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C H A P T E R  12 


Motion Along a Curve 

I [ 12.1 The Position Vector I-, 


This chapter is about "vector functions." The vector 2i +4j + 8k is constant. The 
vector R(t) = ti + t2j+ t3k is moving. It is a function of the parameter t, which often 
represents time. At each time t, the position vector R(t) locates the moving body: 

position vector =R(t) =x(t)i + y(t)j + z(t)k. (1) 

Our example has x = t, y = t2, z = t3. As t varies, these points trace out a curve in 
space. The parameter t tells when the body passes each point on the curve. The 
constant vector 2i +4j + 8k is the position vector R(2) at the instant t =2. 

What are the questions to be asked? Every student of calculus knows the first 
question: Find the deriuatiue. If something moves, the Navy salutes it and we differen- 
tiate it. At each instant, the body moving along the curve has a speed and a direction. 
This information is contained in another vector function-the velocity vector v(t) 
which is the derivative of R(t): 

Since i, j, k are fixed vectors, their derivatives are zero. In polar coordinates i and j 
are replaced by moving vectors. Then the velocity v has more terms from the product 
rule (Section 12.4). 

Two important cases are uniform motion along a line and around a circle. We study 
those motions in detail (v =constant on line, v = tangent to circle). This section also 
finds the speed and distance and acceleration for any motion R(t). 

Equation (2) is the computing rulefor the velocity dR/dt. It is not the definition of 
dR/dt, which goes back to basics and does not depend on coordinates: 

dR AR 
lim 

R(t + At) -R(t)- lim -= 
dt a t + o  At A t + O  At 

We repeat: R is a vector so AR is a vector so dR/dt is a vector. All three vectors are 
in Figure 12.1 (t is not a vector!). This figure reveals the key fact about the geometry: 

446 The velocity v =dR/dt is tangent to the curve. 
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The vector AR goes from one point on the curve to a nearby point. Dividing by 
At changes its length, not its direction. That direction lines up with the tangent to 
the curve, as the points come closer. 

EXAMPLE I R(t) = ti + t2j+ t3k v(t) = i + 2tj + 3t2k 

This curve swings upward as t increases. When t = 0 the velocity is v = i. The tangent 
is along the x axis, since the j and k components are zero. When t = 1 the velocity is 
i + 2j + 3k, and the curve is climbing. 

For the shadow on the xy plane, drop the k component. Position on the shadow 
is ti + t2j. Velocity along the shadow is i + 2tj. The shadow is a plane curve. 

,/-. The speed along the line is ivl= 

Fig. 12.1 Position vector R, change AR, Fig. 12.2 Equations of a line, with and 
velocity dR/dt. without the parameter t. 

EXAMPLE 2 Uniform motion in a straight line: the velocity vector v is constant. 

The speed and direction don't change. The position vector moves with dR/dt = v: 

R(t) = R, + tv (R, fixed, v fixed, t varying) (3) 

That is the equation of a line in vector form. Certainly dR/dt = v. The starting point 
R, = x,i + yd + zok is given. The velocity v = v1 i + v2j + v3k is also given. Separating 
the x, y and z components, equation (3) for a line is 

line with parameter: x = xo + tul , y = yo + tv,, z = z, + tv, . (4) 

The direction of the line is the unit 
vector v/lvl. We have three equations for x, y, z, and eliminating t leaves two equations. 
The parameter t equals (x -xo)/vl from equation (4). It also equals (y -y0)/v2and 
(z -zO)iv3.SOthese ratios equal each other, and t is gone: 

line without parameter: x-xo y-yo 2-2,-- ---- -. 
01 v2 v3 

(5 )  

An example is x = y/2 = z/3. In this case (x,, yo, z,) = (0, 0, 0)-the line goes through 
the origin. Another point on the line is (x, y, z) = (2 ,4  6). Because t is gone, we cannot 
say when we reach that point and how fast we are going. The equations x/4 = y/8 = 
2/12 give the same line. Without t we can't know the velocity v = dR/dt. 

EXAMPLE 3 Find an equation for the line through P = (0,2, 1) and Q = (1,3,3). 

Solution We have choices! R, can go to any point on the line. The velocity v can 
be any multiple of the vector from P to Q. The decision on R, controls where we 
start, and v controls our speed. 

The vector from P to Q is i + j + 2k. Those numbers 1,1,2 come from subtracting 
0,2, 1 from 1,3,3. We choose this vector i + j + 2k as a first v, and double it for a 
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second v. We choose the vector R, = P as a first start and R, = Q as a second start. 
Here are two different expressions for the same line-they are P + tv and Q + t(2v): 

The vector R(t) gives x = t, y = 2 + t, z = 1 + 2t. The vector R* is at  a different point 
on the same line at the same time: x* = 1 + 2t, y* = 3 + 2t, z* = 3 + 4t. 

If I pick t = 1 in R and t = 0 in R*, the point is (1,3,3). We arrive there at different 
times. You are seeing how parameters work, to tell "where" and also "when." If t 
goes from - GO to + GO, all points on one line are also on the other line. The path is 
the same, but the "twins" are going at different speeds. 

Question 1 When do  these twins meet? When does R(t) = R*(t)? 
Answer They meet at t = - 1, when R = R* = - i + j - k. 

Question 2 What is an equation for the segment between P and Q (not beyond)? 
Answer In the equation for R(t), let t go from 0 to 1 (not beyond): 

x = t y = 2 + t z = 1 + 2t [0 < t < 1 for segment]. (6) 

At t = 0 we start from P = (0,2, 1). At t = 1 we reach Q = (1, 3, 3). 

Question 3 What is an equation for the line without the parameter t? 
Answer Solve equations (6) for t or use (5): x / l  = (y - 2)/1 = (z - 1)/2. 

Question 4 Which point on the line is closest to the origin? 
Answer The derivative of x2 + y2 + z2 = t2 + (2 + t)2 + (1 + 2t)2 is 8 + 8t. This deriv- 
ative is zero at t = - I .  So the closest point is (- 1, 1, - 1). 

Question 5 Where does the line meet the plane x + y + z = 1 I? 
Answer Equation (6) gives x + y + z = 3 + 4t = 11. So t = 2. The meeting point is 
x = t = 2 ,  y = t + 2 = 4 , z = l + 2 t = 5 .  

Question 6 What line goes through (3, 1, 1) perpendicular to the plane x - y - z = 1 ? 
Answer The normal vector to the plane is N = i - j - k. That is v. The position 
vector to (3, 1, 1) is R, = 3i + j + k. Then R = R, + tv. 

COMPARING LINES AND PLANES 

A line has one parameter or two equations. We give the starting point and velocity: 
(x, y, z) = (x,, yo, z, ) + t(v, , v2, v,). That tells directly which points are on the line. 
Or  we eliminate t to find the two equations in (5). 

A plane has one equation or two parameters! The equation is ax + by + cz = d. 
That tells us indirectly which points are on the plane. (Instead of knowing x, y, z ,  we 
know the equation they satisfy. Instead of directions v and w in the plane, we are 
told the perpendicular direction N =(a,  b, c).) With parameters, the line contains 
R, + tv and the plane contains R, + tv + sw. A plane looks worse with parameters 
(t and s), a line looks better. 

Questions 5 and 6 connected lines to planes. Here are two more. See Problems 
4 1 -44: 

Question 7 When is the line R, + tv parallel to the plane? When is it perpendicular? 
Answer The test is v N = 0. The test is v x N = 0. 

EXAMPLE 4 Find the plane containing Po = ( I ,  2, 1 )  and the line of points 
(1,0,0) + t(2,0, - 1). That vector v will be in the plane. 
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Solution The vector v = 2i -k goes along the line. The vector w = 2j + k goes from 
(1,0,O) to (1,2, 1). Their cross product is 

The plane 2x -2y + 42 = 2 has this normal N and contains the point (1,2,1). 

SPEED, DIRECTION, DISIANCE, ACCELERATION 

We go back to the curve traced out by R(t). The derivative v(t) = dR/dt is the velocity 
vector along that curve. The speed is the magnitude of v: 

speed = Ivl= J(dx/dt)' + (dyldt)' + (dzldt)'. (7) 

The direction of the velocity vector is v/lvl. This is a unit vector, since v is divided by 
its length. The unit tangent vector v/lvl is denoted by T. 

The tangent vector is constant for lines. It changes direction for curves. 

EXAMPLE 5 (important) Find v and (v(and T for steady motion around a circle: 

x = r cos a t ,  y = r sin a t ,  z = 0. 

Solution The position vector is R = r cos wt i + r sin wt j. The velocity is 

v = dR/dt = -wr sin wt i + wr cos wt j (tangent, not unit tangent) 

The speed is the radius r times the angular velocity w: 

~ v l =,/(-or sin cot)' + (wr cos wt12 = wr. 

The unit tangent vector is v divided by Ivl: 

T =  -sin wt i+cos wt j (length 1 since sin2wt + cos2wt= 1). 

Think next about the distance traveled. Distance along a curve is always denoted 
by s (called arc length). I don't know why we use s-certainly not as the initial for 
speed. In fact speed is distance divided by time. The ratio s/t gives average speed; 
dsldt is instantaneous speed. We are back to Chapter 1 and Section 8.3, the relation 
of speed to distance: 

speed lv( = dsldt distance s = 1(dsldt) dt = 1lv(t)l dt. 

Notice that (vl and s and t are scalars. The direction vector is T: 

T=-=----
v dR/dt - dR -unit tangent vector. 
Ivl dsldt ds 

In Figure 12.3, the chord length (straight) is (ARI. The arc length (curved) is As. As 
AR and As approach zero, the ratio JAR/Asl approaches (TI= 1. 

Think finally about the acceleration vector a(t). It is the rate of change of velocity 
(not the rate of change of speed): 
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ort 
r cos o t  
r sin a t  sin t ,  z = t 

Fig. 12.3 Steady motion around a circle. Half turn up a helix. 

For steady motion along a line, as in x = t, y = 2 + t, z = 1 + 2t, there is no accelera- 
tion. The second derivatives are all zero. For steady motion around a circle, there is 
acceleration. In driving a car, you accelerate with the gas pedal or the brake. You 
also accelerate by turning the wheel. It is the velocity vector that changes, nat the 
speed. 

EXAMPLE 6 Find the distance s(t) and acceleration a(t) for circular motion. 

Solution The speed in Example 5 is dsldt = or.  After integrating, the distance is s = 
art .  At time t we have gone through an angle of cut. The radius is r, so the distance 
traveled agrees with ot times r. Note that the dimension of w is l/time. (Angles are 
dimensionless.) At time t = 2n/w we have gone once around the circle-to s = 2nr 
not back to s = 0. 

The acceleration is a = d2R/dt2. Remember R = r cos wt i + r sin a t  j: 

a(t) = -w2r cos wt i -w2r sin wt j. (10) 

That direction is opposite to R. This is a special motion, with no action on the gas 
pedal or the brake. All the acceleration is from turning. The magnitude is la1 = w2r, 
with the correct dimension of distance/(timeJ2. 

EXAMPLE 7 Find v and s and a around the helix R = cos t i + sin t j + t k. 

Solution The velocity is v = - sin t i + cos t j + k. The speed is 

ds/dt = Ivl= Jsin2t + cos2t + 1 = & (constant). 

Then distance is s = f i  t. At time t = n, a half turn is complete. The distance along 
the shadow is n (a half circle). The distance along the helix is 8n, because of its 
45" slope. 

The unit tangent vector is velocity/speed, and the acceleration is dvldt: 

T = ( - s i n t i + c o s t j + k ) / &  a = - c o s t i - s i n t j .  

EXAMPLE 8 Find v and s and a around the ellipse x = cos t, y = 2 sin t, z = 0. 

Solution Take derivatives: v = -sin t i + 2 cos t j and lv( = Jsin2t + 4 cos2t. This is 
the speed dsldt. For the distance s, something bad happens (or something normal). 
The speed is not simplified by sin2t + cos2t = 1. We cannot integrate dsldt to find a 
formula for s. The square root defeats us. 

The acceleration -cos t i -2 sin t j still points to the center. This is not the Earth 
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going around the sun. The path is an ellipse but the speed is wrong. See Section 12.4 
(the pound note) for a terrible error in the position of the sun. 

Suppose we know the acceleration a(t) and the initial velocity vo and position R,. 
Then v(t) and R(t) are also known. We integrate each component: 

a(t) = constant *v(t) = v, + at * R(t) = R, + vot + fat2 

a(t) = cos t k *v(t) = v, + sin t k = R(t) = R, + v,t -cos t k. 

THE CURVE OF A BASEBALL 

There is a nice discussion of curve balls in the calculus book by Edwards and Penney. 
We summarize it here (optionally). The ball leaves the pitcher's hand five feet off the 
ground: R, = Oi + Oj + 5k.The initial velocity is vo = 120i -2j + 2k (120 ft/sec is more 
than 80 miles per hour). The acceleration is -32k from gravity, plus a new term from 
spin. If the spin is around the z axis, and the ball goes along the x axis, then this 
acceleration is in the y direction. (It comes from the cross product k x i-there is a 
pressure difference on the sides of the ball.) A good pitcher can achieve a = 16j-32k. 
The batter integrates as fast as he can: 

Notice the t2. The effect of spin is small at first, then suddenly bigger (as every batter 
knows). So is the effect of gravity- the ball starts to dive. At t = f , the i component 
is 60 feet and the ball reaches the batter. The j component is 1 foot and the k 
component is 2 feet-the curve goes low over the outside corner. 

At t = $, when the batter saw the ball halfway, the j component was zero. It looked 
as if it was coming right over the plate. 

Fig. 12.4 A curve ball approaches home plate. Halfway it is on line. 

12.1 EXERCISES 

Read-through questions where s measures the Q . Then s = j h . The tangent 
vector is in the same direction as the I ,but T is a i

The position vector a along the curve changes with the vector. In general T = k and in the example T = I .
parameter t. The velocity is b . The acceleration is c . 
'If the position is i + tj + t2k, then v = d and a = e . Steady motion along a line has a = m . If the line is x = 
In that example the speed is JvJ= f . This equals dsldt, y = z, the unit tangent vector is T = n . If the speed is 
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Iv( = fi,the velocity vector is v = o . If the initial posi- 
tion is (1, 0, O), the position vector is R(t) = P . The general 
equation of a line is x = xo + tv,, y = q , z = r . In 
vector notation this is R(t) = s . Eliminating t leaves the 
equations (x -xo)/v, = (y -yo)/v2= t . A line in space 
needs u equations where a plane needs v . A line has 
one parameter where a plane has w . The line from Ro = 
(1,0,O) to (2,2,2) with lvl= 3 is R(t) = x . 

Steady motion around a circle (radius r, angular velocity 
o)has x = Y ,y = z ,z =0. The velo.city is v = A . 
The speed is Ivl= B 

has magnitude D 

upward motion R = 
motion around a F 

. The acceleration is a = C ,which 
and direction E . Combining 

tk with this circular motion produces 
. Then v = G and Ivl= H . 

1 Sketch the curve with parametric equations x = t, y = t3. 
Find the velocity vector and the speed at t = 1. 

2 Sketch the path with parametric equations x = 1 + t, y = 
1 - t. Find the xy equation of the path and the speed along it. 

3 On the circle x = cos t, y = sin t explain by the chain rule 
and then by geometry why dyldx = -cot t. 

4 Locate the highest point on the curve x = 6t, y = 6t - t2. 
This curve is a , What is the acceleration a? 

5 Find the velocity vector and the xy equation of the tangent 
line to x = et, y = e-' at t = 0. What is the xy equation of the 
curve? 

6 Describe the shapes of these curves: (a) x = 2', y = 4'; (b) 
x = 4', y = 8'; (c) x = 4', y = 4t. 

Note: Tojnd "parametric equations" is tojnd x(t), y(t), and 
possibly z(t). 

7 Find parametric equations for the line through P = 
(1,2,4) and Q = (5,5,4). Probably your speed is 5; change the 
equations so the speed is 10. Probably your Ro is P; change 
the start to Q. 

8 Find an equation for any one plane that is perpendicular 
to the line in Problem 7. Also find equations for any one line 
that is perpendicular. 

9 On a straight line from (2,3,4) with velocity v = i -k, the 
position vector is R(t) = . If the velocity vector is 
changed to ti - tk, then R(t) = . The path is still 

10 Find parametric equations for steady motion from P = 
(3, 1, -2) at t = 0 on a line to Q = (0,0,O) at t = 3. What is 
the speed? Change parameters so the speed is et. 

11 The equations x - 1 = g y  -2) = %z-2) describe a 
. The same path is given parametrically by x = 1 + t, 

Y = , z = - . The same path is also given by 
x = 1 + 2 t , y =  , z =  

12 Find parametric equations to go around the unit circle 

with speed e' starting from x = 1, y = 0. When is the circle 
completed? 

13 The path x = 2y = 32 = 6t is a traveled with 
speed . If t is restricted by t 2 1 the path starts at 

. If t is restricted by 0 Q t d 1 the path is a . 
14 Find the closest point to the origin on the line x = 1 + t, 
y = 2 - t. When and where does it cross the 45" line through 
the origin? Find the equation of a line it never crosses. 

15 (a) How far apart are the two parallel lines x = y and 
x = y + l? (b) How far is the point x = t, y = t from the point 
x = t, y = t + I? (c) What is the closest distance if their speeds 
are different: x = t, y = t and x ='2t, y = 2t + l? 

16 Which vectors follow the same path as R = ti + t2j? The 
speed along the path may be different. 

(a)2ti+2t2j (b)2ti+4t2j (c) - t i + t 2 j  (d) t3 i+t6j  

17 Find a parametric form for the straight line y = mx + b. 

18 The line x = 1 + u,t, y = 2 + v2t passes through the origin 
provided u, + v2 = 0. This line crosses the 
45" line y = x unless ul  + u2 = 0. 

19 Find the velocity v and speed Ivl and tangent vector T 
for these motions: (a) R = ti + t - 'j (b) R = t cos t i + t sin t j 
(c)R = (t + 1)i + (2t + 1)j+ (2t + 2)k. 

20 If the velocity dxldt i + dyldt j is always perpendicular to 
the position vector xi + yj, show from their dot product that 
x2 + y2 is constant. The point stays on a circle. 

21 Find two paths R(t) with the same v = cos t i + sin t j. Find 
a third path with a different v but the same acceleration. 

22 If the acceleration is a constant vector, the path must be 
. If the path is a straight line, the acceleration vector 

must be . 

23 Find the minimum and maximum speed if x = t + cos t, 
y = t -sin t. Show that la1 is constant but not a .  The point is 
going around a circle while the center is moving on what line? 

24 Find x(t), y(t) so that the point goes around the circle 
(x- + ( ~ - 3 ) ~= 4  with speed 1. 

25 A ball that is circling with x = cos 2t, y = sin 2t flies off on 
a tangent at t = 48.  Find its departure point and its position at 
a later time t (linear motion; compute its constant velocity v). 

26 Why is la1 generally different from d2s/dt2? Give an 
example of the difference, and an example where they are 
equal. 

27 Change t so that the speed along the helix R =  
cos t i +sin t j + t k is 1 instead of $. Call the new 
parameter s. 

28 Find the speed dsldt on the line x = 1 + 6t, y = 2 + 3t, 
z = 2t. Integrate to find the length s from (1,2,0) to 
(1 3,8,4). Check by using 122 + 62+ 42. 
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29 Find v and Ivl and a for the curve x = tan t, y = sec t. What 40 Two particles are racing from (I, 0) to (0,l). One follows 
is this curve? At what time does it go to infinity, and along x = cos t, y = sin t, the other follows x = 1 + v l  t, y = v2 t. 
what line? Choose vl and v2 so that the second particle goes slower but 

30 Construct parametric equations for travel on a helix with wins. 

speed t. 41 Two lines in space are given by R(t) = P + tv and R(t) = 
Q + tw. Four The lines are parallel or the same 31 Suppose the unit tangent vector T(t) is the derivative of 

R(t). What does that say about the speed? Give a noncircular or intersecting or skew. Decide which is which based on the 
vectors v and w and u = Q - P (which goes between the lines): example. 

(a) The lines are parallel if .are parallel. 
32 For travel on the path y = f(x), with no parameter, it is (b) The lines are the same if are parallel. 
impossible to find the but still possible to find the 

at each point of the path. (c) The lines intersect if are not parallel but 
lie in the same plane. 

Find x(t) and y(t) .for paths 33-36. 

33 Around the square bounded by x = 0, x = 1, y = 0, y = 1, 
with speed 2. The formulas have four parts. 

34 Around the unit circle with speed e-'. Do you get all the 
way around? 

35 Around a circle of radius 4 with acceleration la1 = 1. 

36 Up and down the y axis with constant acceleration -j, 
returning to (0,O) at t = 10. 

37 True (with reason) or false (with example): 
(a) If (RI = 1 for all t then Ivl= constant. 
(b) If a = 0 then R = constant. 
(c) If v v = constant then v a = 0. 
(d) If v R = 0 then R R = constant. 
(e) There is no path with v =a. 

38 Find the position vector to the shadow of ti + t2j + t3k on 
the xz plane. Is the curve ever parallel to the line x = y = z? 

39 On the ellipse x = a cos t, y = b sin t, the angle 8 from the 
center is not the same as t because . 

(d) The lines are skew if the triple product u (v x w) is 

42 If the lines are skew (not in the same plane), find a formula 
based on u, v, w for the distance between them. The vector u 
may not be perpendicular to the two lines, so project it onto 
a vector that is. 

43 The distance from Q to the line P + tv is the projection of 
u = Q - P perpendicular to v. How far is Q = (9,4,5) from 
the line x = 1 + t, y = 1 + 2t, z = 3 + 2t? 

44 Solve Problem 43 by calculus: substitute for x, y, z in 
(x - 9)2 + (y - 4)2 + (Z - 5)2 and minimize. Which (x, y, z) on 
the line is closest to (9,4,5)? 

45 Practice with parameters, starting from x = F(t), y = G(t). 
(a) The mirror image across the 45" line is x = , 
Y=-- 
(b) Write the curve x = t 3, y = t as y = f (x). 
(c) Why can't x = t ', y = t be written as y = f(x)? 
(d) If F is invertible then t = F -'(x) and y = (XI. 

46 From 12:OO to 1:00 a snail crawls steadily out the minute 
hand (one meter in one hour). Find its position at time t 
starting from (0,O). 

The previous section started with R(t). From this position vector we computed v and 
a. Now we find R(t) itself, from more basic information. The laws of physics govern 
projectiles, and the motion of a wheel produces a cycloid (which enters problems in 
robotics). The projectiles fly without friction, so the only force is gravity. 

These motions occur in a plane. The two components of position will be x (across) 
and y (up). A projectile moves as t changes, so we look for x(t) and y(t). We are 
shooting a basketball or  firing a gun or peacefully watering the lawn, and we have 
to aim in the right direction (not directly a t  the target). If the hose delivers water at  
10 meters/second, can you reach the car 12 meters away? 
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The usual initial position is (0,O). Some flights start higher, at (0, h). The initial 
velocity is (v, cos a, v,  sin a), where v, is the speed and a is the angle with the 
horizontal. The acceleration from gravity is purely vertical: d 2y/dt2 = -g. SO the 
horizontal velocity stays at its initial value. The upward velocity decreases by -gt: 

dxldt = v, cos a, dyldt = vo sin a -gt. 

The horizontal distance x(t) is steadily increasing. The height y(t) increases and then 
decreases. To find the position, integrate the velocities (for a high start add h to y): 

The projectile path is x(t) = (v, cos a)t ,y(t) = (vo sin a)t - igt2. (1) 

This path is a parabola. But it is not written as y = ax2+ bx + c. It could be, if we 
eliminated t. Then we would lose track of time. The parabola is y(x), with no param- 
eter, where we have x(t) and y(t). 

Basic question: Where does the projectile hit the ground? For the parabola, we solve 
y(x) = 0. That gives the position x. For the projectile we solve y(t) = 0. That gives the 
time it hits the ground, not the place. If that time is T, then x(T) gives the place. 

The information is there. It takes two steps instead of one, but we learn more. 

EXAMPLE 1 Water leaves the hose at 10 meters/second (this is v,). It starts up at the 
angle a. Find the time T when y is zero again, and find where the projectile lands. 

Solution The flight ends when y = (10 sin a)T - igT2 = 0. The flight time is T = 
(20 sin a)/g. At that time, the horizontal distance is 

x(T) = (10 cos a)T = (200 cos a sin a)/g. This is the range R. 

The projectile (or water from the hose) hits the ground at x = R. To simplify, replace 
200 cos a sin a by 100 sin 2a. Since g = 9.8 meters/sec2, we can't reach the car: 

The range R = (100 sin 2~)/9.8 is at most 10019.8. This is less than 12. 

The range is greatest when sin 2a = I (a is 45"). To reach 12 meters we could stand 
on a ladder (Problem 14). To hit a baseball against air resistance, the best angle is 
nearer to 35".Figure 12.5 shows symmetric parabolas (no air resistance) and unsym- 
metric flight paths that drop more steeply. 

(128 The flight time T and the horkzontaf range R = x(T) are reached when 
y = 0,which means (uo sin a)T =igT2: 

I T = (Zq sin cc)/g and R = (vo cos u)T =(0; sin 2aMg. 

height = (v,,sin c ~ ) ~ / 2 , ?  

time T = (20" sin a ) / g  \ 
range R = (v02sin 2 a ) l g  L 

DISTANCE IN FEET 

Fig. 12.5 Equal range R, different times T.Baseballs hit at 35" with increasing vo.  The dots 
are at half-seconds (from The Physics of Baseball by Robert Adair: Harper and Row 1990). 

I 
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EXAMPLE 2 What are the correct angles a for a given range R and given v,? 

Solution The range is R = (vi sin 2a)lg. This determines the sine of 2a-but two 
angles can have the same sine. We might find 2a = 60" or 120". The starting angles 
a = 30" and a = 60" in Figure 12.5 give the same sin 2a and the same range R. The 
flight times contain sin a and are different. 

By calculus, the maximum height occurs when dyldt = 0. Then vo sin a =gt, which 
means that t = (v, sin ix)/g. This is half of the total flight time T-the time going up 
equals the time coming down. The value of y at this halfway time t =fT is 

ymx= (v, sin a)(v, sin a)/g -fg(vo sin ~ j g ) ~  = (v, sin ~ ) ~ / 2 g .  (2) 

EXAMPLE 3 If a ski jumper goes 90 meters down a 30" slope, after taking off at 28 
meterslsecond, find equations for the flight time and the ramp angle a. 

Solution The jumper lands at the point x = 90 cos 30°, y = -90 sin 30" (minus sign 
for obvious reasons). The basic equation (2) is x = (28 cos a)t, y = (28 sin a)t -fgt 2. 

Those are two equations for a and t. Note that t is not T, the flight time to y =0. 

Conclusion The position of a projectile involves three parameters vo, a, and t. Three 
pieces of information determine theflight (almost). The reason for the word almost is 
the presence of sin a and cos a. Some flight requirements cannot be met (reaching a 
car at 12 meters). Other requirements can be met in two ways (when the car is close). 
The equation sin ct = c is more likely to have no solution or two solutions than exactly 
one solution. 

Watch for the three pieces of information in each problem. When a football starts 
at v, = 20 meterslsecond and hits the ground at x = 40 meters, the third fact is 

. This is like a lawyer who is asked the fee and says $1000 for three questions. 
"Isn't that steep?" says the client. "Yes," says the lawyer, "now what's your last 
question?" 

A projectile's path is a parabola. To compute it, eliminate t from the equations for x 
and y. Problem 5 finds y = ax2 + bx, a parabola through the origin. The path of a 
point on a wheel seems equally simple, but eliminating t is virtually impossible. The 
cycloid is a curve that really needs and uses a parameter. 

To trace out a cycloid, roll a circle of radius a along the x axis. Watch the point 
that starts at the bottom of the circle. It comes back to the bottom at x = 2na, after 
a complete turn of the circle. The path in between is shown in Figure 12.6. After a 
century of looking for the xy equation, a series of great scientists (Galileo, Christopher 
Wren, Huygens, Bernoulli, even Newton and l'H6pital) found the right way to study 
a cycloid-by introducing a parameter. We will call it 8; it could also be t. 

Fig. 12.6 Path of P on a rolling circle is a cycloid. Fastest slide to Q. 
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The parameter is the angle 0 through which the circle turns. (This angle is not at 
the origin, like 0 in polar coordinates.) The circle rolls a distance a0, radius times 
angle, along the x axis. So the center of the circle is at x =a0, y =a. To account for 
the segment CP, subtract a sin 0 from x and a cos 0 from y: 

The point P has x =a(0 - sin 0) and y =a(l -cos 0). (3) 

At 0 =0 the position is (0,O). At 0 =271 the position is (271a, 0). In between, the slope 
of the cycloid comes from the chain rule: 

dy dyld0 a sin 0 
dx - dxld0 - a(l -cos 0)' 

This is infinite at 0 =0. The point on the circle starts straight upward and the cycloid 
has a cusp. Note how all calculations use the parameter 0. We go quickly: 

Question 1 Find the area under one arch of the cycloid (0 =0 to 0 =27c). 
Answer The area is 1y dx =1;" a(l -cos 0)a(l -cos @dB. This equals 37ca2. 

Question 2 Find the length of the arch, using ds =J ( d x / d ~ ) ~+ (dy/d6)2 do. 
Answer 1ds =5:" a&- cos o ) ~  + (sin el2 =Jina J E T E G 3  d0. 
Now substitute 1 -cos 0 =2 sin2 $6. The square root is 2 sin 40. The length is 8a. 

Question 3 If the cycloid is turned over (y is downward), find the time to slide to 
the bottom. The slider starts with v =0 at y =0. 
Answer Kinetic plus potential energy is f mv2-mgy =0 (it starts from zero and 
can't change). So the speed is v =fi.This is dsldt and we know ds: 

" a 2 2 cos 0 do
sliding time = I d t  =jL&= lo 

2ga(l - cos 0) 

n&
Check dimensions: a =distance, g =di~tance/(time)~, = time. That is the short- 
est sliding time for any curve. The cycloid solves the "brachistochrone problem," 
which minimizes the time down curves from 0 to Q (Figure 12.6). You might think 
a straight path would be quicker-it is certainly shorter. A straight line has the 
equation x =71~12, so the sliding time is 

J d t = ~ d s / & = J r  J m d y / & = & Z Z J & .  ( 5 )  

This is larger than the cycloid time a&. It is better to start out vertically and pick 
up speed early, even if the path is longer. 

Instead of publishing his solution, John Bernoulli turned this problem into an 
international challenge: Prove that the cycloid gives the fastest slide. Most mathemati- 
cians couldn't do it. The problem reached Isaac Newton (this was later in his life). 
As you would expect, Newton solved it. For some reason he sent back his proof with 
no name. But when Bernoulli received the answer, he was not fooled for a moment: 
"I recognize the lion by his claws." 

What is also amazing is a further property of the cycloid: The time to Q is the same 
ifyou begin anywhere along the path. Starting from rest at P instead of 0 ,  the bottom 
is reached at the same time. This time Bernoulli got carried away: "You will be 
petrified with astonishment when I say...". 

There are other beautiful curves, closely related to the cycloid. For an epicycloid, 
the circle rolls around the outside of another circle. For a hypocycloid, the rolling 
circle is inside the fixed circle. The astroid is the special case with radii in the ratio 1 
to 4. It is the curved star in Problem 34, where x = a cos36 and y = a sin30. 
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The cycloid even solves the old puzzle: What  point moves backward when a train 
starts jbrward? The train wheels have a flange that extends below the track, and 
dxldt <: 0 at the bottom of the flange. 

12.2 

Read-through questions 

A projectile starts with speed vo and angle a. At time t its 
velocity is dxldt = a , dyldt = b (the downward 
acceleration is g). Starting from (0, O), the position at time t 
i s x =  c , y =  d .Thefl ightt imebacktoy=OisT= 

e . At that time the horizontal range is R = f . The 
flight path is a g . 

The three quantities v,, h , i determine the pro- 
jectile's motion. Knowing vo and the position of the target, 
we (can) (cannot) solve for a. Knowing a and the position of 
the target, we (can) (cannot) solve for 0,. 

A i is traced out by a point on a rolling circle. If the 
radius is a and the turning angle is 0, the center of the circle 
is at x = k , y =  I . The point is at x = m , y =  

n , starting from (0,O). It travels a distance 0 in a 
full turn of the circle. Tlhe curve has a P at the end of 
every turn. An upside-dlown cycloid gives the slide 
between two points. 

Problems 1-18 and 41 are about projectiles 

1 Find the time of fligh~t T, the range R, and the maximum 
height Y of a projectile with v, = 16 ftlsec and 

(a) a = 30" (b) a =: 60" (c) a = 90". 

2 If vo = 32 ft/sec and ithe projectile returns to the ground 
at T = 1, find the angle a and the range R. 

3 A ball is thrown at 610" with vo = 20 meterslsec to clear a 
wall 2 meters high. How far away is the wall? 

4 If v(0) = 3i + 3j find v(t), v(l), v(2) and R(t), R(l), R(2). 

5 (a) Eliminate t from x: = t, y = t - i t  to find the xy equa- 
tion of the path. At what x is y = O? 
(b) Do the same for ainy vo and a. 

6 Find the angle a for a ball kicked at 30 meters/second if 
it clears 6 meters traveling horizontally. 

7 How far out does a stone hit the water h feet below, start- 
ing with velocity u, at angle cr = O? 

8 How far out does the: same stone go, starting at angle a? 
Find an equation for the angle that maximizes the range. 

9 A ball starting from (0,O) passes through (5,2) after 2 
seconds. Find v, and a. (:The units are meters.) 

*10 With x and y from equation (I), show that 

EXERCISES 

If a fire is at height H and the water velocity is v,, how far 
can the fireman put the hose back from the fire? (The parabola 
in this problem is the "envelope" enclosing all possible paths.) 

11 Estimate the initial speed of a 100-meter golf shot hit at 
a = 45". Is the true uo larger or smaller, when air friction is 
included? 

12 T = 2vo(sin a)/g is in seconds and R = (vi sin 2a)lg is in 
meters if vo and g are in . 
13 (a) What is the greatest height a ball can be thrown? Aim 

straight up with v, = 28 meterslsec. 

14 If a baseball goes 100 miles per hour for 60 feet, how long 
does it take (in seconds) and how far does it fall from gravity 
(in feet)? Use ig t  '. 
15 If you double v,, what happens to the range and maxi- 
mum height? If you change the angle by da, what happens to 
those numbers? 

16 At what point on the path is the speed of the projectile 
(a) least (b) greatest? 

17 If the hose with vo = lOm/sec is at a 45" angle, x reaches 
12 meters when t = and y = . From a lad- 
der of height the water will reach the car (12 meters). 

18 Describe the two trajectories a golf ball can take to land 
right in the hole, if it starts with a large known velocity v,. 
In reality (with air resistance) which of those shots would fall 
closer? 

Problems 19-34 are about cycloids and related curves 

19 Find the unit tangent vector T to the cycloid. Also find 
the speed at 0 = 0 and 0 = n, if the wheel turns at d0ldt = 1. 

20 The slope of the cycloid is infinite at 0 = 0: 

dy dyld0 sin 0 
dx - dxld0 - 1 -cos 0' 

By whose rule? Estimate the slope at 0 =& and 0 = -&. 
Where does the slope equal one? 

21 Show that the tangent to the cycloid at P in Figure 12.6a 
goes through x = a0, y = 2a. Where is this point on the rolling 
circle? 

22 For a trochoid, the point P is a distance d from the center 

4 
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of the rolling circle. Redraw Figure l2.6b to find x =  
aO-dsin 8 and y =  

23 If a circle of radius a rolls inside a circle of radius 2a, show 
that one point on the small circle goes across on a straight 
line. 

24 Find dZy/dxZ for the cycloid, which is concave 

25 If dO/dt =c, find the velocities dx/dt and dy/dt along the 
cycloid. Where is dxldt greatest and where is dy/dt greatest? 

26 Experiment with graphs of x =a cos 8 +b sin 8, y = 

c cos 8 + d sin 8 using a computer. What kind of curves are 
they? Why are they closed? 

27 A stone in a bicycle tire goes along a cycloid. Find equ- 
ations for the stone's path if it flies off at the top (a projectile). 

28 Draw curves on a computer with x =a cos 9 + b cos 38 
and y =c sin 8 + d sin 38. Is there a limit to the number of 
loops? 

29 When a penny rolls completely around another penny, the 
head makes turns. When it rolls inside a circle four 
times larger (for the astroid), the head makes turns. 

30 Display the cycloid family with computer graphics: 
(a) cycloid 
(b)epicycloid x = C cos 8 -cos C8, y = C sin 8 + sin C8 
(c) hypocycloid x =c cos 8 + cos c0, y =c sin 8 -sin c9 
(d)astroid (c = 3) 
(e) deltoid (c =2). 

31 If one arch of the cycloid is revolved around the x axis, 
find the surface area and volume. 

32 For a hypocycloid the fixed circle has radius c + 1 and the 
circle rolling inside has radius 1. There are c + 1 cusps if c is 
an integer. How many cusps (use computer graphics if pos- 
sible) for c = 1/2? c = 3/2? c = f i What curve for c = I? 

33 When a string is unwound from a circle find x(8) and y(8) 
for point P. Its path is the "involute"of the circle. 

34 For the point P on the astroid, explain why x = 

3 cos 8 +cos 38 and y = 3 sin 0 -sin 39. The angle in the 
figure is 39 because both circular arcs have length . 
Convert to x =4 cos30, y =4 sin30 by triple-angle formulas. 

38 

35 Find the area inside the astroid. 

36 Explain why x =2a cot 0 and y = 2a sin28 for the point P 
on the witch of Agnesi. Eliminate 0 to find the xy equation. 
Note: Maria Agnesi wrote the first three-semester calculus 
text (l'H6pital didn't do integral calculus). The word "witch" 
is a total mistranslation, nothing to do with her or the curve. 

37 For a cardioid the radius C - 1 of the fixed circle equals 
the radius 1 of the circle rolling outside (epicycloid with C = 
2). (a) The coordinates of P are x = - 1 +2 cos 8 -cos 28, 
Y=- . (b) The double-angle formulas yield x = 
~ c o s ~ ( ~ - c o s ~ ) , ~ =  . ( c ) x 2 + y z =  so its 
square root is r = 

38 Explain the last two steps in equation (5) for the sliding 
time down a straight path. 

39 On an upside-down cycloid the slider takes the same time 
T to reach bottom wherever it starts. Starting at 0 = a, write 
1 -cos O =2 sinZ 912 and 1 -cos a =2 sinZ a12 to show that 

40 Suppose a heavy weight is attached to the top of the roll- 
ing circle. What is the path of the weight? 

41 The wall in Fenway Park is 37 feet high and 3 15 feet from 
home plate. A baseball hit 3 feet above the ground at r = 
22.5" will just go over if tl, = . The time to reach the 
wall is 
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A driver produces acceleration three ways-by the gas pedal, the brake, and steering 
wheel. The first two change the speed. Turning the wheel changes the direction. All 
three change the velocity (they give acceleration). For steady motion around a circle, 
the change is from steering-the acceleration dvldt points to the center. We now 
look at motion along other curves, to separate change in the speed Ivl from change 
in the direction T. 

The direction of motion is T = vllvl. It depends on the path but not the speed 
(because we divide by Ivl). For turning we measure two things: 

1. How fast T turns: this will be the curvature K (kappa). 
2. Which direction T turns: this will be the normal vector N. 

K and N depend, like s and T, only on the shape of the curve. Replacing t by 2t or 
t2  leaves them unchanged. For a circle we give the answers in advance. The normal 
vector N points to the center. The curvature K is llradius. 

A smaller turning circle means a larger curvature K: more bending.. 

The curvature K is change in direction (dTI divided by change in position Idsl. There 
are three formulas for rc-a direct one for graphs y(x), a brutal but valuable one for 
any parametric curve (x(t), y(t)), and a neat formula that uses the vectors v and a. We 
begin with the definition and the neat formula. 

DEFINITION K = ldT/ds) FORMULA rc = lv x al/lvI3 (1) 

The definition does not involve the parameter t-but the calculations do. The posi- 
tion vector R(t) yields v = dR/dt and a = dvldt. If t is changed to 2t, the velocity v is 
doubled and r is multiplied by 4. Then lv x a1 and lv13 are multiplied by 8, and their 
ratio K is unchanged. 

Proof of formula (1) Start from v = JvlT and compute its derivative a: 

dlvl dT a = - T + Ivl - by the product rule. 
dt dt 

Now take the cross product with v = IvJT. Remember that T x T = 0: 

We know that IT1 = 1. Equation (4) will show that T is perpendicular to dTldt. So 
Iv x a1 is the first length Ivl times the second length Ivl IdTIdtl. The factor sin 8 in the 
length of a cross product is 1 from the 90" angle. In other words 

The chain rule brings the extra Ids/dt( = Ivl into the denominator. 

Before any examples, we show that dT/dt is perpendicular to T. The reason is that 
T is a unit vector. Differentiate both sides of T T = 1: 
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That proof used the product rule U ' * V  + U *V' for the derivative of U * V  
(Problem 23, with U = V = T). Think of the vector T moving around the unit sphere. 
To keep a constant length (T + d T) (T + dT) = 1, we need 2T dT = 0. Movement 
dT is perpendicular to radius vector T. 

Our first examples will be plane curves. The position vector R(t) has components 
x(t) and y(t) but no z(t). Look at the components of v and a and v x a (x' means 
dxldt): 

R x(t) YO) 0 

v ~ ' ( 0  Y'@) 0 1.1 = J I 
a xt'(t) y"(t) 0 (x'y" - y'x"1 

K =  
v x a 0 0 x'y" - y'x" ((x')~ + 

Equation (5) is the brutal but valuable formula for K .  Apply it to movement around 
a circle. We should find K = llradius a: 

EXAMPLE 1 When x = a cos wt and y = a sin wt we substitute x', y', x", y" into (5): 

(- wa sin cot)(- w2a sin cot) - (wa cos cot)(- w2a cos a t )  03a2 
I C =  - - 

[(ma sin + (ma cos ~ t ) ~ ] ~ / ~  [ w 2 a 2 ~  312' 

This is 03a2/w3a3 and w cancels. The speed makes no difference to K = lla. 

The third formula for K applies to an ordinary plane curve given by y(x). The 
parameter t is x! You see the square root in the speed Ivl= dsldx: 

In practice this is the most popular formula for K .  The most popular approximation 
is id 2y/dx21. (The denominator is omitted.) For the bending of a beam, the nonlinear 
equation uses IC and the linear equation uses d2y /d~2 .  We can see the difference for 
a parabola: 

EXAMPLE 2 The curvature of y = +x2 is IC = ly"l/(l + (y')2)312 = 1/(1 + x ~ ) ~ / ~ .  

Fig. 12.7 Normal N divided by curvature K for circle and parabola and unit helix. 
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The approximation is y" = 1. This agrees with K at x =0, where the parabola turns 
the corner. But for large x, the curvature approaches zero. Far out on the parabola, 
we go a long way for a small change in direction. 

The parabola y = -fx2,  opening down, has the same u. Now try a space curve. 

EXAMPLE 3 Find the curvature of the unit helix R = cos t i + sin t j + tk. 

Take the cross product of v = -sin t i + cos t j + k and a = -cos t i -sin t j: 

i j k 

v x a =  -sint cost  1 =s in t i - cos t j+k .  

-cost -sint 0 

This cross product has length d.Also the speed is (v( = Jsin2t + cos2t+ 1 = f i  
K = I V  x al/lv13= =f. 

Compare with a unit circle. Without the climbing term tk, the curvature would be 1. 
Because of climbing, each turn of the helix is longer and K = f .  

That makes one think: Is the helix twice as long as the circle? No. The length of a 
turn is only increased by lvl = $. The other $ is because the tangent T slopes 
upward. The shadow in the base turns a full 360°, but T turns less. 

THE NORMAL VECTOR N 

The discussion is bringing us to an important vector. Where K measures the rate of 
turning, the unit vector N gives the direction of turning. N is perpendicular to T, and 
in the plane that leaves practically no choice. Turn left or right. For a space curve, 
follow dT.Remember equation (4), which makes dT perpendicular to T. 

The normal vector N is a unit vector along dT/dt. It is perpendicular to T: 

dT/ds 1 dT
DEFINITION N = ---- FORMULA N=-

dT/dt 
IdTldsl - K ds (dT/dt(' (7) 

EXAMPLE 4 Find the normal vector N for the same helix R =cos t i + sin t j + tk. 

Solution Copy v from Example 3, divide by (v(, and compute dTldt: 

T = v/lv(= (-sin t i + cos t j + k) / f i  and dT/dt = (- cos t i - sin t j)/& 

To change dT/dt into a unit vector, cancel the a.The normal vector is N = 
-cos t i -sin t j. It is perpendicular to T. Since the k component is zero, N is hori- 

zontal. The tangent T slopes up at 45"-it goes around the circle at that latitude. 
The normal N is tangent to this circle (N is tangent to the path of the tangent!). 
So N stays horizontal as the helix climbs. 

There is also a third direction, perpendicular to T and N. It is the binormal vector 
B = T x N, computed in Problems 25-30. The unit vectors T, N, B provide the 
natural coordinate system for the path-along the curve, in the plane of the curve, 
and out of that plane. The theory is beautiful but the computations are not often 
done-we stop here. 



12 Motion Along a Curve 

TANGENTIAL AND NORMAL COMPONENTS OF ACCELERATION 

May I return a last time to the gas pedal and brake and steering wheel? The first 
two give acceleration along T. Turning gives acceleration along N. The rate of turning 
(curvature K) and the direction N are established. We now ask about the force 
required. Newton's Law is F = ma, so we need the acceleration a-especially its 
component along T and its component along N. 

The acceleration is a = 7T + K - N.
dt 

For a straight path, d2s/dt2 is the only acceleration-the ordinary second derivative. 
The term ~ ( d s l d t ) ~  is the acceleration in turning. Both have the dimension of length/ 
(time)2. 

The force to steer around a corner depends on curvature and speed-as all drivers 
know. Acceleration is the derivative of v = lvlT = (ds/dt)T: 

d2s d s d T  d2s d s d T d sa=-T+--=-T+-- -
dt2 dt dt dt2 dt ds dt' 

That last term is ~ ( d s l d t ) ~ ~ ,  since dT/ds = KN by formula (7). So (8) is proved. 

EXAMPLE 5 A fixed speed dsldt = 1 gives d2s/dt2 = 0. The only acceleration is KN. 

EXAMPLE 6 Find the components of a for circular speed-up R(t) = cos t 2  i + sin t 2  j. 

Without stopping to think, compute dR/dt = v and dsldt = Ivl and v/lvl= T: 

The derivative of dsldt = Ivl is d2s/dt2 = 2. The derivative of v is a: 

a =  - 2  sin t 2  i + 2  cos t 2  j -4 t2  cos t 2  i -4 t2  sin t 2 j .  

In the first terms of a we see 2T. In the last terms we must be seeing K ~ v ~ ~ N .  Certainly 
lv12=4t2 and K = 1, because the circle has radius 1. Thus a = 2T + 4 t 2 ~has the 
tangential component 2 and normal component 4t2-acceleration along the circle 
and in to the center. 

Table of Formulas 2a, 
v = dRldt a = dvldt N ~ $ > ~ 
)vl= dsldt T = vllvl = ldR/dsl 

accelerate 
Curvature K = IdTldsl = Jvx a l / l ~ ( ~  

lx'ytt-y'xttl -Plane curves K = 
((x!)~+ (yf)2)3'2-

1 dT dT/dt
Normal vector N = -- = -

K ds IdTldtl dt' 

+ K I V ~ ~ N  Fig. 12.8 Components of a as car turns corner Acceleration a = (d 2s/dt 2 ) ~  
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12.3 EXERCISES 

Read-through questions 

The curvature tells how fast the curve a . For a circle of 
radius a, the direction changes by 2n in a distance b , so 
K = c . For a plane curve y = f (x) the formula is K = Iy"l/ 

d . The curvature of y := sin x i's e . At a point where 
y" = 0 (an f point) the curve is momentarily straight and 
K = g . For a space curve K = Iv x all h . 

The normal vector N is perpendicular to i . It is a 
i vector along the derivative of T, so N = k . For 

motion around a circle N points I . Up a helix N also 
points m . Moving at unit speed on any curve, the time t 
is the same as the n s. Then Ivl= 0 and d 2s/dt = 

P and a is in the direction of q . 

Acceleration equals r T + s N. At unit speed 
around a unit circle, those components are t . An 
astronaut who spins once a second in a radius of one meter 
has la1 = t~ meters/sec'!, which is about v g. 

Compute the curvature K in Problems 1-8. 

y = ex 

y = In x (where is K largest?) 

x = 2 cos t, y = 2 sin t 

x=cos  t2, y=s in  t 2  

~ = l + t ~ , ~ = 3 t ~ ( t h e p a t h i s a  ). 

x = cos3t, y = sin3t 

r = O = t  (so x = t  cos t, y =  ) 

x = t, y = In cos t 

Find T and N in Problem 4. 

Show that N = sin t i 1- cos t j in Problem 6. 

Compute T and N in Problem 8. 

Find the speed Ivl and curvature K of a projectile: 

x = (u, cos a)t, y = (v,  sin a)t - i g t  2. 

Find T and Ivl and K for the helix R = 3 cos t i 
+ 3 sin t j + 4t k. H ~ W  much longer is a turn of the helix than 
the corresponding circle? What is the upward slope of T? 

14 When K = 0 the path is a , This happens when v 
and a are . Then v x a =  . 

15 Find the curvature of a cycloid x = a(t - sin t), y = 

a(l - cos t). 

16 If all points of a curve are moved twice as far from the 
origin (x + 2x, y -+ 2y), what happens to K? What happens 
to N? 

17 Find K and N at 8 = n for the hypocycloid x = 

~ C O S  O+c0~48 ,  y =4sin8-sin48.  

18 From v = lvlT and a in equation (8), derive K = Iv x al/lvI3. 

19 From a point on the curve, go along the vector N/K to 
find the center of curvature. Locate this center for the point 
(I, 0) on the circle x = cos t, y = sin t and the ellipse x = cos t, 
y = 2 sin t and the parabola y = *(x2 - 1). The path of the 
center of curvature is the "euolute" of the curve. 

20 Which of these depend only on the shape of the curve, 
and which depend also on the speed? v, T, Ivl, s, IC, a, N, B. 

21 A plane curve through (0,O) and (2,O) with constant cur- 
vature K is the circular arc . For which K is there no 
such curve? 

22 Sketch a smooth curve going through (0, O), (1, -I), and 
(2,O). Somewhere d2y/dx2 is at least . Somewhere 
the curvature is at least . (Proof is for instructors 
only.) 

23 For plane vectors, the ordinary product rule applied to 
U1 Vl + U ,  V2 shows that (U V)' = U' V + 
24 If v is perpendicular to a, prove that the speed is constant. 
True or false: The path is a circle. 

Problems 25-30 work with the T-N-B system-along the 
curve, in the plane of the curve, perpendicular to that plane. 

25 Compute B = T x N for the helix R = cos t i + sin t j + tk 
in Examples 3-4. 

26 Using Problem 23, differentiate B . T = 0 and B B = 1 to 
show that B' is perpendicular to T and B. So dB/ds = - zN 
for some number z called the torsion. 

27 Compute the torsion z = ldB/dsl for the helix in 
Problem 25. 

28 Find B = T x N for the curve x = 1, y = t, z = t2. 

29 A circle lies in the xy plane. Its normal N lies 
and B = and z = (dB/dsl= . 

30 The Serret-Frenet formulas are dTlds = KN, dN/ds = 

- KT + zB, dBlds = - zN. We know the first and third. 
Differentiate N = - T x B to find the second. 

31 The angle 9 from the x axis to the tangent line is 8 = 

tan-'(dyldx), when dyldx is the slope of the curve. 
(a) Compute d8ldx. 
(b) Divide by dsldx = (1 + ( d y / d ~ ) ~ ) ' / ~  to show that IdO/dsl 
is IC in equation (5). Curvature is change in direction Id81 
divided by change in position Ids[. 

32 If the tangent direction is at angle 8 then T =  
cos 9 i + sin 19 j. In Problem 31 IdO/dsl agreed with K = IdTldsl 
because ldTld8l = . 
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In 33-37 find the T and N components of acceleration. 36 x = et cos t, y = et sin t, z = 0 (spiral) 

33 x = 5 cos at,  y = 5 sin at,  z = 0 (circle) 

34 x = 1 + t, y = 1 + 2t, z = 1 + 3t (line) 

37 x =  1, y=t,  z=t2 .  

38 For the spiral in 36, show that the angle between R and 
a (position and acceleration) is constant. Find the angle. 

35 x = t cos t, y = t sin t, z = 0 (spiral) 39 Find the curvature of a polar curve r = F(0) .  

12.4 Polar Coordinates and Planetary Motion 

This section has a general purpose-to do vector calculus in polar coordinates. It 
also has a specific purpose- to study central forces and the motion of planets. The 
main gravitational force on a planet is from the sun. It is a central force, because it 
comes from the sun at the center. Polar coordinates are natural, so the two purposes 
go together. 

You may feel that the planets are too old for this course. But Kepler's laws are 
more than theorems, they are something special in the history of mankind-"the 
greatest scientific discovery of all time." If we can recapture that glory we should do 
it. Part of the greatness is in the difficulty-Kepler was working sixty years before 
Newton discovered calculus. From pages of observations, and some terrific guesses, 
a theory was born. We will try to preserve the greatness without the difficulty, and 
show how elliptic orbits come from calculus. The first conclusion is quick. 

Motion in a central force #eld always stays in a plane. 

F is a multiple of the vector R from the origin (central force). F also equals ma 
(Newton's Law). Therefore R and a are in the same direction and R x a = 0. Then 
R x v has zero derivative and is constant: 

d 
by the product rule: -(R x v ) = v  x v + R x a=O+O. 

dt ( 1 )  

R x v is a constant vector H. So R stays in the plane perpendicular to H. 

How does a planet move in that plane? We turn to polar coordinates. At each 
point except the origin (where the sun is), u, is the unit vector ointing outward. It is 
the position vector R divided by its length r (which is ~ d j :  

u, = R/r = (xi + yj)/r = cos 8 i + sin 8 j. (2) 

That is a unit vector because cos28 + sin28 = 1. It goes out from the center. 
Figure 12.9 shows u, and the second unit vector u, at a 90" angle: 

The dot product is u, u, = 0. The subscripts r and 8 indicate direction (not derivative). 

Question 1: How do u, and ue change as r changes (out a ray)? They don't. 

Question 2: How do u, and u, change as 8 changes? Take the derivative: 

duJd8 = -sin 8 i + cos 8 j = ue 

du,/d8 = - cos 8 i - sin 8 j = - u,. 
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Fig. 12.9 u, is outward, uo is around the center. Components of v and a in those directions. 

Since u, = Rlr, one formula is simple: The position vector is R = ru,. For its derivative 
v = dR/dt, use the chain rule du,/dt = (dur/d8)(d8/dt)= (dO/dt)u,: 

d dr d8
The velocity is v = -(ru,) = -u, + r -u, .

dt dt dt 

The outward speed is drldt. The circular speed is r dO/dt. The sum of squares is lvI2. 
Return one more time to steady motion around a circle, say r = 3 and 8 = 2t. The 

velocity is v = h e ,  all circular. The acceleration is -124, all inward. For circles u, 
is the tangent vector T. But the unit vector u, points outward and N points inward- 
the way the curve turns. 

Now we tackle acceleration for any motion in polar coordinates. There can be 
speedup in r and speedup in 8 (also change of direction). Differentiate v in (5) by the 
product rule: 

For du,/dt and due/dt, multiply equation (4) by d8ldt. Then all terms contain u, or u,. 
The formula for a is famous but not popular (except it got us to the moon): 

In the steady motion with r = 3 and 8 = 2t, only one acceleration term is nonzero: 
a = - 12u,. Formula (6) can be memorized (maybe). Problem 14 gives a new way to 
reach it, using reie. 

EXAMPLE 1 Find R and v and a for speedup 8 = t2  around the circle r = 1. 

Solution The position vector is R = u,. Then v and a come from (5-6): 

This question and answer were also in Example 6 of the previous section. The acceler- 
ation was 2T + 4t2N. Notice again that T = u, and N = -u,, going round the circle. 

EXAMPLE 2 Find R and v and Ivl and a for the spiral motion r = 3t, 8 = 2t. 

Solution The position vector is R = 3t u,. Equation (5) gives velocity and speed: 

v = 3 4  + 6tu, and ivl= Jm. 
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The motion goes out and also around. From (6) the acceleration is -12t u, + 12ue. 
The same answers would come more slowly from R = 3t cos 2t i + 3t sin 2t j. 

This example uses polar coordinates, but the motion is not circular. One of Kepler's 
inspirations, after many struggles, was to get away from circles. 

KEPLER'S LAWS 

You may know that before Newton and Leibniz and calculus and polar coordinates, 
Johannes Kepler discovered three laws of planetary motion. He was the court mathe- 
matician to the Holy Roman Emperor, who mostly wanted predictions of wars. 
Kepler also determined the date of every Easter-no small problem. His triumph 
was to discover patterns in the observations made by astronomers (especially by 
Tycho Brahe). Galileo and Copernicus expected circles, but Kepler found ellipses. 

Law 1: Each planet travels in an ellipse with one focus at the sun. 

Law 2: The vector from sun to planet sweeps out area at a steady rate: dA/dt = 
constant. 

Law 3: The length of the planet's year is T = ka3I2, where a = maximum distance 
from the center (not the sun) and k = 2n/@ is the same for all planets. 

With calculus the proof of these laws is a thousand times quicker. But Law 2 is the 
only easy one. The sun exerts a central force. Equation (I) gave R x v = H = constant 
for central forces. Replace R by ru, and replace v by equation (5): 

This vector H is constant, so its length h = r2dO/dt is constant. In polar coordinates, 
the area is dA =$r2d0. This area dA is swept out by the planet (Figure 12.10), and 
we have proved Law 2: 

dA/dt = i r 2  d01dt = i h = constant. (8) 

Near the sun r is small. So d0ldt is big and planets go around faster. 

Fig. 12.10 The planet is on an ellipse with the sun at a focus. Note a, b, c, q. 

Now for Law 1, about ellipses. We are aiming for 1 /r = C -D cos 0, which is the 
polar coordinate equation of an ellipse. It is easier to write q than llr, and find an 
equation for q. The equation we will reach is d 'q/d02 + q = C. The desired q = 
C -D cos 0 solves that equation (check this), and gives us Kepler's ellipse. 
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The first step is to connect dr/dt to dqlde by the chain rule: 

Notice especially dB/dt =h/r2=hq2. What we really want are second derivatives: 

After this trick of introducing q, we are ready for physics. The planet obeys Newton's 
Law F =ma, and the central force F is the sun's gravity: 

That right side is the u, component of a in (6). Change r to l/q and change dB/dt to 
hq2. The preparation in (10) allows us to rewrite d2r/dt2 in equation (11). That 
equation becomes 

Dividing by -h2q2 gives what we hoped for-the simple equation for q: 

d 'q/dB2 +q = G M / ~ ~= C (a constant). (12) 

The solution is q = C -D cos 8. Section 9.3 gave this polar equation for an ellipse or 
parabola or hyperbola. To be sure it is an ellipse, an astronomer computes C and D 
from the sun's mass M and the constant G and the earth's position and velocity. The 
main point is that C >D. Then q is never zero and r is never infinite. Hyperbolas and 
parabolas are ruled out, and the orbit in Figure 12.10 must be an ellipse.? 

Astronomy is really impressive. You should visit the Greenwich Observatory in 
London, to see how Halley watched his comet. He amazed the world by predicting 
the day it would return. Also the discovery of Neptune was pure mathematics- 
the path of Uranus was not accounted for by the sun and known planets. LeVerrier 
computed a point in the sky and asked a Berlin astronomer to look. Sure enough 
Neptune was there. 

Recently one more problem was solved-to explain the gap in the asteroids around 
Jupiter. The reason is "chaos"-the three-body problem goes unstable and an 
asteroid won't stay in that orbit. We have come a long way from circles. 

Department of Royal Mistakes The last pound note issued by the Royal Mint 
showed Newton looking up from his great book Principia Mathematica. He is not 
smiling and we can see why. The artist put the sun at the center! Newton has just 
proved it is at the focus. True, the focus is marked S and the planet is P. But those 
rays at the center brought untold headaches to the Mint-the note is out of circula- 
tion. I gave an antique dealer three pounds for it (in coins). 

Kepler's third law gives the time T to go around the ellipse-the planet's year. 
What is special in the formula is a3Iz-and for Kepler himself, the 15th of May 1618 
was unforgettable: "the right ratio outfought the darkness of my mind, by the great 
proof afforded by my labor of seventeen years on Brahe's observations." The second 

?An amateur sees the planet come around again, and votes for an ellipse. 
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law dA/dt = 4h is the key, plus two facts about an ellipse-its area nab and the height 
b2/aabove the sun: 

1 2nab
1. The area A = dt = -hT must equal nab, so T = -

2 h 

2. The distance r = 1/C at 0 = n/2 must equal b2/a,so b = @. 

The height b2/a is in Figure 12.10 and Problems 25-26. The constant C = G M / ~ ~is 
in equation (12). Put them together to find the period: 

To think of Kepler guessing a3I2 is amazing. To think of Newton proving Kepler's 
laws by calculus is also wonderful-because we can do it too. 

EXAMPLE 3 When a satellite goes around in a circle, find the time T. 

Let r be the radius and w be the angular velocity. The time for a complete circle 
(angle 2n) is T = 2nlo.  The acceleration is G M / ~ ~from gravity, and it is also rw2 for 
circular motion. Therefme Kepler is proved right: 

* w = JGM/r" T = 2 n / ~rw2 = G M / ~ ~  = 2nr312/@. 

12.4 EXERCISES 

Read-through questions 

=A central force points toward a . Then R x d 2 ~ / d t 2  0 For motion under a circular force, r2 times I is con- 
because b . Therefore R x dR/dt  is a c (called H). stant. Dividing by 2 gives Kepler's second law dA/dt = m . 

In polar coordinates, the outward unit vector is u, = 
The first law says that the orbit is an n with the sun at 

cos 0 i + d . Rotated by 90"this becomes u, = e . The -0 . The polar equation for a conic section is P = 

C -D cos 0. Using F = ma we found q,, + CI = C. So the position vector R is the distance r times f . The velocity 
path is a conic section; it must be an ellipse because r . v = dR/dt is s u, + h u,. For steady motion around 

the circle r = 5 with 6 = 4t,  v is i and lv( is i and a The properties of an ellipse lead to the period T = s , 
which is Kepler's third law. 

is k . 



12.4 Polar Coordinates and Planetary Motion 469 

1 Find the unit vectors u, and u, at the point (0,2). The u, 
and ue components of v = i + j at that point are . 
2 F i n d u r a n d u , a t ( 3 , 3 ) . I f v = i + j t h e n v =  u,. 

Equation (5) gives dr/dt = and d0/dt = . 
3 At the point (1,2), velocities in the direction will 

give dr/dt = 0. Velocities in the direction will give 
d0ldt = 0. 

4 Traveling on the cardioid r = 1 - cos 0 with d0/dt = 2, 
what is v? How long to go around the cardioid (no integration 
involved)? 

5 If r = e e  and 8=3t,  find vand a when t=1 .  

6 If r = 1 and 0 = sin t, describe the path and find v and a 
from equations (5-6). Where is the velocity zero? 

7 (important) R = 4 cos 5t i + 4 sin 5t j = 4u, travels on a 
circle of radius 4 with 0 = 5t and speed 20. Find the compo- 
nents of v and a in three systems: i and j, T and N, u, and u,. 

8 When is the circle r = 4 completed, if the speed is 8t? Find 
v and a at the return to the starting point (4,O). 

9 The ~e component of acceleration is = 0 for a 
central force, which is in the direction of . Then 
r2d0/dt is constant (new proof) because its derivative is r times 

10 If r2d0/dt = 2 for travel up the line x = 1, draw a triangle 
to show that r = sec 0 and integrate to find the time to reach 
(1, 1). 

11 A satellite is r = 10,000 km from the center of the Earth, 
traveling perpendicular to the radius vector at 4 kmlsec. Find 
d0ldt and h . 
12 From lu,l= 1, it follows that du,/dr and du,/d0 are 

to u, (Section 12.3). In fact du,/dr is and 
dur/dO is . 

13 Momentum is mv and its derivative is ma = force. Angular 
momentum is mH = mR x v and its derivative is - - 

torque. Angular momentum is constant under a central force 
because the is zero. 

14 To find (and remember) v and a in polar coordinates, start 
with the complex number reie and take its derivatives: 

Key idea: The coefficients of eie and ieie are the u, and ue 
components of R, v, a: 

(a) Fill in the five terms from the derivative of dR/dt 
(b) Convert eie to u, and ieie to ue to find a 

(c) Compare R, v, a with formulas (5-6) 
(d) (for instructors only) Why does this method work? 

Note how eie = cos 0 + i sin 0 corresponds to u, = cos 0 i 
+sin 0 j. This is one place where electrical engineers are 
allowed to write j instead of i for fi. 
15 If the period is T find from (1 3) a formula for the distance 
a. 

16 To stay above New York what should be the period of a 
satellite? What should be its distance a from the center of the 
Earth? 

17 From T and a find a formula for the mass M. 

18 If the moon has a period of 28 days at an average distance 
of a = 380,000 km, estimate the mass of the 

19 The Earth takes 3656 days to go around the sun at a 
distance a x 93 million miles x 150 million kilometers. Find 
the mass of the sun. 

20 True or false: 

(a) The paths of all comets are ellipses. 
(b) A planet in a circular orbit has constant speed. 
(c) Orbits in central force fields are conic sections. 

21 x 2 lo7 in what units, based on the Earth's mass 
M = 6 kg and the constant G = 6.67 lo-" Nm2/kg2? 
A force of one kg meter/sec2 is a Newton N. 

22 If a satellite circles the Earth at 9000 km from the center, 
estimate its period T in seconds. 

23 The Viking 2 orbiter around Mars had a period of about 
10,000 seconds. If the mass of Mars is M = 6.4 kg, what 
was the value of a? 

24 Convert l/r = C - D cos 0, or 1 = Cr - Dx, into the xy 
equation of an ellipse. 

25 The distances a and c on the ellipse give the constants 
in r = 1/(C - D cos 0). Substitute 0 = 0 and 0 = .n as in 
Figure 1 2.1 0 to find D = c/(a2 - c2) and C = a/(a2 - c2) = 

a/ b2. 

26 Show that x =  -c, y =  b2/a lies on the ellipse 
x2/a2 + y2/b2 = 1. Thus y is the height 1/C above the sun in 
Figure 12.10. The distance from the sun to the center has c2 = 
a2 - b2. 

27 The point x = a cos 2nt/T, y = b sin 2ntlT travels around 
an ellipse centered at (0,O) and returns at time T. By symmetry 
it sweeps out area at the same rate at both ends of the major 
axis. Why does this break Kepler's second law? 

28 If a central force is F =  -ma(r)u,, explain why 
d 'r/dt - r(d0/dt)2 = - a@). What is a(r) for gravity? 
Equation (12) for q = l /r  leads to qee + q = r2a(r). 

29 When F = 0 the body should travel in a straight 
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The equation q,, + q = 0 allows q = cos 8, in which case the 
path l / r  =cos 8 is . Extra credit: Mark off equal 
distances on a line, connect them to the sun, and explain why 
the triangles have equal area. So dA/dt is still constant. 

30 The strong nuclear force increases with distance, a(r) = r. 
It binds quarks so tightly that up to now no top quarks have 
been seen (reliably). Problem 28 gives q,, + q = l/q3. 

(a) Multiply by q, and integrate to find i q i  + i q 2  = 

+ C .  
*(b) Integrate again (with tables) after setting u = q2, u, = 

2qq,. 

31 The path of a quark in 30(b) can be written as 
r2(A + B cos 28) = 1. Show that this is the same as the ellipse 
( A  + B)x2 + (A - B)y2 = 1 with the origin at the center. The 
nucleus is not at a focus, and the pound note is correct for 
Newton watching quarks. (Quantum mechanics not 
accounted for.) 

32 When will Halley's comet appear again? It disappeared in 

1986 and its mean distance to the sun (average of a + c and 
a - c) is a = 1.6 lo9 kilometers. 

33 You are walking at 2 feetlsecond toward the center of a 
merry-go-round that turns once every ten seconds. Starting 
from r = 20,8 = 0 find r(t), 8(t), v(t), a(t) and the length of your 
path to the center. 

34 From Kepler's laws r = 1/(C - D cos 8) and r2d8/dt = h, 
show that 

1. dr/dt = - Dh sin 0 2. d 2 d 2  = ( - C)h2/r2 

When Newton reached 3, he knew that Kepler's laws required 
a central force of Ch2/r2. This is his inverse square law. Then 
he went backwards, in our equations (8-12), to show that this 
force yields Kepler's laws. 

35 How long is our year? The Earth's orbit has a =  
149.57 lo6 kilometers. 


