
C H A P T E R  13 

Partial Derivatives 

This chapter is at the center of multidimensional calculus. Other chapters and other 
topics may be optional; this chapter and these topics are required. We are back to 
the basic idea of calculus-the derivative. There is a functionf, the variables move a 
little bit, and f moves. The question is how much f moves and how fast. Chapters 

. 1-4 answered this question for f(x), a function of one variable. Now we have f(x, y) 
orf(x, y, z)-with two or three or more variables that move independently. As x and 
y change,f changes. The fundamental problem of differential calculus is to connect 
Ax and Ay to Af. 

Calculus solves that problem in the limit. It connects dx and dy to df. In using this 
language I am building on the work already done. You know that dfldx is the limit 
of AflAx. Calculus computes the rate of change-which is the slope of the tangent 
line. The goal is to extend those ideas to 

fix, y) =x2 -y2 o r  f(x, y) =Jm or f(x, y, z)=2x + 3y +42. 

These functions have graphs, they have derivatives, and they must have tangents. 
The heart of this chapter is summarized in six lines. The subject is diflerential 

calculus-small changes in a short time. Still to come is integral calculus-adding 
up those small changes. We give the words and symbols for f(x, y), matched with the 
words and symbols for f(x). Please use this summary as a guide, to know where 
calculus is going. 

Curve y =f(x) vs. Surface z =f(x, y) 

df becomes two partial derivatives -af and -af 
d~ ax ay 

- becomes four second derivatives ----d2{ a2f a2f a2f a2f 
dx ax2' axayY a y a i  ay2 

Af % AX becomes the linear approximation Af % 9AX + a f ~ ~ 
dx  ax ay 

tangent line becomes the tangent plane z - z, =a f ( x-x,) +a f ( y  -yo)
ax ay 

dy - dy dx dz az'ax a~ dy---- becomes the chain rule -= --+--
dt d~ dt dt a~ dt a~ dt 

-df =0 becomes two maximum-minimum equations -af =0 and af =0.
dx dx a~ 
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The graph of y =f(x) is a curve in the xy plane. There are two variables-x is 
independent and free, y is dependent on x. Above x on the base line is the point (x, y) 
on the curve. The curve can be displayed on a two-dimensional printed page. 

The graph of z =f(x, y) is a surface in xyz space. There are three variables-x and 
y are independent, z is dependent. Above (x, y) in the base plane is the point (x, y, z) 
on the surface (Figure 13.1). Since the printed page remains two-dimensional, we 
shade or color or project the surface. The eyes are extremely good at converting two- 
dimensional images into three-dimensional understanding-they get a lot of practice. 
The mathematical part of our brain also has something new to work on-two partial 
derivatives. 

This section uses examples and figures to illustrate surfaces and their level curves. 
The next section is also short. Then the work begins. 

EXAMPLE 1 Describe the surface and the level curves for z =f(x, y) = Jx2 + y2. 

The surface is a cone. Reason: ,,/=is the distance in the base plane from (0,O) 
to (x, y). When we go out a distance 5 in the base plane, we go up the same distance 
5 to the surface. The cone climbs with slope 1. The distance out to (x, y) equals the 
distance up to z (this is a 45" cone). 

The level curves are circles. At height 5, the cone contains a circle of points-all 
at the same "level" on the surface. The plane z = 5 meets the surface z = ,,/wX2+yZ at 
those points (Figure 13.lb). The circle below them (in the base plane) is the level 
curve. 

DEFINITION A level curve or contour line of z =f(x, y) contains all points (x, y) that 
share the same value f(x, y) = c. Above those points, the surface is at the height z = c. 

There are different level curves for different c. To see the curve for c = 2, cut 
through the surface with the horizontal plane z = 2. The plane meets the surface 
above the points where f(x, y) = 2. The level curve in the base plane has the equation 
f(x, y) = 2. Above it are all the points at "level 2" or "level c" on the surface. 

Every curve f(x, y) = c is labeled by its constant c. This produces a contour map 
(the base plane is full of curves). For the cone, the level curves are given by Jw
= c, and the contour map consists of circles of radius c. 

Question What are the level curves of z =f(x, y) = x2 + y2? 
Answer Still circles. But the surface is not a cone (it bends up like a parabola). The 
circle of radius 3 is the level curve x2 + y2 = 9. On the surface above, the height is 9. 

4-= 

- base plane 

Fig. 13.1 The surface for z =f(x, y) =,,/- is a cone. The level curves are circles. 



13.1 Surfaces and Level Curves 

EXAMPLE 2 For the linear function f(x, y)  = 2x + y, the surface is a plane. Its level 
curves are straight lines. The surface z = 2x + y meets the plane z = c in the line 
2x + y = c. That line is above the base plane when c is positive, and below when c is 
negative. The contour lines are in the base plane. Figure 13.2b labels these parallel 
lines according to their height in the surface. 

Question If the level curves are all straight lines, must they be parallel? 
Answer No. The surface z =y/x  has level curves y /x  = c. Those lines y = cx swing 
around the origin, as the surface climbs like a spiral playground slide. 

Fig. 13.2 A plane has parallel level lines. The spiral slide z =y /x  has lines ylx  =c. 

EXAMPLE 3 The weather map shows contour lines of the temperature function. Each 
level curve connects points at a constant temperature. One line runs from Seattle to 
Omaha to Cincinnati to Washington. In winter it is painful even to think about the 
line through L.A. and Texas and Florida. USA Today separates the contours by 
color, which is better. We had never seen a map of universities. 

Fig. 13.3 The temperature at many U.S.and Canadian universities. Mt. Monadnock in New Hampshire is said to be the most 
climbed mountain (except Fuji?) at 125,00O/year. Contour lines every 6 meters. 
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Question From a contour map, how do you find the highest point? 
Answer The level curves form loops around the maximum point. As c increases the 
loops become tighter. Similarly the curves squeeze to the lowest point as c decreases. 

EXAMPLE 4 A contour map of a mountain may be the best example of all. Normally 
the level curves are separated by 100 feet in height. On a steep trail those curves are 
bunched together-the trail climbs quickly. In a flat region the contour lines are far 
apart. Water runs perpendicular to the level curves. On my map of New Hampshire 
that is true of creeks but looks doubtful for rivers. 

Question Which direction in the base plane is uphill on the surface? 
Answer The steepest direction is perpendicular to the level curves. This is important. 
Proof to come. 

EXAMPLE 5 In economics x2y is a utility function and x2y = c is an indiference c u m .  

The utility function x2y gives the value of x hours awake and y hours asleep. Two 
hours awake and fifteen minutes asleep have the value f = (22)(4). This is the same as 
one hour of each: f= (12)(1). Those lie on the same level curve in Figure 13.4a. We 
are indifferent, and willing to exchange any two points on a level curve. 

The indifference curve is "convex." We prefer the average of any two points. The 
line between two points is up on higher level curves. 

Figure 13.4b shows an extreme case. The level curves are straight lines 4x  + y = c.  
Four quarters are freely substituted for one dollar. The value is f = 4x + y dollars. 

Figure 13.4~ shows the other extreme. Extra left shoes or extra right shoes are 
useless. The value (or utility) is the smaller of x and y. That counts pairs of shoes. 

asleep y quarters right shoes 

Ihours ; ; ; * left 
awake shoes1 2 

Fig. 13.4 Utility functions x2y, 4x +y, min(x, y). Convex, straight substitution, complements. 

13.1 EXERCISES 

Read-through questions 

The graph of z =Ax, y) is a a in b -dimensional For z =f(x, y) =x2 -y2, the equation for a level curve is 
space. The c curve f(x, y) = 7 lies down in the base plane. I . This curve is a i . For z =x -y the curves are 
Above this level curve are all points at height d in the k . Level curves never cross because I . They crowd 
surface. The z =7 cuts through the surface at those together when the surface is m . The curves tighten to a 
points. The level curves f(x, y) = f are drawn in the xy point when n . The steepest direction on a mountain is 
plane and labeled by g . The family of labeled curves is 0 to the P . 
a h map. 
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1 Draw the surface z =f(x, y) for these four functions: 

fl=Jpf 2 = 2 - J Z 7  

f3=2-&x2+y2) f4= 1 +e-X2-y2 

2 The level curves of all four functions are . They 
enclose the maximum at . Draw the four curves 
flx, y) = 1and rank them by increasing radius. 

3 Set y =0 and compute the x derivative of each function 
at x = 2. Which mountain is flattest and which is steepest at 
that point? 

4 Set y = 1 and compute the x derivative of each function 
at x =  1. 

For f5 to f10 draw the level curves f =0, 1,2. Alsof = -4. 

11 Suppose the level curves are parallel straight lines. Does 
the surface have to be a plane? 

12 Construct a function whnse level curve f =0 is in two 
separate pieces. 

13 Construct a function for which f =0 is a circle and f = 1 
is not. 

14 Find a function for which f =0 has infinitely many pieces. 

15 Draw the contour map for f =xy with level curves f = 
-2, -1,0, 1, 2. Describe the surface. 

16 Find a function f(x, y) whose level curve f =0 consists of 
a circle and all points inside it. 

Draw two level curves in 17-20. Are they ellipses, parabolas, 
or hyperbolas? Write r -2x =c as =c + 2x 
before squaring both sides. 

21 The level curves of f=(y -2)/(x-1) are 
through the point (1, 2) except that this point is not 

22 Sketch a map of the US with lines of constant temperature 
(isotherms) based on today's paper. 

23 (a) The contour lines of z =x2 + y2 -2x -2y are circles 
around the point ,where z is a minimum. 
(b)The contour lines of f = are the circles 
x2 +Y2 =c + 1 on which f =c. 

24 Draw a contour map of any state or country (lines of 
constant height above sea level). Florida may be too flat. 

25 The graph of w =F(x, y, z) is a -dimensional sur- 
face in xyzw space. Its level sets F(x, y, z) =c are 
dimensional surfaces in xyz space. For w =x -2y +z those 
level sets are . For w =x2 +Y2 +z2 those level sets 
are 

26 The surface x2 +y2 -z2= - 1 is in Figure 13.8. There is 
empty space when z2 is smaller than 1 because 

27 The level sets of F =x2+y2+ qz2 look like footballs 
when q is , like basketballs when q is , 
and like frisbees when q is 

28 Let T(x, y) be the driving time from your home at (0,O) 
to nearby towns at (x, y). Draw the level curves. 

29 (a) The level curves offlx, y) =sin(x -y) are 
(b)The level curves of g(x, y) =sin(x2-y2) are 
(c) The level curves of h(x, y) =sin(x-y2) are 

30 Prove that if xly, = 1 and x2y2 = 1 then their average 
x =gx l  + x2), y =gy,  +y2) has xy 2 1. The function f =xy 
has convex level curves (hyperbolas). 

31 The hours in a day are limited by x + y =24. Write x2y 
as x2(24 -x) and maximize to find the optimal number of 
hours to stay awake. 

32 Near x = 16 draw the level curve x2y =2048 and the line 
x +y =24. Show that the curve is convex and the line is 
tangent. 

33 The surface z =4x + y is a . The surface z = 
min(x, y) is formed from two . We are willing to 
exchange 6 left and 2 right shoes for 2 left and 4 right shoes 
but better is the average 

34 Draw a contour map of the top of your shoe. 

Partial Derivatives 

The central idea of differential calculus is the derivative. A change in x produces a 
change in$ The ratio Af/Ax approaches the derivative, or slope, or rate of change. 
What to do iff depends on both x and y? 

The new idea is to vary x and y one at a timk. First, only x moves. If the function 
is x + xy, then Af is Ax + yAx. The ratio Af/Ax is 1+ y. The "x derivative" of x + xy 
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is 1 + y. For all functions the method is the same: Keep y constant, change x, take the 
firnit of AflAx: 

df(x, y) = lim -= lim f(x + Ax, Y) -f (x, Y)DEFINITION Af 
ax A X - O A X  AX-o Ax 

On the left is a new symbol af/dx. It signals that only x is allowed to vary-afpx is 
a partial derivative. The different form a of the same letter (still say "d") is a reminder 
that x is not the only variable. Another variable y is present but not moving. 

Do not treat y as zero! Treat it as a constant, like 6. Its x derivative is zero. 
If f(x) = sin 6x then dfldx = 6 cos 6x. If f(x, y) = sin xy then af/ax = y cos xy. 

Spoken aloud, af/ax is still "d f d x." It is a function of x and y. When more is 
needed, call it "the partial off with respect to x." The symbol f '  is no longer available, 
since it gives no special indication about x. Its replacement fx is pronounced "fx" or 
"fsub x," which is shorter than af/ax and means the same thing. 

We may also want to indicate the point (x,, yo) where the derivative is computed: 

EXAMPLE 2 f(x, y) = sin 2x cos y fx = 2 cos 2x cos y (cos y is constant for a/dx) 

The particular point (x,, yo) is (0,O). The height of the surface is f(0,O) = 0. 
The slope in the x direction is fx = 2. At a different point x, = n, yo = n we find 
fx(n, n) = - 2. 

Now keep x constant and vary y. The ratio Af/Ay approaches aflay: 

f,(x, y) = lim f= lim f(x, Y + BY) -f(x, Y) 
AY+O Ay A ~ + O  AY 

This is the slope in the y direction. Please realize that a surface can go up in the x 
direction and down in the y direction. The plane f(x, y) = 3x - 4y has fx = 3 (up) and 
f ,= - 4 (down). We will soon ask what happens in the 45" direction. 

The x derivative of ,/xZ+y'is really one-variable calculus, because y is constant. 
The exponent drops from 4to -i,and there is 2x from the chain rule. This distance 
function has the curious derivative af/ax = xlf. 

The graph is a cone. Above the point (0,2) the height is ,/-= 2. The 
partial derivatives are fx = 012 and f, = 212. At that point, Figure13.5 climbs in the 
y direction. It is level in the x direction. An actual step Ax will increase O2 + 22 to 
AX)^ + 22. But this change is of order (Ax)2 and the x derivative is zero. 

Figure 13.5 is rather important. It shows how af@x and af/dy are the ordinary 
derivatives of f(x, yo) and f(x,, y). It is natural to call these partial functions. The first 
has y fixed at yo while x varies. The second has x fixed at xo while y varies. Their 
graphs are cross sections down the surface-cut out by the vertical planes y = yo and 
x = x,. Remember that the level curve is cut out by the horizontal plane z = c. 



I0 

Fig. 13.5 Partial functions ,/- and ,/- of the distance function f = Jm. 
The limits of Af/Ax and Af/Ay are computed as always. With partial functions 

we are back to a single variable. The partial devivative is the ordinary derivative of a 
partial function (constant y or constant x). For the cone, af/ay exists at all points 
except (0,O). The figure shows how the cross section down the middle of the cone 
produces the absolute value function: f(O, y) = lyl. It has one-sided derivatives but not 
a two-sided derivative. 

Similarly af/lax will not exist at the sharp point of the cone. We develop the idea 
of a continuous function f(x, y) as needed (the definition is in the exercises). Each 
partial derivative involves one direction, but limits and continuity involve all direc- 
tions. The distance function is continuous at (0, 0), where it is not differentiable. 

Move in the x direction from (1, 3). Then y2 -x2 has the partial function 9 - x2. 
With y fixed at 3, a parabola opens downward. In the y direction (along x = 1) the 
partial function y2 - 1 opens upward. The surface in Figure 13.6 is called a hyperbolic 
paraboloid, because the level curves y2 - x2 = c are hyperbolas. Most people call it a 
saddle, and the special point at the origin is a saddle point. 

The origin is special for y2 -x2 because both derivatives are zero. The bottom of 
the y parabola at (0,O)is the top of the x parabola. The surface is momentarily flat in 
all directions. It is the top of a hill and the bottom of a mountain range at the same 

0 1 

Fig. 13.6 A saddle function, its partial functions, and its level curves. 
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time. A saddle point is neither a maximum nor a minimum, although both derivatives 
are zero. 

Note Do not think that f(x, y) must contain y2 and x2 to have a saddle point. The 
function 2xy does just as well. The level curves 2xy = c are still hyperbolas. The 
partial functions 2xyo and 2xoy now give straight lines-which is remarkable. Along 
the 45" line x = y, the function is 2x2 and climbing. Along the -45" line x = - y, 
the function is -2x2 and falling. The graph of 2xy is Figure 13.6 rotated by 45". 

EXAMPLES 5-6 f(x, y, z) = x2 + y2 + z2 P(T, V) = nRT/V 

Example 5 shows more variables. Example 6 shows that the variables may not be 
named x and y. Also, the function may not be named f! Pressure and temperature 
and volume are P and T and V. The letters change but nothing else: 

aP/aT = nR/V dP/aV = - ~ R T / V ~  (note the derivative of 1/V). 

There is no dP/aR because R is a constant from chemistry-not a variable. 
Physics produces six variables for a moving body-the coordinates x, y, z and the 

momenta p,, p,, p,. Economics and the social sciences do better than that. If there 
are 26 products there are 26 variables-sometimes 52, to show prices as well as 
amounts. The profit can be a complicated function of these variables. The partial 
derivatives are the marginalprofits, as one of the 52 variables is changed. A spreadsheet 
shows the 52 values and the effect of a change. An infinitesimal spreadsheet shows 
the derivative. 

SECOND DERIVATIVE 

Genius is not essential, to move to second derivatives. The only difficulty is that two 
first derivatives f, and f , lead to four second derivatives fxx and fxy and f ,and f,. 
(Two subscripts: f,, is the x derivative of the x derivative. Other notations are 
d2 flax2 and a2f/axdy and a*flayax and d2flay2.) Fortunately fxy equals f,, as we 
see first by example. 

EXAMPLE 7 f = x/y has f, = l/y, which has fxx = 0 and f, = - l/y2. 

The function x/y is linear in x (which explains fxx = 0). Its y derivative isf, = - xly2. 
This has the x derivative f,,, = - l/y2. The mixed derivatives fxy and fyx are equal. 

In the pure y direction, the second derivative isf, = 2x/y3. One-variable calculus 
is sufficient for all these derivatives, because only one variable is moving. 

EXAMPLE 8 f = 4x2 + 3xy + y2 has f, = 8x + 3y and f ,= 3x + 2y. 

Both "cross derivatives" f,, andf,, equal 3. The second derivative in the x direction 
is a2f/ax2 = 8 or fxx = 8. Thus "fx x" is "d second f d x squared." Similarly 
a2flay2 = 2. The only change is from d to a. 

Iff(x, y) has continuous second derivatives then f,, =&,. Problem 43 sketches a proof 
based on the Mean Value Theorem. For third derivatives almost any example shows 
that f,, =fxyx =f,, is different from fyyx =fyxy =fxyy . 
Question How do you plot a space curve x(t), y(t), z(t) in a plane? One way is to look 
parallel to the direction (1, 1, 1). On your XY screen, plot X = (y - x ) / d  and 
Y = (22 - x -y)/$. The line x = y = z goes to the point (0, O)! 



How do you graph a surface z =f(x, y)? Use the same X and Y. Fix x and let y 
vary, for curves one way in the surface. Then fix y and vary x, for the other partial 
function. For a parametric surface like x = (2 + v sin i u )  cos u, y = (2 + v sin fu) sin u, 
z = v cos iu,vary u and then u. Dick Williamson showed how this draws a one-sided 
"Mobius strip." 

13.2 
Read-through questions 

The he derivative a f / a ~  comes from fixing band 
moving c . It is the limit of d . Iff = e2, sin y then 
af/ax = and a f / a ~= Iff  = (x2+ y2)'12 thenfx = 

cr and f ,= h . At (x,, yo) the partial derivative f, is 
the ordinary derivative of the I function Ax, yo). Simi- 
larlyf, comes from f( 1 ). Those functions are cut out by 
vertical planes x = xo and k , while the level curves are 
cut out by I planes. 

The four second derivatives are f,,, m , n , o . 
For f = xy they are P . For f = cos 2x cos 3y they are 

q . In those examples the derivatives r and s 
are the same. That is always true when the second derivatives 
are f . At the origin, cos 2x cos 3y is curving u in 
the x and y directions, while xy goes v in the 45" direc- 
tion and w in the -45" direction. 

Find aflax and af/ay for the functions in 1-12. 

3 x3y2-x2-ey 4 ~ e " + ~  

5 (x + Y)/(x-Y) 6 1 / J M  

11 tan-'(ylx) 12 ln(xy) 

Computefxx,fx, =A,, and&, for the functions in 13-20. 

19 cos ax cos by 20 l/(x + iy) 

EXERCISES 
25 xl"' Why does this equal tl""? 26 cos x 

27 Verify f,, =fyx for f = xmyn. If fxy = 0 then fx does not 
depend on and& is independent of . The 
function must have the form f(x, y) = G(x)+ 
28 In tmns of 0, computef, and.& forf (x, Y) = J: aft) tit. First 
vary x. Then vary Y. 

29 Compute af/ax for f = IT v(t)dt. Keep y constant. 

30 What is f (x, y) = 1: dtlt and what are fx and fy? 

31 Calculate all eight third derivatives fxXx, fxxy, ... off = 
x3y3. HOW many are different? 

32-35,
equation. 

,.hoosc g(y) so that f(x,Y)= ecxdy) the 

32 f x + f y = O  33 fx= 7& 

35 fxx  = 4fyy 

36 Show that t - '12e-x214tsatisfies the heat equation f;=f,, . 
Thisflx, t) is the temperature at position x and time t due to 
a point source of heat at x = 0, t = 0. 

37 The equation for heat flow in the xy plane isf, =f,, +hY. 
Show thatflx, y, t) = e-2t sin x sin y is a solution. What expo- 
nent in f = e- sin 2x sin 3y gives a solution? 

38 Find solutions Ax, y) = e- sin mx cos ny of the heat 
equation /, =/, +f,. Show that t - 'e-x214re-"214ris also a 
solution. 

39 The basic wave equation is f,,=f,,. Verify that flx, t) = 
sin(x + t) and f(x, t) = sin(x - t) are solutions. Draw both 
graphs at t = 4 4 .  Which wave moved to the left and which 
moved to the right? 

40 Continuing 39, the peaks of the waves moved a distance 
Ax = in the time step At = 1114. The wave velocity 
is AxlAt = 

Find the domain and range (all inputs and outputs) for the 
functions 21-26. Then compute fx, fy ,fz,f;. 41 Which of these satisfy the wave equation f;,= c2 fxx? 

sin(x -ct), COS(X+ ct), ex-ect, ex cos ct. 

23 (Y -x)l(z - t) 24 In(x + t) 42 Suppose aflat = afjax. show that a2flat2 = a2flax2. 
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43 The proof of fxy =fy, studies f(x, y) in a small rectangle. 
The top-bottom difference is g(x) =f(x, B) -f(x, A). The 
difference at the corners 1, 2, 3, 4 is: 

Q = Cf4 -f31 -C f 2  -f1l 
=g(b)-g(a) (definition of g) 

=(b -a)g,(c) (Mean Value Theorem) 

=(6 -a)(B -A) fxy(c, C) (MVT again) 
(a) The right-left difference is h(y) =f(b, y) -f(a, y). The 
same Q is h(B) -h(A). Change the steps to reach Q = 

(B -A)@-alfyxk*, C*). 
(b)The two forms of Q make fxy at (c, C) equal to f,, at 
(c*, C*). Shrink the rectangle toward (a, A). What assump- 
tion yields fxy =fy, at that typical point? 

44 Find df/dx and dfldy where they exist, based on equations 
(1) and (2). 

(a)f=lxyl (b)f=xZ+y2 ifx#O, f = O i f x = O  

Questions 45-52 are about limits in two dimensions. 

45 Complete these four correct dejinitions of limit: 1 The 
points (xn, yn) approach the point (a, b) if xn converges to a 
and 2 For any circle around (a, b), the points (x,, y,) 
eventually go the circle and stay . 3 The 

distance from (x,, yn) to (a, b) is and it approaches 
4 For any E > 0 there is an N such that the distance 
<E for all n > . 

46 Find (x,, y2) and (x,, y,) and the limit (a, b) if it exists. 
Start from (x,, yo) = (1, 0). 

(a) (xn, yn) =(lib + I), nl(n + 1)) 
(b)(xn, yn) =(xn-l, yn-1) 
(c) ( x n , ~ n ) = ( ~ n - l , ~ n - l )  

47 (Limit of f(x, y)) 1 Informal definition: the numbers 
f(x,, yn) approach L when the points (x,, y,) approach (a, b). 
2 Epsilon-delta dejinition: For each E > 0 there is a 6 >0 such 
that I f(x, y) -LI is less than when the distance from 
(x, Y) to (a, b) is . The value off at (a, b) is not 
involved. 

48 Write down the limit L as (x, y) +(a, b). At which points 
(a, b) does f(x, y) have no limit? 

(a)f(x, Y) =JW (b)f(x, Y) = XIY 
( 4  f b ,  Y) = ll(x + Y) (d)f(x, Y) = xyl(xZ+ y2) 

In (d) find the limit at (0,O) along the line y = mx. The limit 
changes with m, so L does not exist at (0,O). Same for xly. 

49 Dejinition of continuity: f(x, y) is continuous at (a, b) if 
f(a, b) is defined and f(x, y) approaches the limit as 
(x, y) approaches (a, b). Construct a function that is not con- 
tinuous at (1, 2). 

50 Show that xZy/(x4+ yZ)-+0 along every straight line 
y = mx to the origin. But traveling down the parabola y = xZ, 
the ratio equals 

51 Can you define f(0,O) so that f(x, y) is continuous at (0, O)? 

(a)f =  1x1+ Iy- 11 (b) f = ( l  + x ) ~  (c) f = ~ ' + ~ .  

52 Which functions zero as (x, Y) -* (0, O) and 

(a) 
xy2 

(b) 
x~~~ 

(c) 
xmyn-13.3 Tangent Planes and Linear Approximations 

Over a short range, a smooth curve y =f(x) is almost straight. The curve changes 
direction, but the tangent line y - yo =f '(xo)(x - xo) keeps the same slope forever. 
The tangent line immediately gives the linear approximation to y=f(x): 
Y = Yo +f'(xo)(x - xo). 

What happens with two variables? The function is z =f(x, y), and its graph is a 
surface. We are at a point on that surface, and we are near-sighted. We don't see far 
away. The surface may curve out of sight at the horizon, or it may be a bowl or a 
saddle. To our myopic vision, the surface looks flat. We believe we are on a plane 
(not necessarily horizontal), and we want the equation of this tangent plane. 
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Notation The basepoint has coordinates xo and yo. The height on the surface is 
zo = f (x,, yo). Other letters are possible: the point can be (a, b) with height w. The 
subscript , indicates the value of x or y or z or af/dx or df/ay at the point. 

With one variable the tangent line has slope dfldx. With two variables there 
are two derivatives af/ax and aflay. At the particular point, they are (aflax), and 
(afldy),. Those are the slopes of the tangent plane. Its equation is the key to this 
chapter: 

I 4% The t m p t  plane at (xQ, yo, zo) has the same slopes as the surface z = 
j(x, y). The aquatian of the tangat plane (a linear equation) is I 

2 - 2. = (E)$ - x d  + (3) ((Y - YO). 
8~ 0 

0) 

The normal vector N to that plane has components ( a f ] d ~ ) ~ ,  (63f/ayh, - 1. 

EXAMPLE 1 Find the tangent plane to z = 14 - x2 - y2 at (x,, yo, z,) = (1, 2, 9). 

Solution The derivatives are aflax = - 2x and af/dy = - 2y. When x = 1 and y = 2 
those are (aflax), = - 2 and (aflay), = - 4. The equation of the tangent plane is 

This z(x, y) has derivatives - 2 and - 4, just like the surface. So the plane is tangent. 
The normal vector N has components - 2, - 4, - 1. The equation of the normal 

line is (x,  y, z )  = (1,2,9) + t(- 2, - 4, - 1). Starting from (1,2,  9) the line goes out along 
N- perpendicular to the plane and the surface. 

Flg. 13.7 The tangent plane contains the x and y tangent lines, perpendicular to N. 

Figure 13.7 shows more detail about the tangent plane. The dotted lines are the x 
and y tangent lines. They lie in the plane. All tangent lines lie in the tangent plane! 
These particular lines are tangent to the "partial functionsm-where y is fixed at yo = 
2 or x is fixed at x ,  = 1. The plane is balancing on the surface and touching at the 
tangent point. 

More is true. In the surface, every curve through the point is tangent to the plane. 
Geometrically, the curve goes up to the point and "kisses" the plane.? The tangent 
T to the curve and the normal N to the surface are perpendicular: T N = 0. 

- - 

TA safer word is "osculate." At saddle points the plane is kissed from both sides. 
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EXAMPLE 2 Find the tangent plane to the sphere z2 = 14- x2- y2 at (1,2,3). 

Solution Instead of z = 14 - x2- y2 we have z = J14 - x2 -y2. At xo = 1, yo = 2 
the height is now zo = 3. The surface is a sphere with radius fl.The only trouble 
from the square root is its derivatives: 

az a k z x )-= -Jw=and -az - 3- ( -2~)  (3) 
ax ax Jw ay - ,/-

At (1,2) those slopes are -3 and - J .  The equation of the tangent plane is linear: 
z - 3 = -$(x - 1)- $(y - 2). I cannot resist improving the equation, by multiplying 
through by 3 and moving all terms to the left side: 

tangent plane to sphere: l(x - 1)+ 2(y - 2) + 3(z - 3) = 0. (4) 

If mathematics is the "science of patterns," equation (4) is a prime candidate for study. 
The numbers 1,2, 3 appear twice. The coordinates are (xo, yo, zo) = (1,2,3). The 
normal vector is l i  + 2j + 3k. The tangent equation is lx  + 2y + 32 = 14. None of this 
can be an accident, but the square root of 14 -x2- y2 made a simple pattern look 
complicated. 

This square root is not necessary. Calculus offers a direct way to find dzldx- 
implicit digerentiation. Just differentiate every term as it stands: 

x2 + y2 + z2= 14 leads to 2x + 2z az/ax = 0 and 2y + 2z az/ay = 0. (5) 

Canceling the 2's, the derivatives on a sphere are -xlz and -ylz. Those are the same 
as in (3). The equation for the tangent plane has an extremely symmetric form: 

Reading off N = xoi + yQ + zok from the last equation, calculus proves something 
we already knew: The normal vector to a sphere points outward along the radius. 

Fig. 13.8 Tangent plane and normal N for a sphere. Hyperboloids of 1 and 2 sheets. 

THE 'IANGENT PLANE TO &,y, r)  = c 

The sphere suggests a question that is important for other surfaces. Suppose the 
equation is F(x, y, z) = c instead of z =f(x, y). Can the partial derivatives and tangent 
plane be found directly from F? 

The answer is yes. It is not necessary to solve first for z. The derivatives of F, 
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computed at (x,, yo, z,), give a second formula for the tangent plane and normal 
vector. 

Notice how this includes the original case z =f(x, y). The function F becomes 
Ax, y) - z. Its partial derivatives are df/dx and aflay and -1. (The -1 is from the 
derivative of -z.) Then equation (7) is the same as our original tangent equation (1). 

EXAMPLE 3 The surface F = x2 + y2 - z2= c is a hyperboloid. Find its tangent plane. 

Solution The partial derivatives are F, = 2x, F, = 2y, F, = -22. Equation (7) is 

tangent plane: 2xo(x- xo)+ 2yo(y - yo)- 2z0(z- zo)= 0. (8) 

We can cancel the 2's. The normal vector is N = xoi+ yoj- zok. For c > 0 this 
hyperboloid has one sheet (Figure 13.8). For c = 0 it is a cone and for c < 0 it breaks 
into two sheets (Problem 13.1.26). 

DIFFERENTIALS 

Come back to the linear equation z - z0 = (a~/ax)~(x- xo)+ (az/ay),(y -yo) for the 
tangent plane. That may be the most important formula in this chapter. Move along 
the tangent plane instead of the curved surface. Movements in the plane are dx and 
dy and dz-while Ax and Ay and Az are movements in the surface. The d's are 
governed by the tangent equation- the A's are governed by z =f (x ,  y). In Chapter 2 
the d's were diierentials along the tangent line: 

dy = (dy/dx)dx (straight line) and Ay x (dy/dx)Ax (on the curve). (9) 

Now y is independent like x. The dependent variable is z. The idea is the same. The 
distances x - xo and y -yo and z - z0 (on the tangent plane) are dx and dy and dz. 
The equation of the plane is 

This is the total diferential. All letters dz and df and dw can be used, but az and af 
are not used. Differentials suggest small movements in x and y; then dz is the resulting 
movement in z. On the tangent plane, equation (10) holds exactly. 

A "centering transform" has put xo, yo, z0 at the center of coordinates. Then the 
"zoom transform" stretches the surface into its tangent plane. 

EXAMPLE 4 The area of a triangle is A = $ab sin 8. Find the total differential dA. 

Solution The base has length b and the sloping side has length a. The angle between 
them is 0. You may prefer A = ibh, where h is the perpendicular height a sin 8. Either 
way we need the partial derivatives. If A = $ab sin 8, then 

aA 1 aA 1 dA 1----bsin8 - = - a s i n 8  --- -ab cos 8. 
aa 2 ab 2 88 2 



These lead immediately to the total differential dA (like a product rule): 

1 1 1
2 2d~ = ( 2 ) d a  + ($)db + ($)do = ib sin 0 da + -a sin 0 db + a b  cos 0 dB. 

EXAMPLE 5 The volume of a cylinder is V = nr2h. Decide whether V is more sensitive 
to achangefrom r =  1.0 t o r =  1.1 or from h =  1.0 to h =  1.1. 

Solution The partial derivatives are dVldr = 2nrh and dV/ah = nr2. They measure 
the sensitivity to change. Physically, they are the side area and base area of the 
cylinder. The volume differential d V comes from a shell around the side plus a layer 
on top: 

dV= shell + layer = 2nrh dr + nr2dh. (12) 

Starting from r = h = 1, that differential is dV= 2 n d ~  + zdh. With dr = dh = .l, the 
shell volume is .2n and the layer volume is only .In. So V is sensitive to dr. 

For a short cylinder like a penny, the layer has greater volume. V is more sensitive 
to dh. In our case V = nr2h increases from ~ ( 1 ) ~  to n(l.1)). Compare AV to dV: 

-~ ( 1 ) ~A v =  ~ ( 1 . 1 ) ~  = .331n and dV= 2n(.1) + n(.l) = .300n. 

The difference is AV - d V= .031n. The shell and layer missed a small volume in 
Figure 13.9, just above the shell and around the layer. The mistake is of order 
( d ~ ) ~+ (dh)2. For V = nr2h, the differential d V= 2nrh dr + nr2dh is a linear approxima- 
tion to the true change AV. We now explain that properly. 

LINEAR APPROXIMATION 

Tangents lead immediately to linear approximations. That is true of tangent planes as 
it was of tangent lines. The plane stays close to the surface, as the line stayed close 
to the curve. Linear functions are simpler than f(x) or f(x, y) or F(x, y, z). All we 
need are first derivatives at the point. Then the approximation is good near the point. 

This key idea of calculus is already present in differentials. On the plane, df equals 
f,dx +f,dy. On the curved surface that is a linear approximation to Afi 

a3C The linear approximation to f(x, y) near the point (xo, yo) is 

(13) 

In other words Af =fxAx +f,Ay, as proved in Problem 24. The right side of (13) 
is a linear function fL(x, y). At (x,, yo), the functions f and fL have the same slopes. 
Then f(x, y) curves away from fL with an error of "second order:" 

If(x, Y) -f&, Y ) I ~ MC(X - ~ 0 ) ~+ (Y- yd21- (14) 

This assumes that f,,, f,,, and&, are continuous and bounded by M along the line 
from (xo, yo) to (x, y). Example 3 of Section 13.5 shows that If,,(< 2M along that line. 
A factor 4 comes from equation 3.8.12, for the error f -fL with one variable. 

For the volume of a cylinder, r and h went from 1.0 to 1.1. The second derivatives 
of V = nr2h are Vrr = 2nh and Vrh = 2nr and Vhh= 0. They are below M = 2.27~ Then 
(14)gives the error bound 2.274.1 + -12, = .044n, not far above the actual error -03 In. 
The main point is that the error in linear approximation comes from the quadratic 
terms-those are the first terms to be ignored by fL. 
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layer dh 
area nr2  

shell dr 
area 2nrh 

Fig. 13.9 Shiell plus layer gives dV= .300n. Fig. 13.10 Quantity Q and price P move with the lines. 
Including top ring gives A V = .33 In. 

EXAMPLE 6 Find a-linear approximation to the distance function r = ,/=. 
Solution The partial derivatives are x/r and ylr. Then Ar z(x/r)Ax + (y/r)Ay. 

z ,/mFor (x, y, r) near (1, 2, &): ,,/= + (x - I)/& + 2(y - 2)/fi .  

If y is fixed at 2, this is a one-variable approximation to d m .If x is fixed at 1, 
it is a linear approximation in y. Moving both variables, you might think dr would 
involve dx and dy in a square root. It doesn't. Distance involves x and y in a square 
root, but: change of distance is linear in Ax and Ay-to a first approximation. 

There is a rough point at x = 0, y = 0. Any movement from (0,O) gives Ar = 

Jmk(Ay)2. The square root has returned. The reason is that the partial deriva- 
tives x/r and y/r are not continuous at (0,O). The cone has a sharp point with no 
tangent plane. Linear approximation breaks down. 

The next example shows how to approximate Az from Ax and Ay, when the 
equation is F(x, y, z) = c. We use the implicit derivatives in (7) instead of the explicit 
derivatives in (1). The idea is the same: Look at the tangent equation as a way to 
find Az, instead of an equation for z. Here is Example 6 with new letters. 

EXAMPLE 7 From F = - x2 - y2 + z2 = 0 find a linear approximation to Az 

Solution (implicit derivatives) Use the derivatives of F: -2xAx - 2yAy + 2zAz z 0. 
Then solve for Az, which gives Az z (x/z)Ax + (y/z)Ay-the same as Example 6. 

EXAMPLE 8 How does the equilibrium price change when the supply curve changes? 

The equilibrium price is at the intersection of the supply and demand curves 
(supply =: demand). As the price p rises, the demand q drops (the slope is - .2): 

demand line DD: p = - .2q + 40. (15) 
The supply (also q) goes up with the price. The slope s is positive (here s = .4): 

supply line SS: p = sq + t = .4q + 10. 

Those lines are in Figure 13.10. They meet at the equilibrium price P = $30. The 
quantity Q = 50 is available at P (on SS) and demanded at P (on DD). So it is sold. 

Where do partial derivatives come in? The reality is that those lines DD and SS 
are not fixed for all time. Technology changes, and competition changes, and the 
value of money changes. Therefore the lines move. Therefore the crossing point (Q, P) 
also moves. Please recognize that derivatives are hiding in those sentences. 
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Main point: The equilibrium price P is a function of s and t. Reducing s by better 
technology lowers the supply line to p = .3q + 10. The demand line has not changed. 
The customer is as eager or stingy as ever. But the price P and quantity Q are 
different. The new equilibrium is at Q = 60 and P = $28, where the new line XX 
crosses DD. 

If the technology is expensive, the supplier will raise t when reducing s. Line YY 
is p = .3q + 20. That gives a higher equilibrium P = $32 at a lower quantity Q = 40-
the demand was too weak for the technology. 

Calculus question Find dP/ds and aP/at. The difficulty is that P is not given as 
a function of s and t. So take implicit derivatives of the supply = demand equations: 

supply = demand: P = - .2Q + 40 = sQ + t (16) 

s derivative: P, = - .2Q, = sQ, + Q (note t, = 0) 

t derivative: P, = - .2Q, = sQ, + 1 (note t, = 1) 

Now substitute s = .4, t = 10, P = 30, Q = 50. That is the starting point, around which 
we are finding a linear approximation. The last two equations give P, = 5013 and 
P, = 113 (Problem 25). The linear approximation is 

Comment This example turned out to be subtle (so is economics). I hesitated before 
including it. The equations are linear and their derivatives are easy, but something 
in the problem is hard-there is no explicit formula for P. The function P(s, t) is not 
known. Instead of a point on a surface, we are following the intersection of two lines. 
The solution changes as the equation changes. The derivative of the solution comes from 
the derivative of the equation. 

Summary The foundation of this section is equation (1) for the tangent plane. Every- 
thing builds on that-total differential, linear approximation, sensitivity to small 
change. Later sections go on to the chain rule and "directional derivatives" and 
"gradients." The central idea of differential calculus is Af zf,Ax +f,,Ay. 

N W O N ' S  METHOD F O R  MI0 EQUATIONS 

Linear approximation is used to solve equations. To find out where a function is zero, 
look first to see where its approximation is zero. To find out where a graph crosses 
the xy plane, look to see where its tangent plane crosses. 

Remember Newton's method for f(x) = 0. The current guess is x,. Around that 
point, f(x) is close to f(x,) + (x - x,)f'(x,). This is zero at the next guess x,,, = 
x, -f(x,)/f'(x,). That is where the tangent line crosses the x axis. 

With two variables the idea is the same- but two unknowns x and y require two 
equations. We solve g(x, y) = 0 and h(x, y) = 0. Both functions have linear approxi- 
mations that start from the current point (x,, y,)-where derivatives are computed: 

The natural idea is to set these approximations to zero. That gives linear equations 
for x - x, and y - y,. Those are the steps Ax and Ay that take us to the next guess 
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in Newton's method: 

13D Newton's method to solve g(x, y) =0 and h(x, y) = 0 has linear equations 
for the steps Ax and Ay that go from (x,, yn) to (x,, ,,y,, 1): 

EXAMPLE 9 g = x3 - y = 0 and h = y3 - x = 0 have 3 solutions (1, I), (0, O), (- 1, -1). 

I will sta.rt at different points (x,, yo). The next guess is x1 = xo + Ax, y1 = yo + Ay. 
It is of extreme interest to know which solution Newton's method will choose-if it 
converges at all. I made three small experiments. 

1. Suppose (x,, yo) = (2,l). At that point g = 23 - 1 = 7 and h = l3- 2 = -1. The 
derivatives are g, = 3x2 = 12, gy = - 1, h, = - 1, hy = 3~~= 3. The steps Ax and Ay 
come frolm solving (19): 

This new point (1017, 817) is closer to the solution at (1, 1). The next point is (1.1, 
1.05) and convergence is clear. Soon convergence is fast. 

2. Start at (x,, yo) = ( i ,  0). There we find g = 118 and h = - 112: 

Newton has jumped from ( i ,  0) on the x axis to (0, -+) on the y axis. The next step 
goes to (1132, O), back on the x axis. We are in the "basin of attraction" of (0,O). 

3. Now start further out the axis at (1, 0), where g = 1 and h = - 1: 

Newton moves from (1,O) to (0, -2) to (16,O). Convergence breaks down-the 
method lblows up. This danger is ever-present, when we start far from a solution. 

Please recognize that even a small computer will uncover amazing patterns. It can 
start from hundreds of points (x,, yo), and follow Newton's method. Each solution 
has a basin of attraction, containing all (x,, yo) leading to that solution. There is also 
a basin leading to infinity. The basins in Figure 13.11 are completely mixed together- 
a color figure shows them as fractals. The most extreme behavior is on the borderline 
between basins, when Newton can't decide which way to go. Frequently we see chaos. 

Chaos is irregular movement that follows a definite rule. Newton's method deter- 
mines an iteration from each point (x,, y,) to the next. In scientific problems it 
normally converges to the solution we want. (We start close enough.) But the com- 
puter makes it posible to study iterations from faraway points. This has created a 
new part of mathematics-so new that any experiments you do are likely to be 
original. 
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Section 3.7 found chaos when trying to solve x2 + 1= 0.But don't think Newton's 
method is a failure. On the contrary, it is the best method to solve nonlinear equations. 
The error is squared as the algorithm converges, because linear approximations have 
errors of order AX)^ + ( A Y ) ~ .Each step doubles the number of correct digits, near 
the solution. The example shows why it is important to be near. 

Fig. 13.11 The basins of attraction to (1, I ) ,  (0, O), (-1, - I ) ,  and infinity. 

13.3 EXERCISES 

Read-through questions 

The tangent line to y =f (x)  is y - y o  = a . The tangent 
plane to w =f(x,  y) is w -wo = b . The normal vector is 
N = c . For w =x3  +y3 the tangent equation at (1 ,1 ,2)  
is d . The normal vector is N = e . For a sphere, the 
direction of N is f . 

The surface given implicitly by F(x, y, z )  =c has tangent 
-xo)+ g . For xyz =6 at (1,2, 3) equation ( a F / a ~ ) ~ ( x  

the tangent plane is h . On that plane the differentials 
satisfy 1 d x  + I dy + k dz =0. The differential 
of z = A x ,  y) is dz = I .This holds exactly on the tangent 
plane, while Az x m holds approximately on the n . 
The height z = 3x + 7 y is more sensitive to a change in 0 

than in x ,  because the partial derivative P is larger than 
Q . 

The linear approximation to A x ,  y) is f (xo,  yo) + r . 
This is the same as Af x s Ax + t Ay. The error is 
of order u . For f =sin x y  the linear approximation 
around (0,O) is f, = v . We are moving along the w 
instead of the x . When the equation is given as 
F(x , y, z) =c, the linear approximation is Y Ax + 
LAY+- A Az=0.  

Newton's method solves g(x, y) =0 and h(x, y) =0 by a 
6 approximation. Starting from x,, y, the equations are 

replaced by c and D .The steps Ax and Ay go to the 

next point E . Each solution has a basin of F .Those 
basins are likely to be G . 
In 1-8 find the tangent plane and the normal vector at P. 

I Z =  P=(o, 1, 1) JW, 
2 x + y  + z  = 17, P=(3 ,  4, 10) 

3 z =x/y ,  P =(6, 3, 2) 

4 z =e"+2",P = (0,0, 1) 

5 x2 +y2 +z2 =6, P = (1, 2, 1) 

6 x 2  +Y 2  + 2z2 =7, P = (1, 2, 1) 

7 z =xy, P = (1, 1, 1) 

8 V =nr2h, P = (2, 2, 871). 

9 Show that the tangent plane to z2 -x2 -y2 =0 goes 
through the origin and makes a 45" angle with the z axis. 

10 The planes z =x +4y and z =2x + 3y meet at (1, 1, 5). 
The whole line of intersection is (x ,  y, z) = (1, 1, 5) +vt. 
Find v =N 1  x N 2 .  

11 If z = 3x -2y find dz from d x  and dy. If z =x3ly2 find dz 
from dx  and dy at x, = 1, yo = 1. If x moves to 1.02 and y 
moves to 1.03, find the approximate dz and exact Az for both 
functions. The first surface is the to the second 
surface. 
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12 The surfaces z =x2 + 41y and z = 2x + 3y2 meet at (1, 1, 5). 
Find the normals N, and N, and also v = N, x N,. The line 
in this direction v is tangent to what curve? 

13 The normal N to the surface F(x, y, z) =0 has components 
F,, F,, F,. The normal line has x =xo + Fxt, y =yo + F,t, 
z =  . For the surface xyz -24 =0, find the tangent 
plane and normal line at (4, 2, 3). 

14 For the surface x2y2 -- z =0, the normal line at (1, 2,4) 
h a s x =  , y =  , z =  . 

15 For the sphere x2 + y'' + z2 =9, find the equation of the 
tangent plane through (2, 1,2). Also find the equation of the 
normal line and show that it goes through (O,0,0). 

16 If the normal line at every point on F(x, y, z) = 0 goes 
through (0, 0, 0), show that Fx=cx, F, =cy, F, =cz. The sur- 
face must be a sphere. 

17 For w = xy near (x,, y,,), the linear approximation is dw = 
. This looks like the rule for derivatives. 

The difference between Aw =xy -xoyo and this approxima- 
tion is . 

18 Iff =xyz (3 independent variables) what is df? 

19 You invest P = $4000 at R = 8% to make I = $320 per 
year. If the numbers chan,ge by dP and dR what is dl? If the 
rate drops by dR = .002 (to 7.8%) what change dP keeps d l  = 

O? Find the exact interest I after those changes in R and P. 

20 Resistances R, and R:! have parallel resistance R, where 
1/R = 1/R, + 1/R2. Is R more sensitive to AR, or AR, if R, = 

1 and R, = 2? 

(a) If your batting average is A = (25 hits)/(100 at bats) = 

.250, compute the increase (to 261101) with a hit and the 
decrease (to 251101) w:ith an out. 
(b) If A =xly then dA == dx + dy. A hit 
(dx =dy = 1) gives dA = (1 -A)/y. An out (dy = 1) gives 
dA = -Aly. So at A ==.250 a hit has times the 
effect of an out. 

(a) 2 hits and 3 outs (dx =2, dy = 5) will raise your average 
(dA > 0) provided A is less than . 
(b)A player batting A = .500 with y =400 at bats needs 
dx = hits to raise his average to .505. 

If x and y change by Ax and Ay, find the approximate 
change A0 in the angle 8 == tan - '(y/x). 

24 The Fundamental Lernma behind equation (13) writes 
Af =aAx + bAy. The Lernma says that a +fx(xo, yo) and 
b +fy(xo, yo) when Ax +0 and Ay +0. The proof takes A.x 
first and then Ay: 

(l)f(xo + Ax, yo) -f(x,, yo) = Axfx(c, yo) where c is 
between and (by which theorem?) 

(2)f(xo + Ax, Yo + AY) --f(x0 + Ax, yo) =Ayf,(xo + Ax, C )  
where C is between and . 

(3) a = f x k  yo -+fx(xo,YO) provided fx 

(4) b =fy(xo+ Ax, C) -+fy(xo, yo) provided f, is . 

25 If the supplier reduces s, Figure 13.10 shows that P 
decreases and Q . 

(a) Find P, = 5013 and P, = 113 in the economics equation 
(17) by solving the equations above it for Q, and Q,. 
(b) What is the linear approximation to Q around s = .4, 
t = 10, P = 30, Q = 50? 

26 Solve the equations P = -.2Q + 40 and P = sQ + t for P 
and Q. Then find aP/as and aP/dt explicitly. At the same 
s, t, P, Q check 5013 and 113. 

27 If the supply =demand equation (16) changes to P = 
s Q + t = - Q + 5 0 ,  find P, and P, at s =  1, t =  10. 

28 To find out how the roots of x2 + bx + c =0 vary with b, 
take partial derivatives of the equation with respect to 

. Compare axlab with ax/ac to show that a root at 
x =2 is more sensitive to b. 

29 Find the tangent planes to z =xy and z =x2 -y2 at x = 

2, y = 1. Find the Newton point where those planes meet the 
xy plane (set z = 0 in the tangent equations). 

30 (a) To solve g(x, y) =0 and h(x, y) =0 is to find the meeting 
point of three surfaces: z =g(x, y) and z =h(x, y) and 

(b) Newton finds the meeting point of three planes: the 
tangent plane to the graph of g, , and . 

Problems 31-36 go further with Newton's method for g = 

x3-y and h = Y3 -X. This is Example 9 with solutions (1, I), 
(0, 01, (-1, -1). 

31 Start from xo = 1, yo = 1 and find Ax and Ay. Where are 
x, and y,, and what line is Newton's method moving on? 

32 Start from (3,i) and find the next point. This is in the 
basin of attraction of which solution? 

33 Starting from (a, -a) find Ay which is also -Ax. Newton 
goes toward (0, 0). But can you find the sharp point in 
Figure 13.11 where the lemon meets the spade? 

34 Starting from (a, 0) show that Newton's method goes to 
(0, -2a3) and find the next point (x,, y,). Which numbers a 
lead to convergence? Which special number a leads to a cycle, 
in which (x2, y2) is the same as the starting point (a, O)? 

35 Show that x3 =y, y3 =x has exactly three solutions. 

36 Locate a point from which Newton's method diverges. 

37 Apply Newton's method to a linear problem: g = 

x + 2y -5 = 0, h = 3x - 3 =0. From any starting point show 
that (x,, y,) is the exact solution (convergence in one step). 

-*is 



490 13 Partial Derivatives 

38 The complex equation (x + i ~ ) ~= 1 contains two real equ- 41 The matrix in Newton's method is the Jacobian: 
ations, x3 -3xy2 = 1 from the real part and 3x2y -y3 = 0 
from the imaginary part. Search by computer for the basins 
of attraction of the three solutions (1, O), (- 112, f i /2) ,  and 
(- 112, -&2)-which give the cube roots of 1. Find J and Ax and Ay for g = ex-1, h = eY+ x. 

42 Find the Jacobian matrix at (1, 1) when g = x2 + y2 and 
39 In Newton's method the new guess comes from (x,, y,) by h = xy. This matrix is and Newton's method fails. 
an iteration: x, + ,= G(x,, y,) and y, + = H(x,, y,). What are The graphs of g and h have tangent planes. 
G and H f o r g = x 2 - y = O ,  h=x-y=O?  First find Ax and 43 Solve g =x2 -y2 + 1 = 0 and h = 2xy = 0 by Newton's 
Ay; then x, + Ax gives G and y, + Ay gives H. method from three starting points: (0, 2) and (- 1, 1) and (2,O). 

Take ten steps by computer or one by hand. The solution 
40 In Problem 39 find the basins of attraction of the solution (0, 1) attracts when yo > 0. If yo = 0 you should find the chaos 
(0, 0) and (1, 1). iteration x, + = 4(xn-xn- I). 

13.4 Directional Derivatives and Gradients 

As x changes, we know how f(x, y) changes. The partial derivative dfldx treats y as 
constant. Similarly df/dy keeps x constant, and gives the slope in the y direction. But 
east-west and north-south are not the only directions to move. We could go along a 
45" line, where Ax = Ay. In principle, before we draw axes, no direction is preferred. 
The graph is a surface with slopes in all directions. 

On that surface, calculus looks for the rate of change (or the slope). There is a 
directional derivative, whatever the direction. In the 45" case we are inclined to divide 
Af by Ax, but we would be wrong. 

Let me state the problem. We are given f(x, y) around a point P = (x,, yo). We are 
also given a direction u (a unit vector). There must be a natural definition of D,f-
the derivative off in the direction u. To compute this slope at P, we need a formula. 
Preferably the formula is based on df/dx and dfldy, which we already know. 

Note that the 45" direction has u = i/$ + j/$. The square root of 2 is going to 
enter the derivative. This shows that dividing Af by Ax is wrong. We should divide 
by the step length As. 

EXAMPLE 1 Stay on the surface z = xy. When (x, y) moves a distance As in the 45" 
direction from (1, I), what is Az/As? 

Solution The step is As times the unit vector u. Starting from x = y = 1 the step 
ends at x = y = 1 + AS/$. (The components of "As are AS/$.) Then z = xy is 

r = (1 + ~ s / f i ) ~= 1 + $AS + %As)', which means Az = $AS + $(As)2. 

The ratio AzlAs approaches fi as As + 0. That is the slope in the 45" direction. 

DEFINITION The derivative off'in the direction u at the point P is D,f (P ) :  

The step from P = (x,, yo) has length As. It takes us to (x, + ulAs, yo + u2As). We 
compute the change Af and divide by As. But formula (2) below saves time. 
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The x (direction is u = (1,O). Then uAs is (As, 0) and we recover dfldx: 

Similarly D,f = dfldy, when u = (0, 1) is in the y direction. What is D,f when u = 
(0, -I)? 'That is the negative y direction, so D,f = - dfldy. 

CALCULATING THE DIRECTIONAL DERIVATIVE 

D,f is the slope of the surface z =f(x, y) in the direction u. How do you compute it? 
From df/dx and afldy, in two special directions, there is a quick way to find D,f in 
all directions. Remember that u is a unit vector. 

1 131 The directional derivative Duf in the direction u = (u,, u,) equals I 

The reasoning goes back to the linear approximation of Af: 

Divide b:y As and let As approach zero. Formula (2) is the limit of Af/As, as the 
approximation becomes exact. A more careful argument guarantees this limit pro- 
vided f, and S, are continuous at the basepoint (xo, yo). 

Main point: Slopes in all directions are known from slopes in two directions. 

EXAMPLE I (repeated) f = xy and P = (1,l) and u = (l/fi ,  l /fi).  Find D,f(P). 

The derivatives f, = y and f, = x equal 1 at P. The 45" derivative is 

D,f(P) =f,ul +S,u, = 1(1/fi) + 1(1/fi) = fi as before. 

EXAMPLE 2 The linear function f = 3x + y + 1 has slope D,f = 3u1 + u2. 

The x direction is u = (1, O), and D,f = 3. That is dfldx. In the y direction D,f=  1. 
Two other directions are special-along the level lines of f(x, y) and perpendicular: 

Level direction: D,f is zero because f is constant 

Steepest direction: D,f is as large as possible (with u: + u: = 1). 

To find tlhose directions, look at D,f = 3u1 + u,. The level direction has 3u1 + u, = 0. 
Then u is proportional to (1, -3). Changing x by 1 and y by -3 produces no change 
i n f = 3 x + y + 1 .  

In the steepest direction u is proportional to (3, 1). Note the partial derivatives 
f, = 3 and S, = 1. The dot product of (3, 1) and (1, -3) is zero-steepest direction 
is perpendicular to level direction. To make (3, 1) a unit vector, divide by fi. 

Steepest descent: Reverse to u = (- 3/@, -I/@) and Duf = -fi. 
The contlour lines around a mountain follow D,f = 0. The creeks are perpendicular. 
On a pllane like f = 3x + y + 1, those directions stay the same at all points 
(Figure 1.3.12). On a mountain the steepest direction changes as the slopes change. 



13 Partial Derhratives 

level 

level direction ' 3 u , + u 2 = 0  

Fig. 13.12 Steepest direction is along the gradient. Level direction is perpendicular. 

THE GRADIENT VECTOR 

Look again at fxu, + fyu2, which is the directional derivative DUJ This is the dot 
product of two vectors. One vector is u = (u,, u,), which sets the direction. The other 
vector is (f,, f,), which comes from the function. This second vector is the gradient. 

af Jf. DEFINITION The gradient of f(x, y) is the vector whose components are - and -. 
ax ay 

af af 
grad f = V f =  - i +  ,j (add k in three dimensions 

ax ay 

The space-saving symbol V is read as "grad." In Chapter 15 it becomes "del." 
For the linear function 3x + y + 1, the gradient is the constant vector (3, 1). It is 

the way to climb the plane. For the nonlinear function x2 + xy, the gradient is the 
non-constant vector (2x + y, x). Notice that grad f shares the two derivatives in N = 

(f,,f,, -1). But the gradient is not the normal vector. N is in three dimensions, 
pointing away from the surface z = f(x, y). The gradient vector is in the xy plane! The 
gradient tells which way on the surface is up, but it does that from down in the base. 

The level curve is also in the xy plane, perpendicular to the gradient. The contour 
map is a projection on the base plane of what the hiker sees on the mountain. The 
vector grad f tells the divection of climb, and its length (grad f ( gives the steepness. 

g3F The directional derivative is D,$= (grad f )  u. The level direction is per- 
pendicular to gradf, since D, f = 0. T k  slope D, f is largest whm u is glirallel to 
gradf. That maximum slope is the length igrad f 1 = Jf:+f;: 

grad the slope is (grad f )  u = - - 

The example f = 3x + y + 1 had grad f = (3, 1). Its steepest slope was in the direc- 
tion u = (3, l ) / f i .  The maximum slope was fi. That is lgrad f 1 = ,/=. 

Important point: The maximum of (grad f )  u is the length Igrad f 1. In nonlinear 
examples, the gradient and steepest direction and slope will vary. But look at one 
particular point in Figure 13.13. Near that point, and near any point, the linear 
picture takes over. 

On the graph off, the special vectors are the level direction L = (f,, - fx, 0) and 
the uphill direction U = ( fx,f,, f: + f :) and the normal N = ( fx ,f,, - 1). Problem 18 
checks that those are perpendicular. 
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EXAMPLE 3 The gradient of f(x, y) = (14 - x2 - y2)/3 is Vf = (- 2x13, -2~13). 

On the surface, the normal vector is N = (- 2x13, -2~13,-1). At the point (1,2, 3), 
this perpendicular is N = (- 213, -413, -1). At the point (1, 2) down in the base, 
the gradient is (- 213, -413). The length of grad f is the slo e ,/%/3. 

Probably a hiker does not go straight up. A "grade" of &/3 is fairly steep (almost 
150%). To estimate the slope in other directions, measure the distance along the path 
between two contour lines. If Af = 1 in a distance As = 3 the slope is about 113. This 
calculation is not exact until the limit of AflAs, which is DJ 

vel 

Fig. 13.13 N perpendicular to surface and grad f perpendicular to level line (in the base). 

EXAMPLE 4 The gradient of f(x, y, z) = xy + yz + xz has three components. 

The pattern extends from f(x, y) to f(x, y, z). The gradient is now the three-dimensional 
vector ( j ; ,  fy ,f,). For this function grad f is (y + z, x + z, x + y). To draw the graph 
of w =f(x, y, z) would require a four-dimensional picture, with axes in the xyzw 
directions. 

Notice: the dimensions. The graph is a 3-dimensional "surface" in 4-dimensional 
space. The gradient is down below in the 3-dimensional base. The level sets off come 
from xy -tyz + zx = c-they are 2-dimensional. The gradient is perpendicular to that 
level set (still down in 3 dimensions). The gradient is not N! The normal vector is 
(fx ,fy ,fz :, -I), perpendicular to the surface up in 4-dimensional space. 

EXAMPLE!5 Find grad z when z(x, y) is given implicitly: F(x, y, z) = x2+ y2-z2= 0. 

z = fJm.In this case we find The derivatives are & and 
fy/,/? + y2, which go into grad z. But the point is this: To find that gradient faster, 
differentiate F(x, y, z) as it stands. Then divide by F,:  

The gradient is (- Fx/Fz, -Fy/F,). Those derivatives are evaluated at (xo, yo). The 
computation does not need the explicit function z =f(x, y): 

F = x2 + y2 - z2 =. Fx = 2x, Fy = 2y, Fz = - 2z grad z = (xlz, ylz). 

To go uphill on the cone, move in. the direction (xlz, ylz). That gradient direction 
goes radially outward. The steepness of the cone is the length of the gradient vector: 

lgrad zl = J(x/z)~+ ( y l ~ ) ~= 1 because z2 = x2 + y2 on the cone. 
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DERIVATIVES ALONG CURVED PATHS 

On a straight path the derivative off is D, f = (grad f )  u. What is the derivative on 
a curved path? The path direction u is the tangent vector T. So replace u by T, which 
gives the "direction" of the curve. 

The path is given by the position vector R(t) = x(t)i + y(t)j. The velocity is v = 

(dx/dt)i + (dy/dt)j. The tangent vector is T = vllvl. Notice the choice-to move at any 
speed (with v) or to go at unit speed (with T). There is the same choice for the 
derivative of.f(x, y) along this curve: 

df afdx af dy rateofchange --(gradf)*v=--+-- 
dt ax dt ay dt 

df af dx af dy slope -=(gradf)*T=--+--  
ds ax ds ay ds 

The first involves time. If we move faster, dfldt increases. The second involves distance. 
If we move a distance ds, at any speed, the function changes by df. So the slope in 
that direction is dflds. Chapter 1 introduced velocity as dfldt and slope as dyldx and 
mixed them up. Finally we see the difference. 

Uniform motion on a straight line has R = R, + vt. The velocity v is constant. The 
direction T = u = vllvl is also constant. The directional derivative is (grad f )  u, but 
the rate of change is (grad f )  v. 

Equations (4) and (5) look like chain rules. They are chain rules. The next section 
extends dfldt = (df/dx)(dx/dt) to more variables, proving (4) and (5). Here we focus 
on the meaning: dflds is the derivative off in the direction u = T along the curve. 

EXAMPLE 7 Find dfldt and dflds for f = r. The curve is x = t2, y = t in Figure 13.14a. 

Solution The velocity along the curve is v = 2ti + j. At the typical point t = 1 it is 
v = 2i + j. The unit tangent is T = v/&. The gradient is a unit vector i l f i  + j / f i  
pointing outward, when f (x, y) is the distance r from the center. The dot product 
with v is dfldt = 3 / d .  The dot product with T is dflds = 3 / a .  

When we slow down to speed 1 (with T), the changes in f(x, y) slow down too. 

EXAMPLE 8 Find dflds for f = xy along the circular path x = cos t, y = sin t. 

First take a direct approach. On the circle, xy equals (cos t)(sin t). Its derivative comes 
from the product rule: dfldt = cos2t - sin2t. Normally this is different from dflds, 
because the time t need not equal the arc length s. There is a speed factor dsldt to 
divide by-but here the speed is 1. (A circle of length s = 271 is completed at t = 2n.) 
Thus the slope dflds along the roller-coaster in Figure 13.14 is cos2t - sin2t. 

A 

D =  

distance 
to (xo, yo) 

Fig. 13.14 The distance f = r changes along the curve. The slope of the roller-coaster is 
(grad f )  T. The distance D from (x,, y o )  has grad D = unit vector. 
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The second approach uses the vectors grad f and T. The gradient off = xy is 
(y, x) = (sin t, cos t). The unit tangent vector to the path is T = (- sin t, cos t). Their 
dot product is the same dflds: 

slope along path = (grad f )  T = - sin2t + cos2t. 

GRADIENTS WITHOUT COORDINAJES 

This section ends with a little "philosophy." What is the coordinate-free dejnition of 
the gradient? Up to now, grad f = (fx, f,,) depended totally on the choice of x and y 
axes. But the steepness of a surface is independent of the axes. Those are added later, 
to help us compute. 

The steepness dflds involves only f and the direction, nothing else. The gradient 
should be a "tensorw-its meaning does not depend on the coordinate system. The 
gradient has different formulas in different systems (xy or re or . . .), but the direction 
and length of grad f are determined by dflds-without any axes: 

The drrection of grad f is the one in which dflds is largest. 
The length Igrad f 1 is that largest slope. 

The key equation is (change in f )  x (gradient off) (change in position). That is another 
way to write Af x fxAx +@y. It is the multivariable form-we used two variables- 
of the basic linear approximation Ay x (dy/dx)Ax. 

EXAMPLE 9 D(x, y) = distance from (x, y) to (x,, yo). Without derivatives prove 
lgrad Dl = 1. The graph of D(x, y) is a cone with slope 1 and sharp point (x,, yo). 

First question In which direction does the distance D(x, y) increase fastest? 
Answer Going directly away from (x,, yo). Therefore this is the direction of grad D. 

Second question How quickly does D increase in that steepest direction? 
~nswer A step of length As increases D by As. Therefore ]grad Dl = AslAs = 1. 

Conclusion grad D is a unit vector. The derivatives of D in Problem 48 are 
(x - xo)/D and (y - yo)/D. The sum of their squares is 1, because (x - x,)~ + 
(y - yo)* equals D ~ .  

13.4 EXERCISES 
Read-through questions The gradient of f(x, y, z) is s . This is different from the 

gradient on the surface F(x, y, z) = 0, which is -(F,/F,)i + D, f gives the rate of change of a in the direction b . 
t . Traveling with velocity v on a curved path, the rate It can be computed from the two derivatives c in the - 

of change off is dfldt = u . When the tangent direction 
special directions d . In terms of u,, u2 the formula is 

is T, the slope off is dflds = v . In a straight direction u, ' D, f = e . This is a f product of u with the vector 
g , which is called the h . For the linear function f = 

dflds is the same as w . 

ax + by, the gradient is gradf = 1 and the directional Compute then Du f = (grad f )  . u, then Du f at PP. 
derivative is D, f = i k . 

1 f(x, y) = x2 - y2 The gradient Vf = (fx,f,) is not a vector in I dimen- u = (&2, 112) P = (1, 0) 

sions, it is a vector in the m . It is perpendicular to the 2 f(x, y) = 3x + 4y + 7 u = (315, 415) P = (0, 7112) 
n lines. It points in the direction of o climb. Its 3 f(x, y) = ex cos y 

magnitude Igrad f ( is P . For f = x2 + y2 the gradient 
points q and the slope in that steepest direction is r . 4 f(x, Y)=Y'O u=(O, -1) P = ( l ,  -1) 



5 f(x, y) = distance to (0, 3) u = (1, 0) P = (1, 1) 

Find grad f = (f,, fy, f,) for the functions 6 8  from physics. 

6 1/Jx2 + y2 + z2 (point source at the origin) 

7 ln(x2 + y2) (line source along z axis) 

8 l/J(x - + y2 + z2 - l/J(x + + y2 + z2 (dipole) 

9 For f = 3x2 + 2y2 find the steepest direction and the level 
direction at (1,2). Compute D, f in those directions. 

10 Example 2 claimed that f = 3x + y + 1 has steepest slope 
Maximize Duf = 3u1 + u2 = 3ul +,/-. 

11 True or false, when f(x, y) is any smooth function: 
(a) There is a direction u at P in which D, f = 0. 
(b) There is a direction u in which D, f = gradf: 
(c) There is a direction u in which D, f = 1. 
(d) The gradient of f(x)g(x) equals g grad f + f grad g. 

12 What is the gradient of f(x)? (One component only.) What 
are the two possible directions u and the derivatives Du f ?  
What is the normal vector N to the curve y=f(x)? (Two 
components.) 

In 13-16 find the direction u in which f increases fastest at P = 

(1, 2). How fast? 

13 f(x, y) = ax + by 14 f(x, y) = smaller of 2x and y 

15 f(x, y) = ex-Y 16 fix, y) = J5 - x2 - y2 (careful) 

17 (Looking ahead) At a point where f(x, y) is a maximum, 
what is grad f ?  Describe the level curve containing the maxi- 
mum point (x, y). 

18 (a) Check by dot products that the normal and uphill and 
level directions on the graph are perpendicular: N = 

(fxyfy, - 1 ) J  =(fx,fy,fx2 +f:W =(fy, -fx, 0). 
(b) N is to the tangent plane, U and L are 

to the tangent plane. 
(c) The gradient is the xy projection of and also 
of . The projection of L points along the 

19 Compute the N, U, L vectors for f = 1 - x + y and draw 
them at a point on the flat surface. 

20 Compute N, U, L for x2 + y2 - z2 = 0 and draw them at 
a typical point on the cone. 

With gravity in the negative z direction, in what direction - U 
will water flow down the roofs 21-24? 

21 z = 2x (flat roof) 22 z = 4x - 3y (flat roof) 

23 z = ,/- (sphere) 24 z = - ,/= (cone) 

25 Choose two functions f(x, y) that depend only on x + 2y. 
Their gradients at (1, 1) are in the direction . Their 
level curves are 

26 The level curve off = y/x through (1, 1) is . The 
direction of the gradient must be . Check grad f. 

27 Grad f is perpendicular to 2i + j with length 1, and grad g 
is parallel to 2i + j with length 5. Find gradf, grad g,f, and g. 

28 True or false: 
(a) If we know gradf, we know f: 
(b) The line x = y = - z is perpendicular to the plane z = 

x + y. 
(c) The gradient of z = x + y lies along that line. 

29 Write down the level direction u for 8 = tan-'(ylx) at the 
point (3,4). Then compute grad 8 and check DUB = 0. 

30 On a circle around the origin, distance is As = rAO. Then 
dO/ds= llr. Verify by computing grad 8 and T and 
(grad 8) T. 

31 At the point (2, 1,6) on the mountain z = 9 - x - y2, 
which way is up? On the roof z = x + 2y + 2, which way is 
down? The roof is to the mountain. 

32 Around the point (1, -2) the temperature T= e-"*-y2 has 
AT z AX + Ay. In what direction u does 
it get hot fastest? 

33 Figure A shows level curves of z = f(x, y). 
(a) Estimate the direction and length of grad f at P, Q, R. 
(b) Locate two points where grad f is parallel to i + j. 
(c) Where is Igrad f ( largest? Where is it smallest? 
(d) What is your estimate of z,,, on this figure? 
(e) On the straight line from P to R, describe z and esti- 
mate its maximum. 
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34 A quadratic function ax2 + by2 + cx + dy has the gradi- 
ents shown in Figure B. Estimate a, b, c, d and sketch two 
level curves. 

35 The level curves of f(x, y) are circles around (1, 1). The 
curve f = c has radius 2c. What is f?  What is grad f at (0, O)? 

36 Suppose grad f is tangent to the hyperbolas xy = constant 
in Figure C. Draw three level curves off(x, y). Is lgrad f 1 larger 
at P or Q? Is lgrad f 1 constant along the hyperbolas? Choose 
a function that could bef: x2 + y2, x2 - y2, xy, x2y2. 

37 Repeat Problem 36, if grad f is perpendicular to the hyper- 
bolas in Figure C. 

38 Iff = 0, 1, 2 at the points (0, I), (1, O), (2, I), estimate grad f 
by assuming f = Ax + By + C. 

39 What functions have the following gradients? 

(a) (2x + y, x) (b) (ex - Y, - ex- Y, (c) ( y, - x) (careful) 

40 Draw level curves of f(x, y) if grad f = (y, x). 

In 41-46 find the velocity v and the tangent vector T. Then 
compute the rate of change df/dt = grad f v and the slope 
df/ds = grad f T. 

42 f = x  x = cos 2t y = sin 2t 

43 f = x 2 - y 2  x = x o + 2 t  y = y o + 3 t  

44 f = x y  x = t 2 + 1  y = 3  

45 f= ln  xyz x = e' y = e2' = e-' 

46 f=2x2+3y2+z2 x = t  y = t 2  Z=t3 

47 (a) Find df/ds and df/dt for the roller-coaster f = xy along 
the path x = cos 2t, y = sin 2t. (b) Change to f = x2 + y2 and 
explain why the slope is zero. 

48 The distance D from (x, y) to (1, 2) has D2 = 

(x - + (y - 2)2. Show that aD/ax = (X - l)/D and dD/ay = 
(y - 2)/D and [grad Dl = 1. The graph of D(x, y) is a 
with its vertex at . 
49 Iff = 1 and grad f = (2, 3) at the point (4, 5), find the tan- 
gent plane at (4, 5). Iff is a linear function, find f(x, y). 

50 Define the derivative of f(x, y) in the direction u = (ul, u2) 
at the point P = (x,, yo). What is Af (approximately)? What 
is D, f (exactly)? 

51 The slope off along a level curve is dflds = = 0. 
This says that grad f is perpendicular to the vector 
in the level direction. 

13.5 The Chain Rule 

Calculus goes back and forth between solving problems and getting ready for harder 
problems. The first is "application," the second looks like "theory." If we minimize f 
to save time or money or energy, that is an application. If we don't take derivatives 
to find the minimum-maybe because f is a function of other functions, and we don't 
have a chain rule-then it is time for more theory. The chain rule is a fundamental 
working tool, because f(g(x)) appears all the time in applications. So do f(g(x, y)) and 
f(x(t), y(t)) and worse. We have to know their derivatives. Otherwise calculus can't 
continue with the applications. 

You may instinctively say: Don't bother with the theory, just teach me the formulas. 
That is not possible. You now regard the derivative of sin 2x as a trivial problem, 
unworthy of an answer. That was not always so. Before the chain rule, the slopes of 
sin 2x and sin x2 and sin2x2 were hard to compute from Af/Ax. We are now at the 
same point for f(x, y). We know the meaning of dfldx, but iff = r tan B and x = r cos 8 
and y = r sin 8, we need a way to compute afldx. A little theory is unavoidable, if the 
problem-solving part of calculus is to keep going. 

To repeat: The chain rule applies to a function of a function. In one variable that 
was f(g(x)). With two variables there are more possibilities: 

1. f ( ~ )  withz=g(x,y) Find df/dx and afldy 

2. f(x, y) with x = x(t), y = y(t) Find dfldt 

3. f(x, y) with x = x(t, u), y = y(t, u) Find dfldt and afldu 




