms is approaching zero.

The new idea (X g, = s) has been converted to the old idea (s, — s).

EXAMPLE 1 The geometric series 15 + 135 + 1o5o + '+ converges to s = §.

The partial sums s, s,, s3, 54 are .1, .11, .111, .1111. They are approaching s =73.
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Note again the difference between the series of a’s and the sequence of s’s. The series
1+ 1+ 1+ - diverges because the sequence of s’s is 1, 2, 3, .... A sharper example is
the harmonic series: 1+ 3+ 3 + -+ diverges because its partial sums 1, 1%, ... eventu-
ally go past every number s. We saw that in 2.6 and will see it again here.

Do not confuse a, — 0 with s, — s. You cannot be sure that a series converges, just
on the basis that a, — 0. The harmonic series is the best example: a, = 1/n— 0 but
still s, —» co. This makes infinite series into a delicate game, which mathematicians
enjoy. The line between divergence and convergence is hard to find and easy to cross.
A slight push will speed up a, » 0 and make the s, converge. Even though a, -0
does not by itself guarantee convergence, it is the first requirement:

10A If a series converges (s, — s) then its terms must approach zero (g, — 0).

Proof Suppose s, approaches s (as required by convergence). Then also s,_;
approaches s, and the difference s, — s,_; approaches zero. That difference is a,. So
a,—0.

EXAMPLE 1 (continued) For the geometric series 1+ x + x2 + -+, the test a, — 0 is
the same as x" — 0. The test is failed if |x| > 1, because the powers of x don’t go to
zero. Automatically the series diverges. The test is passed if —1 < x < 1. But to prove
convergence, we cannot rely on a, — 0. It is the partial sums that must converge:

1—x" 1
X and Sp—

s,=1+x+ - +x1= This is s.

1—x 1—x

For other series, first check that g, — 0 (otherwise there is no chance of con-
vergence). The a, will not have the special form x"—so we need sharper tests.

The geometric series stays in our mind for this reason. Many convergence tests are

comparisons with that series. The right comparison gives enough information:
If |a,) <% and |a,) <% and ..., then a, + a, + ... converges faster than $+3+ ...

More generally, the terms in a;+a,+as+ ... may be smaller than

ax+ax?+ax*+ .... Provided x <1, the second series converges. Then Y a, also

converges. We move now to convergence by comparison or divergence by comparison.
Throughout the rest of this section, all numbers g, are assumed positive.

COMPARISON TEST AND INTEGRAL TEST

In practice it is rare to compute the partial sums s, = a, + --- + a,. Usually a simple
formula can’t be found. We may never know the exact limit s. But it is still possible
to decide convergence—whether there is a sum—by comparison with another series
that is known to converge.

10B (Comparison test) Suppose that 0<a,<b, and Y b, converges. Then
Y a, converges.

The smaller terms a, add to a smaller sum: Y_ g, is below ) b, and must converge.
On the other hand suppose a, > ¢, and Y ¢, = co. This comparison forces Y a, = co.
A series diverges if it is above another divergent series.

Note that a series of positive terms can only diverge “to infinity.” It cannot oscillate,
because each term moves it forward. Either the s, creep up on s, passing every number
below it, or they pass all numbers and diverge. If an increasing sequence s, is bounded
above, it must converge. The line of real numbers is complete, and has no holes.
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The harmonic series 1 +3+ 3+ %+ ... diverges to infinity.

A comparison series is 1+3+3+3+31+3+L+L1+.... The harmonic series is
larger. But this comparison series is really 1+3+3+3+ ..., because 1 =2=%,
The comparison series diverges. The harmonic series, above it, must also diverge.

To apply the comparison test, we need something to compare with. In Example 2,
we thought of another series. It was convenient because of those 4’s. But a different
series will need a different comparison, and where will it come from? There is an
automatic way to think of a comparison series. It comes from the integral test.

Allow me to apply the integral test to the same example. To understand the integral
test, look at the areas in Figure 10.2. The test compares rectangles with curved areas.

yw =+ v =+

integral J% —> 0 sum — oo S0
integral — oo

sosumZ%——-)oc

Fig. 10.2 Integral test: Sums and integrals both diverge (p = 1) and both converge (p > 1).

EXAMPLE 2 (again) Compare 1 + 4+ 3+ ... with the area under the curve y = 1/x.

Every term a, = 1/n is the area of a rectangle. We are comparing it with a curved
area ¢,. Both areas are between x =n and x =n+ 1, and the rectangle is above the
curve. SO a, > ¢,:

1 "*1dx
rectangular area a, = . exceeds curved area ¢, = f >
Here is the point. Those ¢,’s look complicated, but we can add them up. The sum
¢, + ... t ¢, is the whole area, from 1 to n+ 1. It equals In(n + 1)—we know the
integral of 1/x. We also know that the logarithm goes to infinity.
The rectangular area 1+ 1/2+ ... + 1/n is above the curved area. By comparison
of areas, the harmonic series diverges to infinity—a little faster than In(n + 1).

Remark The integral of 1/x has another advantage over the series with #’s. First,
the integral test was automatic. From 1/n in the series, we went to 1/x in the integral.
Second, the comparison is closer. Instead of adding only 4 when the number of terms
is doubled, the true partial sums grow like In n. To prove that, put rectangles under
the curve.

Rectangles below the curve give an area below the integral. Figure 10.2b omits the
first rectangle, to get under the curve. Then we have the opposite to the first
comparison—the sum is now smaller than the integral:

1+1+...+l< ndx_ln
273 n ol x -

Adding 1 to both sides, s, is below 1+ 1nn. From the previous test, s, is above
In(n + 1). That is a narrow space—we have an excellent estimate of s,. The sum of 1/n
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and the integral of 1/x diverge together. Problem 43 will show that the difference
between s, and In n approaches “Euler’s constant,” which is y=.577....

Main point. Rectangular area is s,. Curved area is close. We are using integrals to
help with sums (it used to be the opposite).

Question If a computer adds a million terms every second for a million years, how
large is the partial sum of the harmonic series?

Answer The number of terms is n= 60224365102 < 3.2+ 10'°. Therefore Inn
is less than In 3.2 4+ 191n 10 < 45. By the integral test s, <1+ In n, the partial sum
after a million years has not reached 46.

For other series, 1/x changes to a different function y(x). At x = n this function
must equal a,. Also y(x) must be decreasing. Then a rectangle of height a, is above
the graph to the right of x=n, and below the graph to the left of x = n. The series
and the integral box each other in: left sum > integral > right sum. The reasoning is
the same as it was for a,= 1/n and y(x) = 1/x: There is finite area in the rectangles
when there is finite area under the curve.

When we can’t add the a’s, we integrate y(x) and compare areas:

405 (&uagml tm) If y(x} is demamg and y{n) agrees wrth a,,, then

.,%fu

'av%ag-i-a;«k o and I y(x}dx botheonmgcorbothdwerge B

. l 11 , 1
EXAMPLE 3 The “p-series” 7 + 7 + T + --- converges if p> 1. Integrate y = F:

1 " odx .. © 1 © dx
ﬁ< L_l;c; so by addition ”=2;;< J‘i ol
In Figure 10.2c, the area is finite if p > 1. The integral equals [x' ~?/(1 — p)]7, which
is 1/(p — 1). Finite area means convergent series. If 1/17 is the first term, add 1 to the
curved area:

1 1 1 1 P

2p+ + o < 1+ p—1 1

The borderline case p=1 is the harmonic series (divergent). By the comparison
test, every p < 1 also produces divergence. Thus X1 /\/; diverges by comparison with
jdx/\/;c (and also by comparison with £1/n). Section 7.5 on improper integrals runs
parallel to this section on “improper sums” (infinite series).

Notice the special cases p =2 and p = 3. The series 1 + 1+ § + - converges. Euler
found 7%/6 as its sum. The series 1+ + 3% + - also converges. That is proved by
comparing X1/n® with Z1/n* or with [dx/x*. But the sum for p =3 is unkaown.

Extra credit problem The sum of the p-series leads to the most important problem
in pure mathematics. The “zeta function” is Z(p) = Z1/n?, so Z(2) = n%/6 and Z(3) is
unknown. Riemann studied the complex numbers p where Z(p) =0 (there are infi-
nitely many). He conjectured that the real part of those p is always %. That has been
tested for the first billion zeros, but never proved.

COMPARISON WITH THE GEOMETRIC SERIES

We can compare any new series a, +a, + - with 1+ x+ ---. Remember that the
first million terms have nothing to do with convergence. It is further out, as n — oo,
that the comparison stands or falls. We still assume that a, > 0.
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40D (Ratio test) If a,,,/a, approaches a limit L < 1, the series converges.

10E (Root test) If the nth root (a,)'"™ approaches L < 1, the series converges.

Roughly speaking, these tests make a, comparable with L'—therefore convergent.
The tests also establish divergence if L > 1. They give no decision when L = 1. Unfor-
tunately L =1 is the most important and the hardest case.

On the other hand, you will now see that the ratio test is fairly easy.

EXAMPLE 4 The geometric series x + x2 + -+ has ratio exactly x. The nth root is
also exactly x. So L = x. There is convergence if x < 1 (known) and divergence if x > 1
(also known). The divergence of 1 + 1+ -+~ is too delicate (!) for the ratio test and
root test, because L= 1.

EXAMPLE 5 The p-series has a,= 1/nf and a,,, ,/a, = n?/(n + 1)?. The limit as n — oo
is L=1, for every p. The ratio test does not feel the difference between p = 2 (conver-
gence) and p =1 (divergence) or even p= — | (extreme divergence). Neither does the
root test. So the integral test is sharper.

EXAMPLE 6 A combination of p-series and geometric series can now be decided:

2 n n+1 np

. X ee 1 —a"+1 = X J— 1 =
AT + -+ pr + -+ has ratio 0, (P approaching L = x.

X X

It is |x| <1 that decides convergence, not p. The powers X" are stronger than any n®.
The factorials n! will now prove stronger than any x".

EXAMPLE 7 The exponential series ¢* =1+ x +1x? + x>+ - converges for all x.
The terms of this series are x"/n! The ratio between neighboring terms is

X" (n+ 1) _ X
X! nt 1

which approaches L=0 as n —» .

With x = 1, this ratio test gives convergence of ) 1/n! The sum is e. With x = 4, the
larger series Y, 4"/n! also converges. We know this sum too—it is e*. Also the sum
of x"n?/n! converges for any x and p. Again L = 0—the ratio test is not even close.
The factorials take over, and give convergence.

Here is the proof of convergence when the ratios approach L < 1. Choose x halfway
from L to 1. Then x < 1. Eventually the ratios go below x and stay below:

ay+y/ay < x ay+z/ay+y <X ay+3fay+r, <X
Multiply the first two inequalities. Then multiply all three:
ay+1/ay <x Ay +2/ay < x* ay+3/ay < x*
Therefore ay,; + ay+,+ays3+ --- is less than ay(x + x*>+ x>+ ---). Since x <1,

comparison with the geometric series gives convergence.

EXAMPLE 8 The series z 1/n" is ideal for the root test. The nth root is 1/n. Its
limit is L= 0. Convergence is even faster than for e=) 1/n! The root test is easily
explained, since (a,)*™ < x yields a, < x" and x is close to L < 1. So we compare with
the geometric series.
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SUMMARY FOR POSITIVE SERIES

The convergence of geometric series and p-series and exponential series is settled. I
will put these a,’s in a line, going from most divergent to most convergent. The
crossover to convergence is after 1/n:

1 1 1 n 1 4 1 1
+14 - - - = - - - = =
t+1 <Dz m w®>Y F 3 aaw

10A 10B and 10C 410D and 10E
(a,-70) (comparison and integral) (ratio and root)

You should know that this crossover is not as sharp as it looks. On the convergent
side, 1/n(In n)> comes before all those p-series. On the divergent side, 1/n(ln n) and
1/n(In n)(In In n) belong after 1/n. For any divergent (or convergent) series, there is
another that diverges (or converges) more slowly.

Thus there is no hope of an ultimate all-purpose comparison test. But comparison
is the best method available. Every series in that line can be compared with its
neighbors, and other series can be placed in between. It is a topic that is understood
best by examples.

1 . . .
EXAMPLE 9 Y o diverges because Z% diverges. The comparison uses In n < n.

1 dx 1 dx
EXAMPLE 10 Zn(ln n)z ~ jx(ln x)2 < Zn(ln n) ~ Jx(ln x) -

The indefinite integrals are —1/ln x and In(ln x). The first goes to zero as x — co; the
integral and series both converge. The second integral In(In x) goes to infinity—very
slowly but it gets there. So the second series diverges. These examples squeeze new
series into the line, closer to the crossover.

1 1 l 1 1 1 1 1
EXAMPLE 11 ———< = +——+ ‘<= + + -+ .
R SO 2 10 R ** (convergence)

The constant 1 in this denominator has no effect—and again in the next example.

P L I IR I )

EXAMPLE 412
2n—1 2n 1 3 5 2 4 6 -

Y. 1/2n is 1/2 times Y 1/n, so both series diverge. Two series behave in the same
way if the ratios a,/b, approach L>0. Examples 11-12 have n?/(n* + 1) > 1 and
2n/(2n — 1) - 1. That leads to our final test:

105 (Lzmt compamen test? If the ratio a,/b, approaches a pos:trve limit L,
tfwn Y. a, and }_ b, either both diverge or both converge.

Reason: a, is smaller than 2Lb, and larger than $Lb, , at least when » is large. So the
two series behave in the same way. For example ) sin (7/n?) converges for p> 1,
not for p < 1. It behaves like Y 1/n? (here L= 7). The tail end of a series (large n)
controls convergence. The front end (small n) controls most of the sum.

There are many more series to be investigated by comparison.
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10.2 EXERCISES

Read-through questions

The convergence of a, + a, + -+ is decided by the partial sums

s,=__a . If the s, approach s, then Za,=_ b . For the
¢ series 1+ x+ --- the partial sums are s5,=_d . In

that case s, —» 1/(1 — x) if and only if __e . In all cases the

limit s, — s requires that a, - __t . But the harmonic series

a, = 1/nshows that we can have a, —» __ g _ and still the series
h

The comparison test says that if 0 <a,<b,then _i . In
case a decreasing y(x) agrees with a, at x =n, we can apply
the _ | test. The sum Za, converges if and only if _ k
By this test the p-series Z1/n? converges if and only if p is

I__. For the harmonic series (p=1), s,=1++1/nis

close to the integral f(n) = __m

The __n__ test applies when a,.,/a, — L. There is con-
vergence if __o , divergence if _ p__, and no decision if

a . The same is true for the __r__test, when (a,)!/" — L.
For a geometric-p-series combination a, = x"/n?, the ratio
Gn+1/a, equals s . Ttslimitis L=__t _ so there is con-
vergence if __u_ . For the exponential e* = Zx"/n! the limit-
ing ratio a,+/a, is L=__v__. This series always _ w
because n! grows faster than any x" or n’.

There is no sharp line between __ x _and _y . But if
Xb, converges and a,/b, — L, it follows from the _ 2 test
that Xa, also converges.

1 Here is a quick proof that a finite sum 1 +3 44+ =s
is impossible. Division by 2 would give  ++3+ - = 1s.
Subtraction would leave 1 +4%+ 4+ - = 4s. Those last two
series cannot both add to s because

2 Behind every decimal s=.abc... is a convergent series
a/10+ b/100 + + ---. By a comparison test prove
convergence.

3 From these partial sums s,, find a, and also s=Z7 a,:

(b) s,=4n

4 Find the partial sums s,=a, +a, + ' +a,:

(a) Sn=1—% ) s,=In

n+1

@ a,=1/3"1  (b) ay=In n-T—l © a,=n

S Suppose 0<a,<b, and Zq, converges. What can be
deduced about Xb,? Give examples.

6 (a) Suppose b, + ¢, <a, (all positive) and Xa, converges.
What can you say about Xb, and X¢,?
(b) Suppose a, < b, + ¢, (all positive) and Xa, diverges.
What can you say about £b, and Zc,?

Decide convergence or divergence in 7-10 (and give a reason).

7 tho+zbo +3bo +

8 by + ds + rho +

9 rhr+da+ds+ 10 by + s +dr+

Establish convergence or divergence in 11-20 by a comparison
test.

1 1
DI Ty 2Y 7=

13 Zn-{-l\/;; 142 \/;

n3
15l

1 (1
17 22"_1 18 Y sin (;)

1
Y5 20Y

For 21-28 find the limit L in the ratio test or root test.

3" 1

21 Zm 22 Z;‘E
n22" n—1\
23 pr 24 Z( " )

n n!

25 ZF 26 Z;"—z

ny (=LY 8y"

n n"

29 4—H+E-H+EG—1) is “telescoping” because  and 1
cancel —4 and —4. Add the infinite telescoping series

=1 1\ &af I
s=21:<;_n+1)=z1:(n(n+l))'

30 Compute the sum s for other “telescoping series’
(a) l l + 1 _1. + l 1
1 3/7\2 473 5
b)Int+n2+ind+-

31 In the integral test, what sum is larger than j’l' y(x) dx and
what sum is smaller? Draw a figure to illustrate.

32 Comparing sums with integrals, find numbers larger and
smaller than

1 1 1
Sp=l+z++ ands,,=1+—+---+F.

1
3 2n—1 8

33 Which integral test shows that ) ° 1/e" converges? What
is the sum?

34 Which integral test shows that Y ©° n/e” converges? What
is the sum?
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Decide for or against convergence in 35-42, based on {y(x) dx.

1 1
sy _

3 an +1 6L 3n+5

n Inn

_r 38 bad 9
373, - y— ( % decreasing? )
e T = 1

3 Yrfn 40 ; n(in n)(In 1n n)
4y e 2 Y nje”

1 1 . .
43 (a) Explain why D, = (1 + 5 + -+ ;) —In n is positive

by using rectangles as in Figure 10.2.
(b) Show that D,., is less than D, by proving that

1 J\n+1 dx
< —.
n+1 a X

(c) (Calculator) The decreasing D,’s must approach a limit.
Compute them until they go below .6 and below .58
(when?). The limit of the D, is Euler’s constant y =.577.....

44 In the harmonic series, use s, ~.577 +In n to show that
s, =1+ % + 0+ %needs more than 600 terms to reach s, > 7.
How many terms for s, > 10?

1 1 1 1

1
45 S T —
(a) Show that 1 2+3 2 o n+1+ +2 by

. 1 1 1 .
adding 2(2 +- n +-+ o ) to both sides.

(b) Why is the right side close to In 2n—In n? Deduce that
1—4+4—%+ - approaches In 2.

46 Every second a computer adds a million terms of
Y. 1/(n1n n). By comparison with | dx/(x In x), estimate the
partial sum after a million years (see Question in text).

1000 1
47 Estimate ; =

by comparison with an integral.

48 If X a, converges (all a, > 0) show that X a2 converges.

10.3 Convergence Tests: All Series

49 If X a, converges (all a, > 0) show that X sin a, converges.
How could X sin a, converge when X a, diverges?

50 The nth prime number p, satisfies p,/n In n — 1. Prove that

1 1 1 1 1 1
Z;}—" R RETR - diverges.

Construct a series X a, that converges faster than X b, but
slower than X ¢, (meaning a,/b, —» 0, a,/c, - ).

51 b,=1/n?, ¢, =1/n® 52 b, =n@3)", c, =)
83 b,=1/n!, c,=1/n" 54 b,=1/n° c,=1/e"
In Problem 53 use Stirling’s formula /2znn n"/e"n! — 1.

55 For the series $+%+3+%+4+4+ - show that the
ratio test fails. The roots (a,)'™ do approach a limit L. Find
L from the even terms a,, = 1/2*. Does the series converge?

§6 (For instructors) If the ratios 4, /a, approach a positive
limit L show that the roots (a,)!/" also approach L.

Decide convergence in 57-66 and name your test.

1 1
57 58
Z (ln n)n annn
59 ZL 60 z;
10" In (107)
n+2
61 62 —1n
Yin o Sn
Z— (test all p) 64 Z]n— (test all p)
ny n?
65 66y " 1
)y 4.,_2,. o (testall p.g)

67 Suppose a, /b, — 0 in the limit comparison test. Prove that
X a, converges if X b, converges.

68 Can you invent a series whose convergence you and your
instructor cannot decide?

This section ﬁnally allows the numbers a, to be negative. The geometric series 1 —

1
R

=4 is certainly allowed. So is the series m =4 —$%

+4-4+ . If we

change all signs to +, the geometric series would still converge (to the larger sum 2).
This is the first test, to bring back a positive series by taking the absolute value |a,|

of every term.

DEFINITION The series X a, is “absolutely convergent” if X |a,| is convergent.
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Changing a negative number from a, to |a,| increases the sum. Main point: The
smaller series X a, is sure to converge if X |a,| converges.

106 I Zia} converges then % a, convérges (mmyﬁnwza,mm-
verge, as in tl‘nemsfom,evmﬁfta.mvmto infinity. -

EXAMPLE 1 Start with the positive series 4 + 1+ } + . Change any signs to minus.
Then the new series converges (absolutely). The right choice of signs will make it
converge to any number between —1 and 1.

EXAMPLE 2 Start with the alternating series 1 —4 + 4 — % + -+ which converges to
In 2. Change to plus signs. The new series 1 +3+ 4+ -+ diverges to infinity. The
original alternating series was not absolutely convergent. It was only “conditionally
convergent.” A series can converge (conditionally) by a careful choice of signs—even
if £|a,| = o©

If ¥ \a,| converges then T a, converges. Here is a quick proof. The numbers a, + |a,|
are either zero (if a,, is negative) or 2|a,|. By comparison with X 2|q,|, which converges,
% (a, + |a,)) must converge. Now subtract the convergent series X |a,|. The difference
X a, also converges, completing the proof. All tests for positive series (integral, ratio,
comparison, ...) apply immediately to absolute convergence, because we switch to

|-

EXAMPLE 3 Start with the geometric series § + 3 + 2 + -+ which converges to %
Change any of those signs to minus. Then the new series must converge (absolutely).
But the sign changes cannot achieve all sums between — 4 and . This time the sums
belong to the famous (and very thin) Cantor set of Section 3.7.

EXAMPLE 4 (looking ahead) Suppose X a,x” converges for a particular number x.
Then for every x nearer to zero, it converges absolutely. This will be proved and used
in Section 10.6 on power series, where it is the most important step in the theory.

EXAMPLE 5 Since X 1/n? converges, so does X (cos n)/n®. That second series has
irregular signs, but it converges absolutely by comparison with the first series (since
|cos n| < 1). Probably X (tan n)/n> does not converge, because the tangent does not
stay bounded like the cosine.

ALTERNATING SERIES

The series 1 —4 + 4 — 4 + - converges to In 2. That was stated without proof. This
is an example of an alternating series, in which the signs alternate between plus and
minus. There is the additional property that the absolute values 1, }, 4, 4, ... decrease
to zero. Those two facts—decrease to zero with alternating signs—guarantee
convergence.

40H An aitemaun; series a, —.a; - + a3 —dg eonvexgus (ai m,,oonémaa-
ally, maybe not absolutely) if every a,.4 ﬁa,‘ahd‘d, =0, 5

The best proof is in Figure 10.3. Look at a; — a, + a;. It is below a,, because a; (with
plus sign) is smaller than a, (with minus sign). The sum of five terms is less than the
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Fig. 10.3 An alternating series converges when the absolute values decrease to zero.

sum of three terms, because as is smaller than a,. These partial sums s, s3, Ss, ...
with an odd number of terms are decreasing.

Now look at two terms a, — a,, then four terms, then six terms. Adding on a; — a,
increases the sum (because ay > a,). Similarly s¢ is greater than s, (because it includes
as — ag which is positive). So the sums s,, 54, S, ... are increasing.

The difference between s,_; and s, is the single number +a,. It is required by 10H
to approach zero. Therefore the decreasing sequence s, s3, ... approaches the same
limit s as the increasing sequence s,, s, .... The series converges to s, which always
lies between s,_; and s,.

This plus-minus pattern is special but important. The positive series Za, may not
converge. The alternating series is Z(—1)"*'a,

EXAMPLE 6 The alternating series 4 —% + % - is conditionally convergent (to
n). The absolute values decrease to zero. Is th1s series absolutely convergent? No.
With plus signs, 41 + §+ £+ ---) diverges like the harmonic series.

EXAMPLE 7 The alternating series 1 — 1+ 1 — 1 + --- is not convergent at all. Which
requirement in 10H is not met? The partial sums s,,ss,ss,... all equal 1 and
S2, 84, S¢, --- all equal 0—but they don’t approach the same limit s.

MULTIPLYING AND REARRANGING SERIES

In Section 10.1 we added and subtracted and multiplied series. Certainly addition
and subtraction are safe. If one series has partial sums s, — s and the other has partial
sums t, —t, then addition gives partial sums s, + t, — s+ t. But multiplication is
more dangerous, because the order of the multiplication can make a difference. More
exactly, the order of terms is important when the series are conditionally convergent.
For absolutely convergent series, the order makes no difference. We can rearrange
their terms and multiply them in any order, and the sum and product comes out
right:

g

Rather than proving 10I and 10J, we show what happens when there is only condi-
tional convergence. Our favorite is 1 —3+ 34— 1+ -, converging conditionally to
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In 2. By rearranging, it will converge conditionally to anything! Suppose the desired

sum is 1000. Take positive terms 1+ %+ -

until they pass 1000. Then add negative

terms —$— 4 — - until the subtotal drops below 1000. Then new positive terms
bring it above 1000, and so on. All terms are eventually used, since at least one new
term is needed at each step. The limit is s = 1000.

We also get strange products, when series fail to converge absolutely:

(l‘ﬁ“j—g"‘)(“ﬁ*ﬁ“‘):

(e (o)

On the left the series converge (conditionally). The alternating terms go to zero. On
the right the series diverges. Its terms in parentheses don’t even approach zero, and

the product is completely wrong.

I close by emphasizing that it is absolute convergence that matters. The most
important series are power series Xa,x". Like the geometric series (with all a,= 1)
there is absolute convergence over an interval of x’s. They give functions of x, which

is what calculus needs and wants.

We go next to the series for ¢*, which is absolutely convergent everywhere. From
the viewpoint of convergence tests it is too easy—the danger is gone. But from the
viewpoint of calculus and its applications, ¢* is unconditionally the best.

10.3 EXERCISES

Read-through questions

The series Za, is absolutely convergent if the series __a__is
convergent. Then the original series Xa, is also __b . But
the series Za, can converge without converging absolutely.
That is called __¢__ convergence, and the series __d  is an
example.

For alternating series, the sign of each a,.,is__© to the
sign of a,. With the extra conditions that _ t and _ g ,
the series converges (at least conditionally). The partial sums
S1,83, ... are __h__and the partial sums s,, s4, ... are __|
The difference between s, and s,_, is __J . Therefore the
two series converge to the same number s. An alternating
series that converges absolutely [conditionally] (not at all) is

k _[_1 7 (_m ) With absolute [conditional] con-
vergence a reordering (can or cannot?) change the sum.

Do the series 1-12 converge absolutely or conditionally?
1 z(_n"“ﬁg 2y 1y Y /n+3

'l

z 1)n+1 4 Z n+1
5 Z(—l)"*‘3\/5/(n+ 1) 6 Z(—l)"“sinzn

n+ 1 l
7% ln(n>

9 Y (—1y* a1+ n%
11 Z(_l)n+ 1nl/n

sin’n

8 Z( 1)n+l
10 Z(_l)rﬂ-lzl/n
12 ¥ (=111 —ntm)

13 Suppose Xa, converges absolutely. Explain why keeping
the positive a’s gives another convergent series.

14 Can Xa, converge absolutely if all a, are negative?

15 Show that the alternating series 1 —3 +3—4+3—%+4 -
does not converge, by computing the partial sums s,, 54, ...
Which requirement of 10H is not met?

16 Show that 4—2+4%—3+ - does not converge. Which
requirement of 10H is not met?

17 (a) For an alternating series with terms decreasing to zero,
why does the sum s always lie between s,_; and s,?

(b) Is s — s, positive or negative if s, stops at a positive a,?

18 Use Problem 17 to give a bound on the difference between
ss=1—34+34—%+1 and the sum s=In2 of the infinite
series.

1 1 1
19 Fmdthesuml—§+§_4—!

is (above s)(below s) by less than

+ -+ =s. The partial sum s,

20 Give a bound on the difference between s;40=

1 1 1 1
F—p+3—5"' 1002 and s=Y (—1)"**/n?.
1 n?

1 1 . .
21 Starting from T + 5+ 23 3 + = rZ with plus signs,
show that the alternatlng series in Problem 20 has s = n2/12.

22 Does the alternating series in 20 or the positive series in
21 give =2 more quickly? Compare 1/101% — 1/1022 + --- with
1/101% + 1/102% +
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23 If Xa, does not converge show that X|a,| does not
converge.

24 Find conditions which guarantee that a, +a, —a;+
a4+ as —ag + -+ will converge (negative term follows two
positive terms).

25 Ifthe terms of In 2=1—4%+ 4 — 4 + -+ are rearranged into
1—3—4%+4—{—4%+ -, show that this series now adds to
41n 2. (Combine each positive term with the following nega-
tive term.)

26 Show that the series 1+3—4+4+4—1+ - converges
to3ln2.

27 What is the sum of 1 +§—4+4—3+34—§+ 2

28 Combine 1+ - +%-lnn—>y and 1—3+%—-—>In2

toprove 1 +3+4-4—4—34+ =2
29 (a) Prove that this alternating series converges:

2dx 1 3dx 1 4dx
- —45-| =+3=| =+
1 x 2 2 x 3 3 X

(b) Show that its sum is Euler’s constant 7.

30 Prove that this series converges. Its sum is 7/2.

2n ‘
j'smx j J' smxdx

31 The cosine of 8 =1 radian is 1 — 2 + i — -+, Compute
cos 1 to five correct decimals (how many terms?).

3 7[5
32 The sine of 6 == radians is © — a + = 5 Compute

sin = to eight correct decimals (how many terms?).

33 If £a? and Xb? are convergent show that Za,b, is abso-
lutely convergent.

Hint: (a + b)?> > 0 yields 2|ab] < a® + b2

34 Verify the Schwarz inequality (Za,b,)? <(Za2)(Zb2) if
a,=(3)" and b, = ()"

35 Under what condition does 2(a,,+1 —a,) converge and
what is its sum?

36 For a conditionally convergent series, explain how the
terms could be rearranged so that the sum is + co. All terms
must eventually be included, even negative terms.

37 Describe the terms in the product (1 + 4+ 4+ )1 +3+

$+ ---) and find their sum.

38 True or false:

(a) Every alternating series converges.

(b) Za, converges conditionally if Z|a,| diverges.

(c) A convergent series with positive terms is absolutely
convergent.

(d) If Xa, and b, both converge, so does Z(a, + b,).

39 Every number x between 0 and 2 equals 1+4+4+ -
with suitable terms deleted. Why?

40 Every number s between —1 and 1 equals +{+3+4+ -
with a suitable choice of signs. (Add 1 =4 +31+ 3+ - to get
Problem 39.) Which signs give s= —1 and s=0 and s =}?

41 Show that no choice of signs will make +$+3+4+-
equal to zero.

42 The sums in Problem 41 form a Cantor set centered at
zero. What is the smallest positive number in the set? Choose
signs to show that % is in the set.

*43 Show that the tangent of 0 =3(x — 1) is sin 1/(1 —cos 1).

This is the imaginary part of s= —In(l —¢'). From
s =X e"/n deduce the remarkable sum Z (sin n)/n = 3(n — 1).

44 Suppose Za, converges and |x| <1. Show that Xa,x"
converges absolutely.

10.4 The Taylor Series for e*, sin x, and cos x 1NN

This section goes back from numbers to functions. Instead of Za, = s it deals with

Xa,x"

= f(x). The sum is a function of x. The geometric series has all a, = 1 (including

ay, the constant term) and its sum is f(x) = 1/(1 — x). The derivatives of 1 + x + x* + -
match the derivatives of f. Now we choose the a, differently, to match a different

function.

The new function is ¢*. All its derivatives are ¢*. At x =0, this function and its
derivatives equal 1. To match these 1’s, we move factorials into the denominators.
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Term by term the series is
2 x3
=1+X +—+§+~-. (1)
x"/n! has the correct nth derivative (= 1). From the derivatives at x = 0, we have built
back the function! At x = 1 the right side is 1 + 1 + %+ % + - and the left side is e =
2.71828.... At x= — 1 the series gives 1 —1+4—L1+ - whichise™!.
The same term-by-term idea works for differential equations, as follows.

EXAMPLE 1 Solve dy/dx = — y starting from y=1 at x=0.

Solution  The zeroth derivative at x = 0 is the function itself: y = 1. Then the equation
y=—y gives y=-—1 and y"=-—y'=+1. The alternating derivatives
1, —1,1, —1, ... are matched by the alternating series for e ™*:

y=1-x+4x2-{x3+- ~* (the correct solution to y' = — y).

EXAMPLE 2 Solve d*y/dx? = — y starting from y = 1 and y’ = 0 (the answer is cos x).

Solution The equation gives y* = — 1 (again at x = 0). The derivative of the equation
gives y” = —y' =0. Then y"" = — y" = + 1. The even derivatives are alternately +1
and —1, the odd derivatives are zero. This is matched by a series of even powers,
which constructs cos x:
1 1
—l——2—'x2+ ax"—ax + -+ = cos x.

The first terms 1 — 4x? came earlier in the book. Now we have the whole alternating
series. It converges absolutely for all x, by comparison with the series for ¢* (odd
powers are dropped). The partial sums in Figure 10.4 reach further and further before
they lose touch with cos x.

2

1- ——;-x + —!—x“ (xs) @x'?)

'T / /%

1 - %".2 _('\.6) _.(XIO)

Fig. 10.4 The partial sums 1 — x2/2 4+ x*/24 — -+ of the cosine series.

If we wanted plus signs instead of plus-minus, we could average ¢* and e *. The
differential equation for cosh x is d2y/dx? = + y, to give plus signs:
1

1 2 1 1 C .
—(o* Xy = —_ + — 4+ oo X
2(e te *)=1+ 2' T X 6 (which is cosh x)

TAYLOR SERIES
The idea of matching derivatives by powers is becoming central to this chapter. The

derivatives are given at a basepoint (say x = 0). They are numbers f(0), f'(0), .... The
derivative f®(0) will be the nth derivative of a,x", if we choose a, to be f™(0)/n!
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Then the series Ta,x" has the same derivatives at the basepoint as f(x):

f‘”’(ﬁi

) ; a-c ﬂf

The first terms give the linear and quadratic approximations that we know well. The
x3 term was mentioned earlier (but not used). Now we have all the terms—an “infinite
approximation” that is intended to equal f(x).

Two things are needed. First, the series must converge. Second, the function must
do what the series predicts, away from x =0. Those are true for ¢* and cos x and
sin x; the series equals the function. We proceed on that basis.

The Taylor series with special basepoint x = 0 is also called the ““Maclaurin series.”

EXAMPLE 3 Find the Taylor series for f(x) = sin x around x = 0.

Solution The numbers f™(0) are the values of f=sin x, f' =cos x, f” = —sin x, ...
at x =0. Those values are 0,1, 0, —1, 0, 1, .... All even derivatives are zero. To find
the coefficients in the Taylor series, divide by the factorials:

sin x=x—£x3+ x> — . ()]

EXAMPLE 4 Find the Taylor series for f(x)= (1 + x)° around x =0.

Solution This function starts at f(0) = 1. Its derivative is 5(1 + x)*, so f’(0) = 5. The
second derivative is 5-4+(1+x)3, so f"(0)=5-4. The next three derivatives are
5:4-3,5-4-3:2,5-4-3-2-1. After that all derivatives are zero. Therefore the Taylor
series stops after the x° term:
5-4 2 5-4-3 ., 5-4-3-2 ,  5:4:3:2-1 ,
1+ 5x +7 + 3 x? + a x*+ 5 x°. 3)
You may recognize 1, 5, 10, 10, 5, 1. They are the binomial coefficients, which appear
in Pascal’s triangle (Section 2.2). By matching derivatives, we see why 0!, 1!, 2!, ... are
needed in the denominators.

There is no doubt that x =0 is the nicest basepoint. But Taylor series can be con-
structed around other points x = a. The principle is the same—match derivatives by
powers—but now the powers to use are (x — a)". The derivatives f™(a) are computed
at the new basepoint x =a.

The Taylor series begins with f(a) + f'(a)(x — a). This is the tangent approximation
at x = g. The whole “infinite approximation” is centered at a—at that point it has
the same derivatives as f(x).

10!; The Taylor smes for f(x) awund the bawpom: x = a is

ﬂx)“ﬂahf’(a}(x"* ar+ éf’f(u)(x o ~_==i§ m@wﬁ L@

EXAMPLE 5 Find the Taylor series for f(x) = (1 + x)° around x=a=1.

Solution At x=1, the function is (1+ 1)°=32. Its first derivative 5(1 + x)* is
5-16 = 80. We compute the nth derivative, divide by n!, and multiply by (x — 1)*:

324+ 80(x — 1) + 80(x — 1)* + 40(x — 1)® + 10(x — 1)* + (x — 1)°. &)

387
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That Taylor series (which stops at n = 5) should agree with (1 + x)°. It does. We could
rewrite 1 + x as 2 + (x — 1), and take its fifth power directly. Then 32, 16, 8, 4, 2, 1 will
multiply the usual coefficients 1,5, 10, 10,5,1 to give our Taylor coefficients
32, 80, 80, 40, 10, 1. The series stops as it will stop for any polynomial—because the
high derivatives are zero.

EXAMPLE 6 Find the Taylor series for f(x) = ¢* around the basepoint x = 1.

Solution At x=1 the function and all its derivatives equal e. Therefore the
Taylor series has that constant factor (note the powers of x — 1, not x):

e"=e+e(x—1)+§(x—1)2+%(x—1)3+---. ©)

DEFINING THE FUNCTION BY ITS SERIES

Usually, we define sin x and cos x from the sides of a triangle. But we could start
instead with the series. Define sin x by equation (2). The logic goes backward, but it
is still correct:

First, prove that the series converges.
Second, prove properties like (sin x) = cos x.
Third, connect the definitions by series to the sides of a triangle.

We don’t plan to do all this. The usual definition was good enough. But note first:
There is no problem with convergence. The series for sin x and cos x and e* all have
terms + x"/n!. The factorials make the series converge for all x. The general rule for
¢* times ¢’ can be based on the series. Equation (6) is typical: e is multiplied by
powers of (x — 1). Those powers add to e*~'. So the series proves that e* =ee* "1,
That is just one example of the multiplication (¢*)(e”) = e***:

x2 yl x2 y2

I+x+=+ Y l+y++ . )=l+x+y+—+xp++... (T

( 2 )( Yyt Xxtyt— txy+s ™

Term by term, multiplication gives the series for e**?. Term by term, differentiating
the series for e* gives ¢*. Term by term, the derivative of sin x is cos x:

d x3 xs xl x4
—(X‘TE‘"-):“E*E_”“ ®)

We don’t need the famous limit (sin x)/x — 1, by which geometry gave us the deriva-
tive. The identities of trigonometry become identities of infinite series. We could even
define 7 as the first positive x at which x —1x3 + --- equals zero. But it is certainly
not obvious that this sine series returns to zero—much less that the point of return
is near 3.14.

The function that will be defined by infinite series is €'°. This is the exponential of
the imaginary number i6 (a multiple of i = \/?1 ). The result e* is a complex number,
and our goal is to identify it. (We will be confirming Section 9.4.) The technique is to
treat i6 like all other numbers, real or complex, and simply put it into the series:

DEFINITION ¢ is the sum of 1 + (i) + %(ie)2 + %(ioﬁ + - 9

Now use i>= — 1. The even powers are i*=+1, i®=—1, i®*=+1,.... We are
just multiplying —1 by —1 to get 1. The odd powers are i* = — i, i*= +i, .... There-
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10.4 The Taylor Series for ¢, sin x, and cos x

fore ¥ splits into a real part (with no i’s) and an imaginary part (multiplying i):

2! 3!

You recognize those series. They are cos 0 and sin 8. Therefore:

. 1 1 1 1
i0 — - il —_ e ; - 034+ —
e -(1 02+4!04 )+;(0 0 +5!95 ) (10)

Euler’s formula is ¢® = cos 0 + i sin 0. Note that ¢*™ = 1.

The real part is x = cos 0 and the imaginary part is y = sin . Those coordinates pick
out the point ¢ in the “complex plane.” Its distance from the origin (0, 0) is r = 1,
because (cos 0)? + (sin 8)> = 1. Its angle is 6, as shown in Figure 10.5. The number
—1 is e'", at the distance r =1 and the angle . It is on the real axis to the left of
zero. If € is multiplied by r = 2 or r = 1 or any r > 0, the result is a complex number
at a distance r from the origin:

Complex numbers: re”® =r(cos 0+ i sin ) =r cos 0 + ir sin 6 = x + iy.

With ¢, a negative number has a logarithm. The logarithm of —1 is imaginary
(it is im, since e™ = — 1). A negative number also has fractional powers. The fourth
root of —1 is (—1)}/4 = ¢™'* More important for calculus: The derivative of x*/* is
3x1/4, That sounds old and familiar, but at x = — 1 it was never allowed.

Complex numbers tie up the loose ends left by the limitations of real numbers.

The formula ¢ = cos 8 + i sin # has been called “one of the greatest mysteries of
undergraduate mathematics.” Writers have used desperate methods to avoid infinite
series. That proof in (10) may be the clearest (I remember sending it to a prisoner
studying calculus) but here is a way to start from d/dx(e'*) = ie'*.

A different proof of Euler’s formula Any complex number is e = r(cos 6 + i sin 6)
for some r and 0. Take the x derivative of both sides, and substitute for ie'*:

(cos 8 + i sin B)dr/dx + r(—sin 0 + i cos 0)d8/dx = ir(cos 6 + i sin ).

Comparing the real parts and also the imaginary parts, we need dr/dx=0 and
df/dx = 1. The starting values r = 1 and 6 = 0 are known from ¢'® = 1. Therefore r is
always 1 and @ is x. Substituting into the first sentence of the proof, we have Euler’s
formula e = 1(cos 6 + i sin ).
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10.4 EXERCISES

Read-through questions

The _ o

f(x)=¢* this series is __t . For f(x)=cos x the series is
9 . For f(x)=sin x the series is __h . If the signs were

all positive in those series, the functions would be cosh x and
! . Addition gives cosh x +sinh x=__|

series is chosen to match f(x) and all its __ b
at the basepoint. Around x=0 the series begins with
fO)+_c x4+ _ d x2 Thecoefficient of x"is __® . For

t . The derivative of 1 —$x2% 4 ---is __ v

the polar and rectangular forms of a __ A
logarithm of ¢ is __ B

In the Taylor series for f(x) around x = a, the coefficient of

(x—a)isb,=

bo+ by(x — a) + by(x —a)® agrees with the original _ P
The series for ¢ around x=a has b,=_ a . Then the
Taylor series reproduces the identity e*=(__r _)(__8 ).

k . Then b,(x —a)" hasthesame __|  as
fat the basepoint. In the example f(x) = x2, the Taylor coeffi-
cients are by =

m  by=_n_ b,=_ 0 . The series

sin 2z = Q.

— 1 the series 1+ i + 4(if)? + - splits into e’ =
— square gives e?®=_ w_ Its reciprocal is e * .
Multiplying by rgivesre®=_ v _+i__2 , which connects
number. The

We define ¢*, sin x, cos x, and also e by their series. The
derivative d/dx(1 +x+4x2+4-)=1+x+ - translates to
Using i% =

. Its

X

1 Write down the series for e2* and compute all derivatives
at x = 0. Give a series of numbers that adds to e2.

2 Write down the series for sin 2x and check the third
derivative at x =0. Give a series of numbers that adds to
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In 3-8 find the derivatives of f(x) at x = 0 and the Taylor series
(powers of x) with those derivatives.

3 f(x)=e* 4fx)=1/1+x)
5f(x)=1/(1-2x) 6 f(x)=cosh x
7 fx)=In(1—x) 8 fix)=In(+x)

Problems 9-14 solve differential equations by series.

9 From the equation dy/dx =y — 2 find all the derivatives
of y at x =0 starting from 3(0)= 1. Construct the infinite
series for y, identify it as a known function, and verify that
the function satisfies y =y — 2.

10 Differentiate the equation y' =cy+s (c and s constant)
to find all derivatives of y at x =0. If the starting value is
Yo =0, construct the Taylor series for y and identify it with
the solution of y' = cy + s in Section 6.3.

11 Find the infinite series that solves y” = — y starting from
y=0and y=1at x=0.

12 Find the infinite series that solves y’ = y starting from y =
1 at x=3 (use powers of x— 3). Identify y as a known
function.

13 Find the infinite series (powers of x) that solves y”’ =
2y’ — y starting from y=0and y'=1 at x=0.

14 Solve y" =y by a series with y=1 and y’ =0 at x =0 and
identify y as a known function.

15 Find the Taylor series for f(x) = (1 + x)* around x =a =
0 and around x =a =1 (powers of x — 1). Check that both
series add to (1 + x)%

16 Find all derivatives of f(x) = x3 at x = q and write out the
Taylor series around that point. Verify that it adds to x>.

17 What is the series for (1 — x)* with basepoint a =1?

18 Write down the Taylor series for f= cos x around x =2=n
and also for f= cos (x — 2x) around x =0.

In 19-24 compute the derivatives of f/ and its Taylor series
around x = 1.

19 f(x) = 1/x 20 f(x) = 1/2 — x)
21 f(x)=In x 22 f(x) = x*
23 f(x)=e"* 24 f(x) = e**

In 25-33 write down the first three nonzero terms of the Taylor
series around x =0, from the series for ¢*, cos x, and sin x.

25 xe* 26 cos \/x 27 (1 — cos x)/x?
gg S0 X 29 '[ X ax 30 sin x?

X o X
31 ¢ 32 p*=¢*nb 33 ¢ cos x

*34 For x <0 the derivative of x" is still nx"~1:

d "_—i n,inmy __ n—linuém
=2 ) = T (lxl"e™) = nfxf =t =,

What is d|x|/dx? Rewrite this answer as nx"~".

35 Why doesn’t f(x) = \/; have a Taylor series around x =
0? Find the first two terms around x = 1.

36 Find the Taylor series for 2* around x =0.

In 37-44 find the first three terms of the Taylor series around
x=0.

37 f(x)=tan"'x
39 f(x)=tan x

38 f(x) =sin"!x
40 f(x) = In(cos x)
41 f(x) = e¥in* 42 f(x)=tanh~!x
43 f(x) = cos®x 44 f(x) = sec®x
45 From e®=cosf+isinf and e *=cos § —isin 0, add
and subtract to find cos 0 and sin 6.
46 Does (¢%)? equal cos?0 + i sin?@ or cos 82 + i sin 62?
47 Find the real and imaginary parts and the 99th power of
ein’ eiu/2, einld’ and e—in/G_
48 The three cube roots of 1 are 1, 2™/3, ¢4/3,
(a) Find the real and imaginary parts of e>™/3,
(b) Explain why (e2"/3)* = 1.
(c) Check this statement in rectangular coordinates.

49 The cube roots of —1 =¢™ are ¢™3 and and
. Find their sum and their product.

50 Find the squares of 2¢™3=14+./3i and 4™ =
2,/2 +i2,/2 in both polar and rectangular coordinates.

51 Multiply e*=coss+isins times e”=cost+isint to
find formulas for cos(s + ¢) and sin(s + ¢).

52 Multiply e” times e~ " to find formulas for cos(s — t) and
sin(s — ¢).

53 Find the logarithm of i. Then find another logarithm of i.
(What can you add to the exponent of "’ without changing
the result?)

54 (Proof that e is irrational) If e = p/q then

Neplto(ioL L
=Pl nTaT "

would be an integer. (Why?) The number in brackets—the
distance from the alternating series to its sum 1/e—is less
than the last term which is 1/p! Deduce that [N| < 1 and reach
a contradiction, which proves that e cannot equal p/q.

55 Solve dy/dx = y by infinite series starting from y=2 at
x=0.
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This section studies the properties of a power series. When the basepoint is zero, the
powers are x". The series is a,x". When the basepoint is x = g, the powers are
(x — a)". We want to know when and where (and how quickly) the series converges
to the underlying function. For ¢* and cos x and sin x there is convergence for all
x—but that is certainly not true for 1/(1 — x). The convergence is best when the
function is smooth.

First I emphasize that power series are not the only series. For many applications
they are not the best choice. An alternative is a sum of sines, f(x) = Z b, sin nx. That
is a “Fourier sine series”, which treats all x’s equally instead of picking on a basepoint.
A Fourier series allows jumps and corners in the graph—it takes the rough with the
smooth. By contrast a power series is terrific near its basepoint, and gets worse as
you move away. The Taylor coefficients a, are totally determined at the base-
point—where all derivatives are computed. Remember the rule for Taylor series:

a, = (nth derivative at the basepoint)/n! = f®(q)/n! 1)

A remarkable fact is the convergence in a symmetric interval around x = a.

The series Zx"/n! converges for all x (the sum is ¢*). The series Zn!x" converges for
no x (except x=0). The geometric series Zx" converges absolutely for |x| <1 and
diverges for |x| > 1. Its radius of convergence is r = 1. Note that its sum 1/(1 — x) is
perfectly good for |x| > 1—the function is all right but the series has given up. If
something goes wrong at the distance r, a power series can’t get past that point.

When the basepoint is x = a, the interval of convergence shifts over to [x —a| <r.
The series converges for x between a — r and a + r (symmetric around a). We cannot
say in advance whether the endpoints a + r give divergence or convergence (absolute
or conditional). Inside the interval, an easy comparison test will now prove con-
vergence.

PROOF OF 10M Suppose Xa, X" converges at a particular point X. The proof will
show that Xa,x" converges when |x| is less than the number |X|. Thus convergence
at X gives convergence at all closer points x (I mean closer to the basepoint 0). Proof:
Since X a,X” converges, its terms approach zero. Eventually |a, X" < 1 and then

la,x" = |a, X" |x/ X" < |x/ X |".
Our series Za,x" is absolutely convergent by comparison with the geometric series
for |x/X]|, which converges since |x/X]| < 1.
EXAMPLE 1 The series Xnx"/4" has radius of convergence r = 4.

The ratio test and root test are best for power series. The ratios between terms
approach x/4 (and so does the nth root of nx"/4"):

(n+ Dx"*! [nx* xn+1
BT iy b approaches L

The ratio test gives convergence if L < 1, which means |x| < 4.

-h_l ®
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EXAMPLE 2 The sine series x — % + % — -+ has r = oo (it converges everywhere).

The ratio of x"*2/(n+ 2)! to x"/n! is x/(n + 2)(n + 1). This approaches L= 0.

EXAMPLE 3 The series Z(x — 5)"/n® has radius r = 1 around its basepoint a = 5.

The ratios between terms approach L= x — 5. (The fractions n?/(n + 1)> go toward
1.) There is absolute convergence if |x — 5| < 1. This is the interval 4 < x < 6, symmet-
ric around the basepoint. This series happens to converge at the endpoints 4 and 6,
because of the factor 1/n%. That factor decides the delicate question—convergence at
the endpoints—but all powers of n give the same interval of convergence 4 < x < 6.

CONVERGENCE TO THE FUNCTION: REMAINDER TERM AND RADIUS r

Remember that a Taylor series starts with a function f(x). The derivatives at the
basepoint produce the series. Suppose the series converges: Does it converge to
the function? This is a question about the remainder R,(x) = f(x) — s,(x), which is the
difference between f and the partial sum s, = ay + - + a,(x — a)". The remainder R,
is the error if we stop the series, ending with the nth derivative term a,(x — a)".

40N Suppose fhas an (n + 1)st derivative from the basepoint a out to x. Then
for some point ¢ in between (position not known) the remainder at x equals

R,()=f(x) = 5,() =f®*U)(x — af *Hfn+ 1)1 @

The error in stopping at the nth derivative is controlled by the (n + 1)st derivative.

You will guess, correctly, that the unknown point ¢ comes from the Mean Value
Theorem. For n=1 the proof is at the end of Section 3.8. That was the error e(x) in
linear approximation:

Ry(x)=f(x) = fla) = f(@)(x — @) = 1 f"(c)(x — @)*.

For every n, the proof compares R, with (x —a)"*!. Their (n+ 1)st derivatives are
f®*V and (n+ 1)! The generalized Mean Value Theorem says that the ratio of R, to
(x — a)"* ! equals the ratio of those derivatives, at the right point c. That is equation
(2). The details can stay in Section 3.8 and Problem 23, because the main point is
what we want. The error is exactly like the next term a,.,(x — a)"*!, except that the
(n+ 1)st derivative is at ¢ instead of the basepoint a.

EXAMPLE 4 When fis e, the (n + 1)st derivative is e*. Therefore the error is

. xn xn+1
R,,—e —(1+x+---+z)—e‘(7+—l)!. (3)

At x=1 and n=2, the error is e— (1 + 1+ %)~ .218. The right side is ¢°/6. The
unknown point is ¢ = 1n (.218 - 6) = .27. Thus c lies between the basepoint a = 0 and
the error point x =1, as required. The series converges to the function, because
R,—0.

In practice, n is the number of derivatives to be calculated. We may aim for an
error |R,| below 10~ . Unfortunately, the high derivative in formula (2) is awkward
to estimate (except for ¢*). And high derivatives in formula (1) are difficult to compute.
Most real calculations use only a few terms of a Taylor series. For more accuracy we
move the basepoint closer, or switch to another series.
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There is a direct connection between the function and the convergence radius r.
A hint came for f(x)= 1/(1 — x). The function blows up at x = 1—which also ends
the convergence interval for the series. Another hint comes for f= 1/x, if we expand
around x=ag=1:
1
1-(1—x)

This geometric series converges for |1 — x| < 1. Convergence stops at the end point
x = 0—exactly where 1/x blows up. The failure of the function stops the convergence
of the series. But note that 1/(1 + x2), which never seems to fail, also has convergence
radius r = 1:

§= =1+(1—x)+(1—x)?*+ . (4)

1/(1 + x?)=1-—x%+ x*— x5+ --- converges only for |x| < 1.

When you see the reason, you will know why r is a “radius.” There is a circle, and
the function fails at the edge of the circle. The circle contains complex numbers as
well as real numbers. The imaginary points i and —i are at the edge of the circle.
The function fails at those points because 1/(1 + i%) = c0.

Complex numbers are pulling the strings, out of sight. The circle of convergence
reaches out to the nearest “singularity” of f(x), real or imaginary or complex. For
1/(1 + x?2), the singularities at i and —i make r = 1. If we expand around a =3, the
distance to i and —i is r=\/16. If we change to In (1 + x), which blows up at
x= — 1, the radius of convergence of x —$x? +3x3—-isr=1.

/(1 +i%) = oo

In0 and 0” at x =—1

a=0

In(1 + x) and (1 +x)”

-

1/(1 + x2) = = also at —i

Fig. 10.6 Convergence radius r is distance from basepoint a to nearest singularity.

THE BINOMIAL SERIES

We close this chapter with one more series. It is the Taylor series for (1 + x)?, around
the basepoint x = 0. A typical power is p =%, where we want the terms in

V1tx=1+3x+ax?+ -

The slow way is to square both sides, which gives 1 + x + (2a, + $)x2 on the right.
Since 1+ x is on the left, a, = — } is needed to remove the x2 term. Eventually a,
can be found. The fast way is to match the derivatives of f= (1 + x)'/2:

f=31+x)712 f=@EPA+x0)7 =@ DDA+ )T

393
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At x = 0 those derivatives are 3, — 4, 3. Dividing by 1!, 2!, 3! gives

1 1 1 1/1\/1 1
al—i az——g a3——13 an—a(i)(i—l) (§—n+1).

These are the binomial coefficients when the power is p=1.

Notice the difference from the binomials in Chapter 2. For those, the power p was
a positive integer. The series (1 + x)2 = 1 + 2x + x? stopped at x2. The coefficients for
p=2were1,2,1,0,0,0, .... For fractional p or negative p those later coefficients are
not zero, and we find them from the derivatives of (1 + x)?:

(1+xP pl+xP~' pp—DA+xP~2 fO=pp—1)-(p—n+1)(1+xF"
Dividing by 0!, 1!, 2!, ..., n! at x =0, the binomial coefficients are

e=1) O _pp-D-(p—ntl)

1
2 n! n!

&)

For p = n that last binomial coefficient is n!/n! = 1. It gives the final x" at the end of
(1 + x)". For other values of p, the binomial series never stops. It converges for |x| < 1:

prp—1) 2 pp—Y(p—ntl) ,
T x2+ ";0 o x".

(1+xP=1+px+ 6)
When p= 1,2, 3, ... the binomial coefficient p\/n\(n — p)! counts the number of ways
to select a group of n friends out of a group of p friends. If you have 20 friends, you
can choose 2 of them in (20)(19)/2 = 190 ways.

Suppose p is not a positive integer. What goes wrong with (1 + x)?, to stop the
convergence at |x| = 1? The failure is at x= —1. If p is negative, (1 + x)? blows up.
If p is positive, as in /1 + x, the higher derivatives blow up. Only for a positive
integer p = n does the convergence radius move out to r = co. In that case the series
for (1 + x)" stops at x", and f never fails.

A power series is a function in a new form. It is not a simple form, but sometimes
it is the only form. To compute f we have to sum the series. To square f we have to
multiply series. But the operations of calculus—derivative and integral—are easier.
That explains why power series help to solve differential equations, which are a rich
source of new functions. (Numerically the series are not always so good.) I should
have said that the derivative and integral are easy for each separate term a,x"—and
fortunately the convergence radius of the whole series is not changed.

If f(x)=Za,x" has convergence radius r, so do its derivative and its integral.
dffdx =Zna,x""' and [ f(x)dx=2Za,x"*'/(n+ 1) also converge for |x| <r.

EXAMPLE5 The series for 1/(1 — x) and its derivative 1/(1 — x)* and its integral
—In(1 — x) all have r =1 (because they all have trouble at x = 1). The series are Z x"
and Znx" ! and Tx"*Y(n+1).

EXAMPLE 6 We can integrate e** (previously impossible) by integrating every term
in its series:

1 x* 1(x% | 1(x
dx = +x24 —x++ - = 4= —(Z=
Je" dx j(l x5 4 ox + )dx x+ 3 +2!(5)+3!(7)+

This always converges (r = c0). The derivative of e** was never a problem.
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10.5 EXERCISES

Read-through questions

If |x| < |X| and Za,X" converges, then the series Xa,x" also
a . There is convergence in a __b___interval around the
¢ . For Z(2x)" the convergence radiusis r=_d__. For

Xx"/n! the radius is r=_e . For X(x — 3)" there is con-

vergence for [x —3|<__ t . Then x is between __g  and
h

Starting with f(x), its Taylor series a,x" has ¢,=_ | .
With basepoint a, the coefficient of (x —a)*is _ | . The
error after the x” term is called the __k___R,(x). It is equal to

| where the unknown point ¢ is between _m . Thus
the error is controlled by the _ n

derivative.

The circle of convergence reaches out to the first point
where f(x) fails. For f=4/(2 — x), that point is x=_o
Around the basepoint a = 5, the convergence radius would be
r=_p . Forsin x and cos x the radiusis r=__q

The series for \/1+ x is the __t

series with p=1. Its
coefficients are a,=__s . Its convergence radius is __t

Its square is the very short series 1 + x.

In 1-6 find the Taylor series for f(x) around x = 0 and its radius
of convergence r. At what point does f(x) blow up?

1 f(x)=1/(1—4x) 2 f(x)=1/(1—4x?
3 fx)=e'"% 4 f(x)=tan x (through x?)
5 f(x)=In(e+ x) 6 f(x)=1/(1 +4x2)

Find the interval of convergence and the function in 7-10.

7ﬂﬂ=§(x;j" 8 /(=3 nix—ar~!
0 0

9 f9=F —(x—ar""

10 f(x)=(x_2n)_w+

3!

11 Write down the Taylor series for (e* — 1)/x, based on the
series for e*. At x =0 the function is 0/0. Evaluate the series
at x =0. Check by ’'Hopital’s Rule on (e* — 1)/x.

12 Write down the Taylor series for xe* around x = 0. Inte-
grate and substitute x =1 to find the sum of 1/al(n + 2).

13 If f(x) is an even function, so f(—x) =f(x), what can you
say about its Taylor coefficients in = Za,x"?

14 Puzzle out the sums of the following series:

@x+x*—x34+x*+x5—x°4 -
x*  x®
O 1+ + 5+

© (=D —3(x =12 +3(x—1)° — -~

15 From the series for (1 — cos x)/x? find the limit as x = 0
faster than ’'Hopital’s rule.

16 Construct a power series that converges for 0 < x < 2m.

17-24 are about remainders and 25-36 are about binomials.

17 If the cosine series stops before x8/8! show from (2) that
the remainder R, is less than x®/8! Does this also follow
because the series is alternating?

18 If the sine series around x =27 stops after the terms in
problem 10, estimate the remainder from equation (2).

19 Estimate by (2) the remainder R,=x"*14+x"*24 - in
the geometric series. Then compute R, exactly and find the
unknown point ¢ for n =2 and x =$.

20 For —In(l —x)=x +3x2 +4x3? + R;, use equation (2) to
show that Ry <4 at x=1.

21 Find R, in Problem 20 and show that the series converges
to the function at x = (prove that R, - 0).

22 By estimating R, prove that the Taylor series for ¢* around
x =1 converges to e* as n — 0.

23 (Proof of the remainder formula when n =2)
(a) At x=a find R;, R}, R3, Ry
(b) At x = a evaluate g(x) =(x —a)*and g, g”, g".

Ry(x) = Ra(a) _ Ri(cy),

(c) What rule gives

)—ga)  glcr)
Rife))— Ry@)  Ri(c)
d = d
DI —¢@ gl ™

Ri(c;)— Rifa) _ Ry
g'c)—g"@  g"(c)
(e) Combine (a-b-c-d) into the remainder formula (2).

where are ¢, and ¢, and ¢?

24 All derivatives of f(x) = e~ V/** are zero at x = 0, including
f(0)=0. What is f(.1)? What is the Taylor series around
x =07 What is the radius of convergence? Where does the
series converge to f(x)? For x=1 and n=1 what is the
remainder estimate in (2)?

25 (a) Find the first three terms in the binomial series for
1//1—x2
(b) Integrate to find the first three terms in the Taylor
series for sin ™ !x.

26 Show that the binomial coefficients in 1/
are a,=1+3-5--(2n—1)/2"n!

1—x=%Xq,x"

27 For p= —1 and p= — 2 find nice formulas for the bino-
mial coefficients.

28 Change the dummy variable and add lower limits to make
TPax"" 1 =2® (n+ x".
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29 In (1 —x) ' = Zx" the coefficient of x" is the number of
groups of n friends that can be formed from 1 friend (not
binomial—repetition is allowed!). The coefficient is 1 and
there is only one group—the same friend »n times.
(a) Describe all groups of n friends that can be formed
from 2 friends. (There are n + 1 groups.)

(b) How many groups of 5 friends can be formed from 3
friends?

30 (a) What is the coefficient of x" when 1+ x4 x%+ -
multiplies 1+ x + x% + -2 Write the first three terms.
(b) What is the coefficient of x° in (Zx*)*?

31 Show that the binomial series for /1 + 4x has integer

coefficients. (Note that x" changes to (4x)". These coefficients
are important in counting trees, paths, parentheses...)

32 In the series for 1/, /1 — 4x, show that the coefficient of x"
is (2n)! divided by (n!)>.

Use the binomial series to compute 33—-36 with error less than
1/1000.
33 (1514
35 (1.nt!

34 (1001)'3
36 61/1000

37 From sec x = 1/[1 — (1 —cos x)] find the Taylor series of
sec x up to x®. What is the radius of convergence r (distance
to blowup point)?

38 From secx = 1/[1 —sin2x] find the Taylor series up to
x2. Check by squaring the secant series in Problem 37. Check
by differentiating the tangent series in Problem 39.

39 (Division of series) Find tan x by long division of sin x/
COS X:

X3 xS . 1 xz+x_4... —_ _+_x_3+2_x5+
X% 10 7 R T T I

40 (Composition of series) If f=aq + a;x + a;x*+ -+ and
g=bx+b,x*+ - find the 1, x, x? coefficients of f(g(x)).
Test on f=1/(1 + x), g = x/(1 — x), with f(g(x))=1—x.

41 (Multiplication of series) From the series for sin x and
1/(1 — x) find the first four terms for f= sin x/(1 — x).

42 (Inversion of series) If f= a;x + a,x* + *- find coefficients
by, b, in g=b;x +b,x? + -+ so that f(g(x))=x. Compute
by,byforf=e~~1,g=f"1=In(1l + x).

43 From the multiplication (sin x)(sin x) or the derivatives of
f(x) =sin2x find the first three terms of the series. Find the
first four terms for cos?x by an easy trick.

44 Somehow find the first six nonzero terms for f=(1 — x)/
(1 —x3).

45 Find four terms of the series for 1/,/1 — x. Then square
the series to reach a geometric series.

46 Compute j(l) e * dx to 3 decimals by integrating the
power series.

47 Compute [} sin®t dt to 4 decimals by power series.

48 Show that Xx"/n converges at x = — 1, even though its
derivative £x"~! diverges. How can they have the same
convergence radius?

49 Compute lim0 (sin x — tan x)/x> from the series.
x

50 If the nth root of a, approaches L > 0, explain why Za,x"
has convergence radius r = 1/L.

51 Find the convergence radius r around basepoints a =0
and a =1 from the blowup points of (1 + tan x)/(1 + x?).



