
C H A P T E R  


Applications of the Derivative 


Chapter 2 concentrated on computing derivatives. This chapter concentrates on using 
them. Our computations produced dyldx for functions built from xn and sin x and 
cos x. Knowing the slope, and if necessary also the second derivative, we can answer 
the questions about y =f(x) that this subject was created for: 

1. How does y change when x changes? 
2. What is the maximum value of y? Or the minimum? 
3. How can you tell a maximum from a minimum, using derivatives? 

The information in dyldx is entirely local. It tells what is happening close to the point 
and nowhere else. In Chapter 2, Ax and Ay went to zero. Now we want to get them 
back. The local information explains the larger picture, because Ay is approximately 
dyldx times Ax. 

The problem is to connect the finite to the infinitesimal-the average slope to the 
instantaneous slope. Those slopes are close, and occasionally they are equal. Points 
of equality are assured by the Mean Value Theorem-which is the local-global 
connection at the center of differential calculus. But we cannot predict where dyldx 
equals AylAx. Therefore we now find other ways to recover a function from its 
derivatives-or to estimate distance from velocity and acceleration. 

It may seem surprising that we learn about y from dyldx. All our work has been 
going the other way! We struggled with y to squeeze out dyldx. Now we use dyldx 
to study y. That's life. Perhaps it really is life, to understand one generation from 
later generations. 

3.1 Linear Approximation 

The book started with a straight line f = vt .  The distance is linear when the velocity 
is constant. As soon as v begins to change, f = v t  falls apart. Which velocity do we 
choose, when v( t )  is not constant? The solution is to take very short time intervals, 91 
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in which v is nearly constant: 

f = vt is completely false 

Af = vAt is nearly true 

df = vdt is exactly true. 

For a brief moment the functionf(t) is linear-and stays near its tangent line. 
In Section 2.3 we found the tangent line to y =f(x). At x = a, the slope of the curve 

and the slope of the line are f'(a). For points on the line, start at y =f(a). Add the 
slope times the "increment" x - a: 

Y =f(a) +f '(a)(x - a). ( 1 )  

We write a capital Y for the line and a small y for the curve. The whole point of 
tangents is that they are close (provided we don't move too far from a): 

That is the all- urpose linear approximation. Figure 3.1 shows the square root 
function y = A n d  its tangent line at x = a = 100. At the point y = @=lo, 
the slope is 1/2& = 1/20. The table beside the figure compares y(x) with Y(x). 

Fig. 3.1 Y ( x )is the linear approximation to f i near x = a = 100. 

The accuracy gets worse as x departs from 100. The tangent line leaves the curve. 
The arrow points to a good approximation at 102, and at 101 it would be even better. 
In this example Y is larger than y-the straight line is above the curve. The slope of 
the line stays constant, and the slope of the curve is decreasing. Such a curve will 
soon be called "concave downward," and its tangent lines are above it. 

Look again at x = 102, where the approximation is good. In Chapter 2, when we 
were approaching dyldx, we started with Ay/Ax: 

JiE-m
slope z 

102- 100 ' 

Now that is turned around! The slope is 1/20. What we don't know i s  J102: 

JZ w J-5+ (slope)(102 - 100). (4) 

You work with what you have. Earlier we didn't know dyldx, so we used (3). Now 
we are experts at dyldx, and we use (4). After computing y' = 1/20 once and for 
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all, the tangent line stays near & for every number near 100. When that nearby 
number is 100 + Ax, notice the error as the approximation is squared: 

The desired answer is 100 + Ax, and we are off by the last term involving AX)^. The 
whole point of linear approximation is to ignore every term after Ax. 

There is nothing magic about x = 100, except that it has a nice square root. Other 
points and other functions allow y x Y I would like to express this same idea in 
different symbols. Instead of starting from a and going to x, we start from x and go a 
distance Ax to x + Ax. The letters are different but the mathematics is identical. 

1 3A At any point x, and for any smooth betion y =fo, 

slope at x x f& + h)-Ax). 
(5)

I Ax 

EXAMPLE 1 An important linear approximation: (1 + x)" x 1 + nx for x near zero. 

EXAMPLE 2 A second important approximation: 1 / ( 1  + x)" x 1 -nx for x near zero. 

Discussion Those are really the same. By changing n to -n in Example 1 ,  it becomes 
Example 2. These are linear approximations using the slopes n and -n at x =0: 

( 1  + x)" z 1 + (slope at zero) times ( x  - 0)= 1 + nx. 

Here is the same thing with f (x )  = xn. The basepoint in equation (6)is now 1 or x: 

(1 +Ax)" x 1 + nAx ( x  + Ax)" z xn+ nxn-'Ax. 

Better than that, here are numbers. For n = 3 and -1 and 100, take Ax = .01: 

Actually that last number is no good. The 100th power is too much. Linear approxi- 
mation gives 1 + 100Ax = 2, but a calculator gives (l.O1)'OO= 2.7. ... This is close to 
e, the all-important number in Chapter 6. The binomial formula shows why the 
approximation failed: 

Linear approximation forgets the AX)^ term. For Ax = 1/100 that error is nearly 3. 
It is too big to overlook. The exact error is f"(c), where the Mean Value 
Theorem in Section 3.8 places c between x and x + Ax. You already see the point: 

y - Y is of order AX)^. Linear approximation, quadratic error. 

DIFFERENTIALS 

There is one more notation for this linear approximation. It has to be presented, 
because it is often used. The notation is suggestive and confusing at the same time- 
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it keeps the same symbols dx and dy that appear in the derivative. Earlier we took 
great pains to emphasize that dyldx is not an ordinary fraction.7 Until this paragraph, 
dx and dy have had no independent meaning. Now they become separate variables, 
like x and y but with their own names. These quantities dx and dy are called 
dzrerentials. 

The symbols dx and dy measure changes along the tangent line. They do for the 
approximation Y(x) exactly what Ax and Ay did for y(x). Thus dx and Ax both 
measure distance across. 

Figure 3.2 has Ax =dx. But the change in y does not equal the change in Y. One 
is Ay (exact for the function). The other is dy (exact for the tangent line). The 
differential dy is equal to AY, the change along the tangent line. Where Ay is the true 
change, dy is its linear approximation (dy/dx)dx. 

You often see dy written as f'(x)dx. 

Ay =change in y (along curve) 

Y 
dy =change in Y (along tangent) 

Ax- Fig. 3.2 The linear approximation to Ay is 

x = a  x + d x = x + A x  dy =f '(x) dx. 

EmMPLE 3 y = x2 has dyldx = 2x so dy = 2x dx. The table has basepoint x = 2. 
The prediction dy differs from the true Ay by exactly (Ax)2 = .0l and .04 and .09. 

The differential dy =f'(x)dx is consistent with the derivative dyldx =f'(x). We 
finally have dy = (dy/dx)dx, but this is not as obvious as it seems! It looks like 
cancellation-it is really a definition. Entirely new symbols could be used, but dx 
and dy have two advantages: They suggest small steps and they satisfy dy =f'(x)dx. 
Here are three examples and three rules: 

d(sin x) = cos x dx d(cf) = c df 

Science and engineering and virtually all applications of mathematics depend on 
linear approximation. The true function is "linearized,"using its slope v: 

Increasing the time by At increases the distance by x vAt 

Increasing the force by Af increases the deflection by x vAf 

Increasing the production by Ap increases its value by z vAp. 

+Fraction or not, it is absolutely forbidden to cancel the d's. 
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The goal of dynamics or statics or economics is to predict this multiplier v-the 
derivative that equals the slope of the tangent line. The multiplier gives a local 
prediction of the change in the function. The exact law is nonlinear-but Ohm's law 
and Hooke's law and Newton's law are linear approximations. 

ABSOLUTE CHANGE, RELATIVE CHANGE, PERCENTAGE CHANGE 

The change Ay or Af can be measured in three ways. So can Ax: 

Absolute change f!f Ax 

df
Relative change 
f(4 

Percentage change 

Relative change is often more realistic than absolute change. If we know the distance 
to the moon within three miles, that is more impressive than knowing our own height 
within one inch. Absolutely, one inch is closer than three miles. Relatively, three miles 
is much closer: 

3 miles 1 inch < or .001%< 1.4%. 
300,000 miles 70 inches 

EXAMPLE 4 The radius of the Earth is within 80 miles of r = 4000 miles. 
(a) Find the variation dV in the volume V = jnr3, using linear approximation. 
(b) Compute the relative variations dr/r and dV/V and AV/K 

Solution The job of calculus is to produce the derivative. After dV/dr = 4nr2, its 
work is done. The variation in volume is dV = 4n(4000)'(80) cubic miles. A 2% 
relative variation in r gives a 6% relative variation in V: 

Without calculus we need the exact volume at r = 4000 + 80 (also at r = 3920): 

One comment on dV = 4nr2dr. This is (area of sphere) times (change in radius). It is 
the volume of a thin shell around the sphere. The shell is added when the radius 
grows by dr. The exact AV/V is 3917312/640000%, but calculus just calls it 6%. 

3.4 EXERCISES 
Read-through questions In terms of x and Ax, linear approximation is 

f(x + Ax) x f (x )  + i . The error is of order (Ax)P or
On the graph, a linear approximation is given by the a ( x  -a)P with p = i . The differential d y  equals kline. At x = a, the equation for that line is Y =f(a) + b . times the differential r . Those movements are along the Near x = a = 10, the linear approximation to y = x3 is Y = 

-m line, where Ay is along the n .1000 + c . At x = 11 the exact value is ( 1  1)3= ' d . The 
approximation is Y = e . In this case Ay = f and Find the linear approximation Y to y =f (x)  near x = a: 
dy = g . If we know sin x, then to estimate sin(x + Ax) we 
add h . 1 f (x )  = x + x4, a = 0 2 A x )  = l / x ,  a = 2 
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3 f(x) = tan x, a = n/4 4 f(x) = sin x, a = n/2 

5 f(x) = x sin x, a = 2n 6 f(x) = sin2x, a = 0 

Compute 7-12 within .O1 by deciding on f(x), choosing the 
basepoint a, and evaluating f(a) + f'(a)(x - a). A calculator 
shows the error. 

7 (2.001)(j 8 sin(.02) 

9 cos(.O3) 10 ( 15.99)'14 

1 1  11.98 12 sin(3.14) 

Calculate the numerical error in these linear approximations 
and compare with +(Ax)2f"(x): 

13 (1.01)3z 1 + 3(.01) 14 cos(.Ol)z 1 + 0(.01) 

15 (sin .01)2 z 0 + 0(.01) 16 (1 .01)-~z 1 - 3(.Ol) 

Confirm the approximations 19-21 by computing f'(0): 

19 J K z  1 - f x  

20 I IJ= z I + +x2 (use f =  I 1JI-u. then put u = x2) 

21 J,."u'c+ ;$ (use f ( u ) = j = ,  then put u = r 2 )  

22 Write down the differentials d f  for f(x) = cos x and 
(x + l)/(x- 1) and (.x2 + I)'. 

In 23-27 find the linear change dV in the volume or d A  in the 
surface area. 

23 d V  if the sides of a cube change from 10 to 10.1 

24 d A  if the sides of a cube change from x to x + dx. 

25 d A  if the radius of a sphere changes by dr. 

26 d V  if a circular cylinder with r = 2 changes height from 3 
to 3.05 (recall V = nr2h). 

27 dV if a cylinder of height 3 changes from r = 2 to r = 1.9. 
Extra credit: What is d V  i f  r and h both change (dr  and dh)? 

28 In relativity the mass is m , / J w  at velocity u. By 
Problem 20 this is near mo + for small v. Show that 
the kinetic energy fmv2 and the change in mass satisfy 
Einstein's equation e = (Am)c2. 

29 Enter 1.1 on your calculator. Press the square root key 5 
times (slowly). What happens each time to the number after 
the decimal point? This is because JGz . 

30 In Problem 29 the numbers you see are less than 1.05, 
1 .025, . . . . The second derivative of Jlfris so the 
linear approximation is higher than the curve. 

31 Enter 0.9 on your calculator and press the square root 
key 4 times. Predict what will appear the fifth time and press 
again. You now have the root of 0.9. How many 
decimals agree with 1 -h ( 0 .I)? 

Our goal is to learn about f(x) from dfldx. We begin with two quick questions. 
If dfldx is positive, what does that say about f ?  If the slope is negative, how is that 
reflected in the function? Then the third question is the critical one: 

How do you identify a maximum or minimum? Normal answer: The slope is zero. 

This may be the most important application of calculus, to reach df1d.x = 0. 
Take the easy questions first. Suppose dfldx is positive for every x between a and b. 

All tangent lines slope upward. The function f(x) is increasing as  x goes from n to b. 

3B If dfldx > 0 then f(x) is increasing. If dfldx < 0 then f(x) is decreasing. 

To define increasing and decreasing, look at any two points x < X .  "Increasing" 
requires f(x) < f (X) .  "Decreasing" requires j(x)  > f (X) .  A positive slope does not mean 
a positive function. The function itself can be positive or negative. 

EXAMPLE 1 f(x) = x2 - 2x has slope 2x - 2. This slope is positive when x > 1 and 
negative when x < 1. The function increases after x = 1 and decreases before x = 1. 



3.2 Maximum and Minimum Problems 

Fig. 3.3 Slopes are - +. Slope is + - + - + so f is up-down-up-down-up. 

We say that without computing f ( x )  at any point! The parabola in Figure 3.3 goes 
down to its minimum at x = 1 and up again. 

EXAMPLE 2 x2 - 2x + 5 has the same slope. Its graph is shifted up by 5, a number 
that disappears in dfldx. All functions with slope 2x - 2 are parabolas x2  - 2x + C, 
shifted up or down according to C. Some parabolas cross the x axis (those crossings 
are solutions to f ( x )  = 0). Other parabolas stay above the axis. The solutions to 
x2 - 2x + 5 = 0 are complex numbers and we don't see them. The special parabola 
x2 - 2x + 1 = ( x  - 1)2grazes the axis at x = 1. It has a "double zero," where f (x )  = 

dfldx = 0. 

EXAMPLE 3 Suppose dfldx = (x- l ) ( x- 2)(x- 3)(x- 4). This slope is positive 
beyond x = 4 and up to x = 1 (dfldx = 24 at x = 0). And dfldx is positive again 
between 2 and 3. At x = 1, 2, 3,4,  this slope is zero and f ( x )  changes direction. 

Here f ( x )  is a fifth-degree polynomial, because f ' (x)is fourth-degree. The graph of 
f goes up-down-up-down-up. It might cross the x axis five times. I t  must cross 
at least once (like this one). When complex numbers are allowed, every fifth-degree 
polynomial has five roots. 

You may feel that "positive slope implies increasing function" is obvious-perhaps 
it is. But there is still something delicate. Starting from dfldx > 0 at every single point, 
we have to deduce f ( X )  >f ( x )  at pairs of points. That is a "local to global" question, 
to be handled by the Mean Value Theorem. It could also wait for the Fundamental 
Theorem of Calculus: The diflerence f ( X )  -f ( x )  equals the area under the graph of 
dfldx. That area is positive, so f ( X )  exceeds f (x) .  

MAXIMA AND MINIMA 

Which x makes f ( x )  as large as possible? Where is the smallest f(x)? Without calculus 
we are reduced to computing values of f ( x )  and comparing. With calculus, the infor- 
mation is in dfldx. 

Suppose the maximum or minimum is at a particular point x. It is possible that 
the graph has a corner-and no derivative. But ifdfldx exists, it must be zero. The 
tangent line is level. The parabolas in Figure 3.3 change from decreasing to increasing. 
The slope changes from negative to positive. At this crucial point the slope is zero. 
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3C Local Maximum or Minimum Suppose the maximum or minimum 
occurs at a point x inside an interval where f(x) and df[dx are defined. Then 
f '(x) = 0. 

The word "local" allows the possibility that in other intervals, f(x) goes higher or 
lower. We only look near x, and we use the definition of dfldx. 

Start with f(x + Ax) -f(x). If f(x) is the maximum, this difference is negative or 
zero. The step Ax can be forward or backward: 

if Ax > 0: 
f(x + AX)-f(x) - negative < 0 and in the limit -df 6 0.

Ax positive dx 

f(x+Ax)-f(x) negative df-if Ax < 0: -- 2 0 and in the limit -3 0.
Ax negative dx 

Both arguments apply. Both conclusions dfldx <0 and dfldx 2 0 are correct. Thus 
dfldx = 0. 

Maybe Richard Feynman said it best. He showed his friends a plastic curve that 
was made in a special way - "no matter how you turn it, the tangent at the lowest 
point is horizontal." They checked it out. It was true. 

Surely You're Joking, Mr. Feynman! is a good book (but rough on mathematicians). 

EXAMPLE 3 (continued) Look back at Figure 3.3b. The points that stand out 
are not the "ups" or "downs" but the "turns." Those are stationary points, where 
dfldx = 0. We see two maxima and two minima. None of them are absolute maxima 
or minima, because f(x) starts at - co and ends at + co. 

EXAMPLE 4 f(x) = 4x3 - 3x4 has slope 12x2 - 12x3. That derivative is zero when 
x2 equals x3, at the two points x = 0 and x = 1. To decide between minimum and 
maximum (local or absolute), the first step is to evaluate f(x) at these stationary points. 
We find f(0) = 0 and f(1) = 1. 

Now look at large x. The function goes down to - co in both directions. (You can 
mentally substitute x = 1000 and x = -1000). For large x, -3x4 dominates 4x3. 

Conclusion f = 1 is an absolute maximum. f = 0 is not a maximum or minimum 
(local or absolute). We have to recognize this exceptional possibility, that a curve (or 
a car) can pause for an instant (f '  = 0) and continue in the same direction. The reason 
is the "double zero" in 12x2 - 12x3, from its double factor x2. 

absolute max 

Y!h local max 

-
-3 rough point 

Fig. 3.4 The graphs of 4x3 - 3x4 and x + x-'. Check rough points and endpoints. 

2 
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EXAMPLE 5 Define f(x) = x + x-I for x > 0. Its derivative 1 - 1/x2 is zero at x = 1. 
At that point f(1) = 2 is the minimum value. Every combination like f + 3 or 4 + 
is larger than fmin = 2. Figure 3.4 shows that the maximum of x + x- ' is + oo.? 
Important The maximum always occurs at a stationarypoint (where dfldx = 0) or a 
rough point (no derivative) or an endpoint of the domain. These are the three types 
of critical points. All maxima and minima occur at critical points! At every other 
point df/dx > 0 or df/dx < 0. Here is the procedure: 

1. Solve df/dx = 0 to find the stationary points f(x). 
2. Compute f(x) at every critical point-stationary point, rough point, endpoint. 
3. Take the maximum and minimum of those critical values of f(x). 

EXAMPLE 6 (Absolute value f(x) = 1x1) The minimum is zero at a rough point. The 
maximum is at an endpoint. There are no stationary points. 

The derivative of y = 1x1 is never zero. Figure 3.4 shows the maximum and mini- 
mum on the interval [- 3,2]. This is typical of piecewise linear functions. 

Question Could the minimum be zero when the function never reaches f(x) = O? 
Answer Yes, f(x) = 1/(1+ x ) ~  approaches but never reaches zero as x + oo. 

Remark 1 x + foo and f(x) -, + oo are avoided when f is continuous on a closed 
interval a < x < b. Then f(x) reaches its maximum and its minimum (Extreme Value 
Theorem). But x -, oo and f(x) + oo are too important to rule out. You test x + ca 
by considering large x. You recognize f(x) + oo by going above every finite value. 

Remark 2 Note the difference between critical points (specified by x) and critical 
values (specified by f(x)). The example x + x- had the minimum point x = 1 and the 
minimum value f(1) = 2. 

MAXIMUM AND MINIMUM IN APPLICATIONS 

To find a maximum or minimum, solve f'(x) = 0. The slope is zero at the top and 
bottom of the graph. The idea is clear-and then check rough points and endpoints. 
But to be honest, that is not where the problem starts. 

In a real 'application, the first step (often the hardest) is to choose the unknown 
and find the function. It is we ourselves who decide on x and f(x). The equation 
dfldx = 0 comes in the middle of the problem, not at the beginning. I will start on 
a new example, with a question instead of a function. 

EXAMPLE 7 Where should you get onto an expressway for minimum driving time, 
if the expressway speed is 60 mph and ordinary driving speed is 30 mph? 

I know this problem well-it comes up every morning. The Mass Pike goes to MIT 
and I have to join it somewhere. There is an entrance near Route 128 and another 
entrance further in. I used to take the second one, now I take the first. Mathematics 
should decide which is faster-some mornings I think they are maxima. 

Most models are simplified, to focus on the key idea. We will allow the expressway 
to be entered at any point x (Figure 3.5). Instead of two entrances (a discrete problem) 

?A good word is approach when f (x) + a.Infinity is not reached. But I still say "the maximum 
is XI." 
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we have a continuous choice (a calculus problem). The trip has two parts, at  speeds 
30 and 60: 

a distance ,/- up to the expressway, in 4 7 T 3 3 0  hours 

a distance b - x on the expressway, in (b - x)/60 hours 

1 1 
Problem Minimize f(x)= total time = -Jm-+ -(b - x) .

30 60 

We have the function f(x).  Now comes calculus. The first term uses the power rule: 
The derivative of u1I2 is ~ ~ ' ~ ~ d u / d x .a2+ x2 has duldx = 2x:Here u = 

1 1  
f ' ( x )= --(a2+ x2)- lI2(2x)--

1 
30 2 60 

To solve f '(x) = 0,  multiply by 60 and square both sides: 

(a2+ x2) -  'I2(2x) = 1 gives 2x = (a2+ x2)'I2 and 4x2= a2+ x2. (2) 

Thus 3x2= a2. This yields two candidates, x = a/& and x = - a/&. But a 
negative x would mean useless driving on the expressway. In fact f '  is not zero at 
x = - a/&. That false root entered when we squared 2x. 

driving timef (s) driving timef(.r) 

when h > u / f i  when h < u / f i  

h - .\-

t**(L - / f *** f * *  (\-/ 
f*** 

enter Pfreeway 

\-

* * y 
h h

'1/o 
Fig. 3.5 Join the freeway at x-minimize the driving time f (x). 

I notice something surprising. The stationary point x = a/& does not depend on 
b. The total time includes the constant b/60, which disappeared in dfldx. Somehow 
b must enter the answer, and this is a warning to go carefully. The minimum might 
occur at a rough point or an endpoint. Those are the other critical points off, and 
our drawing may not be realistic. Certainly we expect x 6 b, or we are entering the 
expressway beyond MIT. 

Con t i n~e  with calculus. Compute the driving time f(.u) for an entrance at 

The s uare root of 4a2/3 is 2a/&. We combined 2/30 - 1/60= 3/60 and divided 
by $. Is this stationary value f * a minimum? You must look also at endpoints: 

enter at s= 0 : travel time is ni30 + hi60 =f ' * *  

enter at x = h: travel time is J o L  + h2/30= f * * * .  
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3.2 Maximum and Minimum Problems 

The comparison f * <f ** should be automatic. Entering at x = 0 was a candidate 
and calculus didn't choose it. The derivative is not zero at x = 0. It is not smart to 
go perpendicular to the expressway. 

The second comparison has x = b. We drive directly to MIT at speed 30. This 
option has to be taken seriously. In fact it is optimal when b is small or a is large. 

This choice x = b can arise mathematically in two ways. If all entrances are between 
0 and b, then b is an endpoint. If we can enter beyond MIT, then b is a rough point. 
The graph in Figure 3 . 5 ~  has a corner at x = b, where the derivative jumps. The 
reason is that distance on the expressway is the absolute value Ib -XI-never negative. 

Either way x = b is a critical point. The optimal x is the smaller of a/& and b. 

if a/& <b: stationary point wins, enter at x = a l f i ,  total time f * 
if a / f i  2 b: no stationary point, drive directly to MIT, time f *** 

The heart of this subject is in "word problems." All the calculus is in a few lines, 
computingf '  and solving f '(x) = 0. The formulation took longer. Step 1 usually does: 

1. Express the quantity to be minimized or maximized as a function f(x). 
The variable x has to be selected. 

2. Compute f '(x), solve f '(x) = 0, check critical points for fmin and fmax. 

A picture of the problem (and the graph of f(x)) makes all the difference. 

EXAMPLE 7 (continued) Choose x as an angle instead of a distance. Figure 3.6 
shows the triangle with angle x and side a. The driving distance to the expressway is 
a sec x. The distance on the expressway is b - a tan x. Dividing by the speeds 30 and 
60, the driving time has a nice form: 

a sec x + b - a tan x 
f(x) = total time = -

30 60 (3) 

The derivatives of sec x and tan x go into dfldx: 

a
df - a sec x tan x --sec2x.
dx 30 60 

Now set dfldx = 0, divide by a, and multiply by 30 cos2x: 

sin x = +. (5 )  

This answer is beautiful. The angle x is 30°! That optimal angle (n/6 radians) has 
sin x = i.The triangle with side a and hy otenuse a/& is a 30-60-90 right triangle. 

I don't know whether you prefer JT or trigonometry. The minimum is 
exactly as before-either at 30" or going directly to MIT. 

h - ci tan .t- b energyi 
energy -ntl 

Fig. 3.6 (a) Driving at angle x. (b) Energies of spring and mass. (c) Profit = income -cost. 
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EXAMPLE 8 In mechanics, nature chooses minimum energy. A spring is pulled down 
by a mass, the energy is f(x), and dfldx = 0 gives equilibrium. It is a philosophical 
question why so many laws of physics involve minimum energy or minimum time- 
which makes the mathematics easy. 

The energy has two terms-for the spring and the mass. The spring energy is 
+kx2-positive in stretching (x > 0 is downward) and also positive in compression 
(x < 0). The potential energy of the mass is taken as -mx-decreasing as the mass 
goes down. The balance is at the minimum of f(x) = 4 kx2 -mx. 

I apologize for giving you such a small problem, but it makes a crucial point. 
When f(x) is quadratic, the equilibrium equation dfldx = 0 is linear. 

Graphically, x = m/k is at the bottom of the parabola. Physically, kx = m is a balance 
of forces-the spring force against the weight. Hooke's law for the spring force is 
elastic constant k times displacement x. 

EXAMPLE 9 Derivative of cost = marginal cost (our first management example). 

The paper to print x copies of this book might cost C = 1000 + 3x dollars. The 
derivative is dCldx = 3. This is the marginal cost of paper for each additional book. 
If x increases by one book, the cost C increases by $3. The marginal cost is like the 
velocity and the total cost is like the distance. 

Marginal cost is in dollars per book. Total cost is in dollars. On the plus side, the 
income is I(x) and the marginal income is dlldx. To apply calculus, we overlook the 
restriction to whole numbers. 

Suppose the number of books increases by dx.? The cost goes up by (dCldx) dx. 
The income goes up by (dlldx) dx. If we skip all other costs, then profit P(x) = 

income I(x)- cost C(x). In most cases P increases to a maximum and falls back. 
At the high point on the profit curve, the marginal profit is zero: 

Profit is maximized when marginal income I '  equals marginal cost C' .  

This basic rule of economics comes directly from calculus, and we give an example: 

C(x)= cost of x advertisements = 900 + 400x - x2 

setup cost 900, print cost 400x, volume savings x2 

I(x)= income due to x advertisements = 600x - 6x2 
sales 600 per advertisement, subtract 6x2 for diminishing returns 

optimal decision dCldx = dI/dx or 400 - 2x = 600 - 12x or x = 20 

profit = income - cost = 9600 - 8500 = 1 100. 

The next section shows how to verify that this profit is a maximum not a minimum. 
The first exercises ask you to solve dfldx = 0. Later exercises also look for f(x). 

+Maybe dx is a differential calculus book. I apologize for that. 
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3.2 EXERCISES 

Read-through questions 

If dfldx >0 in an interval then f(x) is a . If a maximum 
or minimum occurs at x then fl(x) = b . Points where 
f '(x) =0 are called c points. The function flx) = 3x2-x 
has a (minimum)(maximum) at x = d .A stationary point 
that is not a maximum or minimum occurs forflx) = e . 

Extreme values can also occur where f is not defined 
or at the g of the domain. The minima of 1x1 and 5x for 
- 2 < x < ? a r e a t x =  h a n d x =  1 ,eventhough 
dfldx is not zero. x* is an absolute I whenflx*) aflx) 
for all x. A k minimum occurs when f(x*) <fix) for 
all x near x*. 

The minimum of +ax2 -bx is I at x = m . 

Find the stationary points and rough points and endpoints. 
Decide whether each point is a local or absolute minimum or 
maximum. 

1 f(x)=x2+4x+5, -m < x < m  

2 f(x)=x3-12x, - m < x < m  

3 f(x)=x2+3, - 1 < x < 4  

4 f(x) =x2+(2/x), 1 <x <4 

5 f ( x ) = ( x - ~ ~ ) ~ ,-1 < x <  1 

6 f(x) = l/(x -x2), 0 <x < 1 

7 f(x)=3x4+8x3-18x2, -m < x < m  

8 f(x)= {x2 -4x for O <  x < 1, x2 -4 for 1 < x  <2) 

9 f ( x ) = m + , / G ,  1 < x < 9  

10 f(x) =x +sin x, o <x <271 

11 f(x) =x71 - x ) ~ ,  -00 c x < m 

12 f(x)=x/(l +x), O<x < 100 

13 f(x) =distance from x 3 0 to nearest whole number 

14 f(x) =distance from x 3 0 to nearest prime number 

15 f(x)=Ix+lI+I~-11, - 3 < x < 2  

16 f(x)=xJm,O < X <  1 

17f(x)=x1I2-x3I2, O<x < 4  

18 f(x) =sin x +cos x, 0 <x <2n 

20 f(8) =cos28 sin 8, -7 <8 <71 

In applied problems, choose metric units if you prefer. 

23 The airlines accept a box if length +width +height = 
1+w +h < 62" or 158 cm. If h is fixed show that the maxi- 
mum volume (62-w-h)wh is V= h(31- ih)2. Choose h to 
maximize K The box with greatest volume is a 

24 If a patient's pulse measures 70, then 80, then 120, what 
least squares value minimizes (x -70)2+(x - + 
(x - 120)2? If the patient got nervous, assign 120 a lower 
weight and minimize (x -70)2+(x - +&c -120)~. 

25 At speed v, a truck uses av +(blu) gallons of fuel per mile. 
How many miles per gallon at speed v? Minimize .the fuel 
consumption. Maximize the number of miles per gallon. 

26 A limousine gets (120 -2v)/5 miles per gallon. The 
chauffeur costs $10/hour, the gas costs $l/gallon. 

(a) Find the cost per mile at speed v. 
(b) Find the cheapest driving speed. 

27 You should shoot a basketball at the angle 8 requiring 
minimum speed. Avoid line drives and rainbows. Shooting 
from (0,O) with the basket at (a, b), minimize A@)= 
l/(a sin 8 cos 8 -b cos2 8). 

(a) If b = O  you are level with the basket. Show that 
8 =45" is best (Jabbar sky hook). 
(b) Reduce df/d8 =0 to tan 28 = -a/b. Solve when a =b. 
(c) Estimate the best angle for a free throw. 

The same angle allows the largest margin of error (Sports 
Science by Peter Brancazio). Section 12.2 gives the flight path. 

28 On the longest and shortest days, in June and December, 
why does the length of day change the least? 

29 Find the shortest Y connecting P, Q, and B in the figure. 
Originally B was a birdfeeder. The length of Y is L(x) = 
(b -x) + 2 J Z i 7 .  

(a) Choose x to minimize L (not allowing x >b). 
(b)Show that the center of the Y has 120" angles. 
(c) The best Y becomes a V when a/b = 

h - s  

21 f(8) =4 sin 8 -3 cos 8, 0 <8 <271 30 If the distance function is f(t) =(1 + 3t)/(l + 3t2), when 
does the forward motion end? How far have you traveled? 

22 f(x)=(x2+1 for x<1 ,x2 -4x+5fo rx> l ) .  Extra credit: Graph At) and dfldt. 
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In 31-34, we make and sell x pizzas. The income is R(x) = 

ax + bx2 and the cost is C(x) = c + dx + ex2. 

31 The profit is n(x)  = . The average profit per 
pizza is = . The marginal profit per additional pizza 
is dnldx  = . We should maximize the 
(profit) (average profit) (marginal profit). 

32 We receive R(x) = ax + bx2 when the price per pizza is 
P(X)=-. In reverse: When the price is p we sell x = 

pizzas (a function of p). We expect b < 0 because 

33 Find x to maximize the profit n(x). At that x the marginal 
profit is d n/dx = 

34 Figure B shows R(x) = 3x -x2 and C,(x) = 1 + x2 and 
C2(x)= 2 + x2. With cost C , ,  which sales x makes a profit? 
Which x makes the most profit? With higher fixed cost in C2, 
the best plan is . 

The cookie box and popcorn box were created by Kay Dundas 
from a 12" x 12" square. A box with no top is a calculus classic. 

35 Choose x to find the maximum volume of the cookie box. 

36 Choose x to maximize the volume of the popcorn box. 

37 A high-class chocolate box adds a strip of width x down 
across the front of the cookie box. Find the new volume V(x) 
and the x that maximizes it. Extra credit: Show that Vma,is 
reduced by more than 20%. 

38 For a box with no top, cut four squares of side x from the 
corners of the 12" square. Fold up the sides so the height is 
x. Maximize the volume. 

Geometry provides many problems, more applied than they 
seem. 

39 A wire four feet long is cut in two pieces. One piece forms 
a circle of radius r, the other forms a square of side x. Choose 
r to minimize the sum of their areas. Then choose r to 
maximize. 

40 A fixed wall makes one side of a rectangle. We have 200 
feet of fence for the other three sides. Maximize the area A in 
4 steps: 

1 Draw a picture of the situation. 
2 Select one unknown quantity as x (but not A!). 
3 Find all other quantities in terms of x. 
4 Solve dA/dx =0 and check endpoints. 

41 With no fixed wall, the sides of the rectangle satisfy 
2x + 2y =200. Maximize the area. Compare with the area of 
a circle using the same fencing. 

42 Add 200 meters of fence to an existing straight 100-meter 
fence, to make a rectangle of maximum area (invented by 
Professor Klee). 

43 How large a rectangle fits into the triangle with sides 
x =0, y = 0, and x/4 + y/6 = I? Find the point on this third 
side that maximizes the area xy. 

44 The largest rectangle in Problem 43 may not sit straight 
up. Put one side along x/4 + y/6 = 1 and maximize the area. 

45 The distance around the rectangle in Problem 43 is 
P = 2x + 2y. Substitute for y to find P(x). Which rectangle 
has Pma,= 12? 

46 Find the right circular cylinder of largest volume that fits 
in a sphere of radius 1. 

47 How large a cylinder fits in a cone that has base radius R 
and height H? For the cylinder, choose r and h on the sloping 
surface r/R + h/H = 1 to maximize the volume V = nr2h. 

48 The cylinder in Problem 47 has side area A =2nrh. 
Maximize A instead of V. 

49 Including top and bottom, the cylinder has area 

Maximize A when H > R. Maximize A when R > H. 

*50 A wall 8 feet high is 1 foot from a house. Find the length 
L of the shortest ladder over the wall to the house. Draw a 
triangle with height y, base 1 + x, and hypotenuse L. 

51 Find the closed cylinder of volume V = nr2h = 16n that 
has the least surface area. 

52 Draw a kite that has a triangle with sides 1, 1, 2x next to 
a triangle with sides 2x, 2, 2. Find the area A and the x that 
maximizes it. Hint: In dA/dx simplify Jm-x 2 / , / m  

In 53-56, x and y are nonnegative numbers with x + y = 10. 
Maximize and minimize: 

53 xy 54 x2 + y2 55 y-(llx) 56 sin x sin y 

57 Find the total distance f(x) from A to X to C. Show that 
dfldx =0 leads to sin a = sin c. Light reflects at an equal angle 
to minimize travel time. 
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X x S - X  

reflection 

58 Fermat's principle says that light travels from A to B on 
the quickest path. Its velocity above the x axis is v and below 
the x axis is w. 

(a) Find the time T(x) from A to X to B. On AX, time = 
distancelvelocity = J ~ / v .  
(b) Find the equation for the minimizing x. 
(c) Deduce Jnell's law (sin a)/v =(sin b)/w. 

"Closest point problems" are models for many applications. 

59 Where is the parabola y =x2 closest to x =0, y =2? 

60 Where is the line y = 5 -2x closest to (0, O)? 

61 What point on y =  -x2 is closest to what point on 
y = 5 -2x? At the nearest points, the graphs have the same 
slope. Sketch $he graphs. 

62 Where is y =x2 closest to (0, f)? Minimizing 
x2+(y -f)2+ y +(y -$)2 gives y <0. What went wrong? 

63 Draw the l b  y =mx passing near (2, 3), (1, I), and (- 1, 1). 
For a least squares fit, minimize 

64 A triangle has corners (-1, l), (x, x2), and (3, 9) on the 
parabola y =x2. Find its maximum area for x between -1 
and 3. Hint: The distance from (X, Y) to the line y =mx + b 
is IY -mX -bl/JW. 
65 Submarines are located at (2,O) and (1, 1). Choose the 
slope m so the line y =mx goes between the submarines but 
stays as far as possible from the nearest one. 

Problems 66-72 go back to the theory. 

66 To find where the graph of fix) has greatest slope, solve 
. For y = 1/(1+x2) this point is . 

67 When the difference between f(x) and g(x) is smallest, their 
slopes are . Show this point on the graphs of 
f = 2 + x 2  andg=2x-x2. 

68 Suppose y is fixed. The minimum of x2 + xy -y2 (a func- 
tion of x) is m(y) = . Find the maximum of m(y). 

Now x is fixed. The maximum of x2 + xy -y2 (a function 
of y) is M(x) = . Find the minimum of M(x). 

69 For each m the minimum value of f(x) -mx occurs at x = 

m. What is f(x)? 

70 y =x + 2x2 sin(l/x) has slope 1 at x =0. But show that y 
is not increasing on an interval around x =0, by finding points 
where dyldx = 1-2 cos(l/x) + 4x sin(1lx) is negative. 

71 True orfalse, with a reason: Between two local minima of 
a smooth function f(x) there is a local maximum. 

72 Create a function y(x) that has its maximum at a rough 
point and its minimum at an endpoint. 

73 Draw a circular pool with a lifeguard on one side and 
a drowner on the opposite side. The lifeguard swims with 
velocity v and runs around the rest of the pool with velocity 
w = lOv. If the swim direction is at angle 8 with the direct 
line, choose 8 to minimize and maximize the arrival time. 

13.3 Second Derivatives: Bending and Acceleration 

When f '(x) is positive, f(x) is increasing. When dyldx is negative, y(x) is decreasing. 
That is clear, but what about the second derivative? From looking at the curve, 
can you decide the sign off "(x) or d2y/dx2? The answer is yes and the key is in the 
bending. 

A straight line doesn't bend. The slope of y = mx + b is m (a constant). The second 
derivative is zero. We have to go to curves, to see a changing slope. Changes in the 
herivative show up in fv(x): 

f = x2 has f'= 2x and f "  = 2 (this parabola bends up) 

y = sin x has dyldx = cos x and d 'y/dx2 = - sin x (the sine bends down) 
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The slope 2x gets larger even when the parabola is falling. The sign off or f '  is not 
revealed by f ". The second derivative tells about change in slope. 

A function with f "(x)> 0 is concave up. It bends upward as the slope increases. It 
is also called convex. A function with decreasing slope-this means f "(x)< 0-is 
concave down. Note how cos x and 1 + cos x and even 1+ $x + cos x change from 
concave down to concave up at x = 7~12. At that point f "  = - cos x changes from 
negative to positive. The extra 1 + $x tilts the graph but the bending is the same. 

tangent below 

Fig. 3.7 Increasing slope =concave up (f" >0). Concave down is f" <0. Inflection point f" = 0. 

Here is another way to see the sign off ". Watch the tangent lines. When the curve 
is concave up, the tangent stays below it. A linear approximation is too low. This 
section computes a quadratic approximation-which includes the term with f "  > 0. 
When the curve bends down (f" < O), the opposite happens-the tangent lines are 
above the curve. The linear approximation is too high, and f "  lowers it. 

In physical motion, f "(t) is the acceleration-in units of di~tance/(time)~. Accelera-
tion is rate of change of velocity. The oscillation sin 2t has v = 2 cos 2t (maximum 
speed 2) and a = - 4 sin 2t (maximum acceleration 4). 

An increasing population means f '  > 0. An increasing growth rate means f "  > 0. 
Those are different. The rate can slow down while the growth continues. 

MAXIMUM VS. MINIMUM 

Remember that f '(x) = 0 locates a stationary point. That may be a minimum or a 
maximum. The second derivative decides! Instead of computing f(x) at many points, 
we compute f "(x) at one point-the stationary point. It is a minimum iff "(x) > 0. 

3D When f '(x) = 0 and f "(x) > 0, there is a local minimum at x. 
When f '(x) = 0 and f"(x) < 0,there is a local maximrcm at x. 

To the left of a minimum, the curve is falling. After the minimum, the curve rises. The 
slope has changed from negative to positive. The graph bends upward and f "(x)> 0. 

At a maximum the slope drops from positive to negative. In the exceptional case, 
when f '(x) = 0 and also f "(x)= 0, anything can happen. An example is x3, which 
pauses at x = 0 and continues up (its slope is 3x2 2 0). However x4 pauses and goes 
down (with a very flat graph). 

We emphasize that the information from fr(x) and f "(x) is only "local ." To be 
certain of an absolute minimum or maximum, we need information over the whole 
domain. 
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EXAMPLE I f(x) = x3 - x2 has f '(x) = 3x2- 2x and f "(x)= 6x - 2. 

To find the maximum and/or minimum, solve 3x2 - 2x = 0. The stationary points 
are x = 0 and x = f . At those points we need the second derivative. It is f "(0)= - 2 
(local maximum) and f "(4)= + 2 (local minimum). 

Between the maximum and minimum is the inflection point. That is where 
f "(x) = 0. The curve changes from concave down to concave up. This example has 
f "(x) = 6x - 2, so the inflection point is at x = 4. 

INFLECTION POINTS 

In mathematics it is a special event when a function passes through zero. When the 
function isf, its graph crosses the axis. When the function is f', the tangent line is 
horizontal. When f "  goes through zero, we have an injection point. 

The direction of bending changes at an inflection point. Your eye picks that out in 
a graph. For an instant the graph is straight (straight lines have f "  = 0). It is easy to 
see crossing points and stationary points and inflection points. Very few people can 
recognize where f "'= 0 or f '" = 0. I am not sure if those points have names. 

There is a genuine maximum or minimum when f '(x) changes sign. Similarly, there 
is a genuine inflection point when f "(x) changes sign. The graph is concave down on 
one side of an inflection point and concave up on the other side.? The tangents are 
above the curve on one side and below it on the other side. At an inflection point, 
the tangent line crosses the curve (Figure 3.7b). 

Notice that a parabola y = ax2+ bx + c has no inflection points: y" is constant. A 
cubic curve has one inflection point, because f "  is linear. A fourth-degree curve might 
or might not have inflection points-the quadratic fM(x) might or might not cross 
the axis. 

EXAMPLE 2 x4 - 2x2 is W-shaped, 4x3 -4x has two bumps, 12x2 - 4 is U-shaped. 
The table shows the signs at the important values of x: 

x -Jz -1  - l i d  o I / 1 f i  

Between zeros of f(x) come zeros off '(x) (stationary points). Between zeros off '(x) 
come zeros off "(x) (inflection points). In this example f(x) has a double zero at the 
origin, so a single zero off' is caught there. It is a local maximum, since f "(0) < 0. 

Inflection points are important-not just for mathematics. We know the world 
population will keep rising. We don't know if the rate of growth will slow down. 
Remember: The rate of growth stops growing at the inflection point. Here is the 1990 
report of the UN Population Fund. 

The next ten years will decide whether the world population trebles or merely 
doubles before it finally stops growing. This may decide the future of the earth as 
a habitation for humans. The population, now 5.3 billion, is increasing by a quarter 
of a million every day. Between 90 and 100 million people will be added every year 

?That rules out f (x) = x4, which has f"= 12x2 > 0 on both sides of zero. Its tangent line is 
the x axis. The line stays below the graph-so no inflection point. 
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during the 1990s; a billion people-a whole China-over the decade. The fastest 
growth will come in the poorest countries. 

A few years ago it seemed as if the rate of population growth was slowing? 
everywhere except in Africa and parts of South Asia. The world's population 
seemed set to stabilize around 10.2 billion towards the end of the next century. 

Today, the situation looks less promising. The world has overshot the marker 
points of the 1984 "most likely" medium projection. It is now on course for an 
eventual total that will be closer to 11 billion than to 10 billion. 

If fertility reductions continue to be slower than projected, the mark could be 
missed again. In that case the world could be headed towards a total of up to 14 
billion people. 

Starting with a census, the UN follows each age group in each country. They 
estimate the death rate and fertility rate-the medium estimates are published. This 
report is saying that we are not on track with the estimate. 

Section 6.5 will come back to population, with an equation that predicts 10 billion. 
It assumes we are now at the inflection point. But China's second census just started 
on July 1 ,  1990. When it's finished we will know if the inflection point is still ahead. 

You now understand the meaning off "(x).Its sign gives the direction of bending- 
the change in the slope. The rest of this section computes how much the curve bends- 
using the size off" and not just its sign. We find quadratic approximations based on 
f l ' (x). In some courses they are optional-the main points are highlighted. 

CENTERED DIFFERENCES AND SECOND DIFFERENCES 

Calculus begins with average velocities, computed on either side of x: 

We never mentioned it, but a better approximation to J"(x)comes from averaging 
those two averages. This produces a centered difference, which is based on x + Ax 
and x - Ax.  It divides by 2 Ax:  

1 .f(s+ A x )  -f ( x )  + Y ) -f - A )1 f(-Y+ A X )-f'(x - A x )  
'f f ( x )z -

2 [ . (2)
A x  Ax = 2 A x  

We claim this is better. The test is to try it on powers of x.  
For f ( x )  = x these ratios all give f '  = 1 (exactly). For f ( x )= x2 ,  only the centered 

difference correctly gives f '  = 2x.  The one-sided ratio gave 2.x + Ax (in Chapter 1 it 
was 2t + h). It is only "first-order accurate." But centering leaves no error. We are 
averaging 2x + Ax with 2x - Ax.  Thus the centered difference is "second-order 
accurate." 

I ask now: What ratio converges to the second derivative? One answer is to take 
differences of the first derivative. Certainly Af ' lAx approaches f ". But we want a 
ratio involving f itself. A natural idea is to take diflerences of diferences, which 
brings us to "second differences": 

f ( x + A x ) - f ( x )  - f ( 4 - f ( x - A x )  
A x  

Ax 
A x  --f(x + Ax) - 2j'(x) +.f(x - A.Y) . d 2f 

d s 2  
(3)  

tThe United Nations watches the second derivative! 
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On the top, the difference of the difference is A(Af) = A2f. It corresponds to d2f. 
On the bottom, (Ax)2 corresponds to dx2. This explains the way we place the 2's in 
d2 f/dx2. To say it differently: dx is squared, df is not squared-as in di~tance/(time)~. 

Note that (Ax)2 becomes much smaller than Ax. If we divide Af by AX)^, the ratio 
blows up. It is the extra cancellation in the second difference A2 f that allows the limit 
to exist. That limit is f "(x). 

Application The great majority of differential equations can't be solved exactly. 
A typical case is f "(x) = - sin f(x) (the pendulum equation). To compute a solution, 
I would replace f "(x) by the second difference in equation (3). Approximations at 
points spaced by Ax are a very large part of scientific computing. 

To test the accuracy of these differences, here is an experiment on f(x) = 
sin x + cos x. The table shows the errors at x = 0 from formulas (I), (2), (3): 

step length Ax one-sided errors centered errors second difference errors 

114 .I347 .0104 - .0052 
118 .0650 .0026 - .0013 
1/ 16 .03 19 .0007 - .0003 
1/32 .0158 .0002 - .0001 

The one-sided errors are cut in half when Ax is cut in half. The other columns 
decrease like AX)^. Each reduction divides those errors by 4. The errorsfrom one- 
sided dzrerences are O(Ax) and the errors porn centered dmences  are O(Ax)l. 

The "big 0" notation When the errors are of order Ax, we write E = O(Ax). This 
means that E < CAx for some constant C. We don't compute C-in fact we don't 
want to deal with it. The statement "one-sided errors are Oh of delta x" captures 
what is important. The main point of the other columns is E = AX)^. 

LINEAR APPROXIMATION VS. QUADRATIC APPROXIMATION 

The second derivative gives a tremendous improvement over linear approximation 
f(a) +f '(a)(x - a). A tangent line starts out close to the curve, but the line has no 
way to bend. After a while it overshoots or undershoots the true function (see 
Figure 3.8). That is especially clear for the model f(x) = x2, when the tangent is the 
x axis and the parabola curves upward. 

You can almost guess the term with bending. I t  should involve f ",and also (AxI2. 
It might be exactly f "(x) times (Ax)2 but it is not. The model function x2 has f "  = 2. 
There must be a factor $ to cancel that 2: 

At the basepoint this is f(a) =f(a). The derivatives also agree at x = a. Furthermore 
the second derivatives agree. On both sides of (4), the second derivative at x = a is 
f "(a). 

The quadratic approximation bends with the function. It is not the absolutely 
final word, because there is a cubic term &f '"(a)(x - and a fourth-degree term 

f ""(a)(x - a)4 and so on. The whole infinite sum is a "Taylor series." Equation (4) 
carries that series through the quadratic term-which for practical purposes gives a 
terrific approximation. You will see that in numerical experiments. 
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Two things to mention. First, equation (4)shows why f" > 0 brings the curve above 
the tangent line. The linear part gives the line, while the quadratic part is positive 
and bends upward. Second, equation (4)  comes from (2)  and (3). Where one-sided 
differences give f (x  + A x )  x f (x)  +f '(x)Ax, centered differences give the quadratic: 

from (2): f(x + Ax)  a f(x -Ax)  + 2 f f ( x )  Ax 

from (3): f ( x + A x )  a 2f(x)-f(x-A~)+f"(x)(Ax)~. 

Add and divide by 2. The result is f(x + Ax)  xf(x)  + r ( x ) A x  +4f AX)^. This is 
correct through (Ax)2and misses by (Ax)', as examples show: 

EXAMPLE4 ( 1  + x)" x 1 + n x + f n ( n -  l )x2 .  

The first derivative at x = 0 is n. The second derivative is n(n- 1). The cubic term 
would be $n(n- l ) (n- 2)x3.We are just producing the binomial expansion! 1 +.Y 

can't 
bend 1 

EXAMPLE 5 -a 1 + x + x2 = start of a geometric series. 
1 - x  

I 
-.5 .5 1 / ( 1  - x)  has derivative 1 / ( 1  - x ) ~ .Its second derivative is 2/(1 - x)'. At x = 0 those 

I + -r+ x2 equal 1,1,2. The factor f cancels the 2, which leaves 1,1,1. This explains 1 + x + x2.  
1 The next terms are x3 and x4.  The whole series is 1 / ( 1  - x)  = 1 + x + x2 + x3 + .-..near -

I -.Y 

Numerical experiment i/Ji% a 1 - i x  + ax2 is tested for accuracy. Dividing xFig. 3.8 
by 2 almost divides the error by 8. If we only keep the linear part 1 - fx, the error 
is only divided by 4. Here are the errors at x = a, &, and A: 

linear approximation (error - - x 2  : .0194 .0053 .00143 

- 5

quadratic approximation error = K ~ 3 ) :-00401 - .OOOSS - .OOOO? 

3.3 EXERCISES 

Read-through questions 1 A graph that is concave upward is inaccurately said to 

The direction of bending is given by the sign of a . If the 
"hold water." Sketch a graph with f "(x)>0 that would not 
hold water. 

second derivative is b in an interval, the function is con- 
cave up (or convex). The graph bends c . The tangent 2 Find a function that is concave down for x <0 and con- 
lines are d the graph. Iff "(x) c 0 then the graph is con- cave up for 0 <x < 1 and concave down for x > 1. 
cave e ,and the slope is f . 3 Can a function be always concave down and never cross 

At a point where f '(x) =0 and f "(x)>0, the function has a zero? Can it be always concave down and positive? Explain. 
s .At a point where h ,the function has a maximum. 

4 Find a function with f"(2) =0 and no other inflection 
A point where f "(x) =0 is an i point, provided f "  

point.changes sign. The tangent line i the graph. 

The centered approximation to fl(x) is 6 k ]/2Ax. The True or false, when f(x) is a 9th degree polynomial with 
3-point approximation to f "(x) is 6 1 ]/(Ax)*. The second- f '(1) =0 and f '(3) =0. Give (or draw) a reason. 
order approximation to f(x + Ax) is f(x) +f '(x)Ax + m . 5 f(x) =0 somewhere between x = 1 and x = 3.
without that extra term this is just the n approximation. 
With that term the error is O( 0 ). 6 f "(x)=0 somewhere between x = 1 and x = 3. 
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7 There is no absolute maximum at x = 3. 

8 There are seven points of inflection. 

9 If Ax) has nine zeros, it has seven inflection points. 

10 If Ax) has seven inflection points, it has nine zeros. 

In 11-16 decide which stationary points are maxima or 
minima. 

11 f(x)=x2-6x 12 f(x)=x3 -6x2 

13 f(x) =x4 -6x3 14 f(x) =xl' -6xl0 

15 f(x) =sin x -cos x 16 Ax) =x + sin 2x 

Locate the inflection points and the regions where f(x) is con-
cave up or down. 

17 f(x)=x+x2-x3 18 f(x) =sin x + tan x 

19 f(x) =(X-2 )2 (~-4)2 20 f(x) =sin x + (sin x ) ~  

21 If f(x) is an even function, the centered difference 
[f(Ax) -f(-Ax)]l2Ax exactly equals f '(0) =0. Why? 

22 If f(x) is an odd function, the second difference 
AX) -2 f(0) +f(- Ax)~l(Ax)~ exactly equals f "(0)=0. Why? 

Write down the quadraticf(0) +f '(0)x +4f "(0)x2in 23-26. 

23 f(x) =cos x + sin x 24 f(x) = tan x 

25 f(x) =(sin x)/x 26 f(x) = 1+x + x2 

In 26, find f(1) +f '(l)(x - 1)+4f "(l)(x- 1)2 around a = 1. 

27 Find A and B in JG'x 1+ Ax +BX'. 

28 Find A and B in 1/(1- x ) ~  x 1+Ax + B X ~ .  

29 Substitute the quadratic approximation into 
[fix +Ax) -f(x)]/Ax, to estimate the error in this one-sided 
approximation to f '(x). 

30 What is the quadratic approximation at x =0 to f(-Ax)? 

31 Substitute for f(x +Ax) and f(x -Ax) in the centered 
approximation [f(x +Ax) -f(x -Ax)]/2Ax, to get 
f'(x) +error. Find the Ax and (Ax)2 terms in this error. Test 
on f(x)=x3 at x=0.  

32 Guess a third-order approximation f(Ax) x f(0) + 
+f '(0)Ax +4~"(O)(AX)~ . Test it on f(x) =x3. 

Construct a table as in the text, showing the actual errors at 
x =0 in one-sided differences, centered differences, second 
differences, and quadratic approximations. By hand take two 
values of Ax, by calculator take three, by computer take four. 

35 f(x) =x2+sin x 

36 Example 5 was 1/(1- x) x 1 +x +x2. What is the error 
at x =0.1? What is the error at x =2? 

37 Substitute x = .Ol and x = -0.1 in the geometric series 
1/(1- x) = 1+ x +x2+ - - - to find 11.99 and 111.1-first to 
four decimals and then to all decimals. 

38 Compute cos lo  by equation (4) with a =0. OK to check 
on a calculator. Also compute cos 1. Why so far off! 

39 Why is sin x =x not only a linear approximation but also 
a quadratic approximation? x =0 is an point. 

40 Ifflx) is an even function, find its quadratic approximation 
at x =0. What is the equation of the tangent line? 

41 For f(x) =x + x2+x3, what is the centered difference 
[f(3) -f(1)]/2, and what is the true slope f '(2)? 

42 For f(x) =x +x2 + x3, what is the second difference 
[f(3) -2 f(2) +f(1)]/12, and what is the exact f "(2)? 

43 The error in f(a) +f '(a)(x -a) is approximately
4f"(a)(x -a)2. This error is positive when the function is 

. Then the tangent line is the curve. 

44 Draw a piecewise linear y(x) that is concave up. Define 
"concave up" without using the test d 2y /d~2  2 0. If derivatives 
don't exist, a new definition is needed. 

45 What do these sentences say about f or f '  or f "  or f "'? 
1. The population is growing more slowly. 
2. The plane is landing smoothly. 
3. The economy is picking up speed. 
4. The tax rate is constant. 
5. A bike accelerates faster but a car goes faster. 
6. Stock prices have peaked. 
7. The rate of acceleration is slowing down. 
8. This course is going downhill. 

46 (Recommended) Draw a curve that goes up-down-up. 
Below it draw its derivative. Then draw its second derivative. 
Mark the same points on all curves-the maximum, minimum, 
and inflection points of the first curve. 

47 Repeat Problem 46 on a printout showing y(x)= 
x3-4x2+ x + 2 and dyldx and d2yldx2 on the same graph. 
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13.4 Graphs 1 
Reading a graph is like appreciating a painting. Everything is there, but you have to 
know what to look for. One way to learn is by sketching graphs yourself, and in the 
past that was almost the only way. Now it is obsolete to spend weeks drawing 
curves-a computer or graphing calculator does it faster and better. That doesn't 
remove the need to appreciate a graph (or a painting), since a curve displays a 
tremendous amount of information. 

This section combines two approaches. One is to study actual machine-produced 
graphs (especially electrocardiograms). The other is to understand the mathematics 
of graphs-slope, concavity, asymptotes, shifts, and scaling. We introduce the 
centering transform and zoom transform. These two approaches are like the rest of 
calculus, where special derivatives and integrals are done by hand and day-to-day 
applications are by computer. Both are essential-the machine can do experiments 
that we could never do. But without the mathematics our instructions miss the point. 
To create good graphs you have to know a few of them personally. 

READING AN ELECTROCARDIOGRAM (ECG or EKG)-
REFERENCE The graphs of an ECG show the electrical potential during a heartbeat. There are 

twelve graphs-six from leads attached to the chest, and six from leads to the arms 
500 - and left leg. (It doesn't hurt, but everybody is nervous. You have to lie still, because 
400-

contraction of other muscles will mask the reading from the heart.) The graphs record 300-
electrical impulses, as the cells depolarize and the heart contracts. 

200 - What can I explain in two pages? The graph shows the fundamental pattern of the - 175- ECG. Note the P wave, the Q R S  complex, and the T wave. Those patterns, seen 
v
8 150- differently in the twelve graphs, tell whether the heart is normal or out of rhythm- 140-

130- or suffering an infarction (a heart attack). 
ro 120-
N 

110-

Y 100-
$) 95-
a 90-
2 85-
if 00-

& 75-
a
3 70-

I s 65- First of all the graphs show the heart rate. The dark vertical lines are by convention 2 60-
f second apart. The light lines are & second apart. If the heart beats every f secondW 

y 55- (one dark line) the rate is 5 beats per second or 300 per minute. That is extreme 
W 
Lf tachycardia-not compatible with life. The normal rate is between three dark lines W 

k 50- per beat (2 second, or 100 beats per minute) and five dark lines (one second between a 

I beats, 60 per minute). A baby has a faster rate, over 100 per minute. In this figure 0 

E the rate is . A rate below 60 is bradycardia, not in itself dangerous. For a resting 
U- 45-
V)


9 athlete that is normal. 
Y Doctors memorize the six rates 300, 150, 100, 75, 60, 50. Those correspond to 1, 2,
0 

@ 40- 3, 4, 5, 6 dark lines between heartbeats. The distance is easiest to measure between 
W 

k spikes (the peaks of the R wave). Many doctors put a printed scale next to the chart. 
Lf One textbook emphasizes that "Where the next wave falls determines the rate. No 
l-a 


mathematical computation is necessary." But you see where those numbers come 4 = 35- from. 
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The next thing to look for is heart rhythm. The regular rhythm is set by the 
pacemaker, which produces the P wave. A constant distance between waves is good- 
and then each beat is examined. When there is a block in the pathway, it shows as 
a delay in the graph. Sometimes the pacemaker fires irregularly. Figure 3.10 shows 
sinus arrythmia (fairly normal). The time between peaks is changing. In disease or 
emergency, there are potential pacemakers in all parts of the heart. 

I should have pointed out the main parts. We have four chambers, an atrium- 
ventricle pair on the left and right. The SA node should be the pacemaker. The 
stimulus spreads from the atria to the ventricles- from the small chambers that 
"prime the pump" to the powerful chambers that drive blood through the body. The 
P wave comes with contraction of the atria. There is a pause of & second at the AV 
node. Then the big QRS wave starts contraction of the ventricles, and the T wave is 
when the ventricles relax. The cells switch back to negative charge and the heart cycle 
is complete. 

ectrodes 
D 

ground 

Fig. 3.9 Happy person with a heart and a normal electrocardiogram. 

The ECG shows when the pacemaker goes wrong. Other pacemakers take over- 
the AV node will pace at 60/minute. An early firing in the ventricle can give a wide 
spike in the QRS complex, followed by a long pause. The impulses travel by a slow 
path. Also the pacemaker can suddenly speed up (paroxysmal tachycardia is 
150-250/minute). But the most critical danger is fibrillation. 

Figure 3.10b shows a dying heart. The ECG indicates irregular contractions-no 
normal PQRST sequence at all. What kind of heart would generate such a rhythm? 
The muscles are quivering or "fibrillating" independently. The pumping action is 
nearly gone, which means emergency care. The patient needs immediate CPR- 
someone to do the pumping that the heart can't do. Cardio-pulmonary resuscitation 
is a combination of chest pressure and air pressure (hand and mouth) to restart the 
rhythm. CPR can be done on the street. A hospital applies a defibrillator, which 
shocks the heart back to life. It depolarizes all the heart cells, so the timing can be 
reset. Then the charge spreads normally from SA node to atria to AV node to 
ventricles. 

This discussion has not used all twelve graphs to locate the problem. That needs 
uectors. Look ahead at Section 11.1 for the heart vector, and especially at Section 1 1.2 
for its twelve projections. Those readings distinguish between atrium and ventricle, 
left and right, forward and back. This information is of vital importance in the event 
of a heart attack. A "heart attack" is a myocardial infarction (MI). 

An MI occurs when part of an artery to the heart is blocked (a coronary occlusion). 
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Infarction 

Rg. 3.10 Doubtful rhythm. Serious fibrillation. Signals of a heart attack. 

An area is without blood supply-therefore without oxygen or glucose. Often the 
attack is in the thick left ventricle, which needs the most blood. The cells are first 
ischemic, then injured, and finally infarcted (dead). The classical ECG signals involve 
those three 1's: 

Ischemia: Reduced blood supply, upside-down T wave in the chest leads. 
Injury: An elevated segment between S and T means a recent attack. 
Infarction: The Q wave, normally a tiny dip or absent, is as wide as a small 
square (& second). It may occupy a third of the entire QRS complex. 

The Q wave gives the diagnosis. You can find all three I's in Figure 3.10~. 
It is absolutely amazing how much a good graph can do. 

THE MECHANICS OF GRAPHS 

From the meaning of graphs we descend to the mechanics. A formula is now given 
for f(x). The problem is to create the graph. It would be too old-fashioned to evaluate 
Ax) by hand and draw a curve through a dozen points. A computer has a much 
better idea of a parabola than an artist (who tends to make it asymptotic to a straight 
line). There are some things a computer knows, and other things an artist knows, 
and still others that you and I know-because we understand derivatives. 

Our job is to apply calculus. We extract information from f '  and f "  as well asf. 
Small movements in the graph may go unnoticed, but the important properties come 
through. Here are the main tests: 

1. The sign off (x) (above or below axis: f = 0at crossing point) 
2. The sign of f(x) (increasing or decreasing: f '  = 0 at stationary point) 
3. The sign of f"(x) (concave up or down: f" = 0 at injection point) 
4. The behavior of f(x) as x + oo and x -, - oo 
5. The points at which f(x) + oo or f(x) -, - oo 
6. Even or odd? Periodic? Jumps in f o r  f '? Endpoints? f(O)? 

The sign of f(x) depends on 1 - x2. Thus f(x) > 0 in the inner interval where x2 < 1. 
The graph bends upwards (f"(x) > 0) in that same interval. There are no inflection 
points, since f "  is never zero. The stationary point where f' vanishes is x = 0. We 
have a local minimum at x = 0. 

The guidelines (or asymptotes)meet the graph at infinity. For large x the important 
terms are x2 and -x2. Their ratio is + x2/-x2 = - 1-which is the limit as x -, or, 
and x -, - oo. The horizontal asymptote is the line y = - 1. 

The other infinities, where f blows up, occur when 1 -x2 is zero. That happens at 
x =  1 and x = - 1. The vertical asymptotes are the lines x = 1 and x = -1. The graph 
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in Figure 3.1 l a  approaches those lines. 

if f(x) +b as x -,+ oo or -oo, the line y = b is a horizontal asymptote 
if f(x) + + GO or -GO as x -,a, the line x = a is a vertical asymptote 
ifflx) - (mx + b) +0 as x -+ + oo or - a ,  the line y = mx + b is a sloping asymptote. 

Finally comes the vital fact that this function is even: f(x) =f(- x)  because squaring 
x obliterates the sign. The graph is symmetric across the y axis. 

To summarize the eflect of dividing by 1 - x2: No effect near x = 0. Blowup at 1 
and -1 from zero in the denominator. The function approaches -1 as 1x1 -+ oo. 

x2 x2 - 2x
E U P L E  2 f(x) = ._, f ' (x)  = - f "(x) = -

2 
( x  - I)2 ( X  - 113 

This example divides by x - 1. Therefore x = 1 is a vertical asymptote, where f(x) 
becomes infinite. Vertical asymptotes come mostly from zero denominators. 

Look beyond x = 1. Both f(x) and f"(x) are positive for x > 1. The slope is zero at 
x = 2. That must be a local minimum. 

What happens as x -+ oo? Dividing x2 by x - 1, the leading term is x. The function 
becomes large. It grows linearly-we expect a sloping asymptote. To find it, do the 
division properly: 

The last term goes to zero. The function approaches y = x + 1 as the asymptote. 
This function is not odd or even. Its graph is in Figure 3.11b. With zoom out you 

see the asymptotes. Zoom in for f = 0 or f' = 0 or f" = 0. 

Fig. 3.11 The graphs of x2/(1 -x2) and x2/(x - 1) and sin x + 3 sin 3x. 

EXAMPLE 3 f(x) = sin x + sin 3x  has the slope f '(x) = cos x + cos 3x. 

Above all these functions are periodic. If x increases by 2n, nothing changes. The 
graphs from 2n to 47c are repetitions of the graphs from 0 to 271.Thusf(x + 2 4  =f (x)  
and the period is 2n. Any interval of length 27c will show a complete picture, and 
Figure 3.1 1c picks the interval from -n to n. 

The second outstanding property is that f is odd. The sine functions satisfy 
f(- x)  = -f(x). The graph is symmetric through the origin. By reflecting the right half 
through the origin, you get the left half. In contrast, the cosines in f f ( x )are even. 

To find the zeros of f(x) and f'(x) and f "(x),rewrite those functions as 

f(x) = 2 sin x - $ sin3x f'(x) = - 2 cos x + 4 cos3x f"(x) = - 10 sin x + 12 sin3x. 
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We changed sin 3x to 3 sin x - 4 sin3x. For the derivatives use sin2x = 1 - cos2x. 
Now find the zeros-the crossing points, stationary points, and inflection points: 

f = O  2 sin x = $  sin3x * sin x = O  or sin2x=$ * x=O, f n  

f " = O  5 sin x = 6  sin3x sin x = O  or s in2x=2 x=O, +66", +114", f n  

That is more than enough information to sketch the gra h. The stationary points 
n/4, n/2, 3 4 4  are evenly spaced. At those points f(x) is ,/!I3 (maximum), 213 (local 
minimum), d l 3  (maximum). Figure 3.1 1c shows the graph. 

I would like to mention a beautiful continuation of this same pattern: 

f(x) = sin x +3 sin 3x + :sin 5x + ..- f'(x) = cos x + cos 3x + cos 5x + -.. 
If we stop after ten terms, f(x) is extremely close to a step function. If we don't stop, 
the exact step function contains infinitely many sines. It jumps from -4 4  to +4 4  as 
x goes past zero. More precisely it is a "square wave," because the graph jumps back 
down at n and repeats. The slope cos x + cos 3x + ..-also has period 2n. Infinitely 
many cosines add up to a delta function! (The slope at the jump is an infinite spike.) 
These sums of sines and cosines are Fourier series. 

GRAPHS BY COMPUTERS AND CALCULATORS 

We have come to a topic of prime importance. If you have graphing software for a 
computer, or if you have a graphing calculator, you can bring calculus to life. A graph 
presents y(x) in a new way-different from the formula. Information that is buried 
in the formula is clear on the graph. But don't throw away y(x) and dyldx. The 
derivative is far from obsolete. 

These pages discuss how calculus and graphs go together. We work on a crucial 
problem of applied mathematics-to find where y(x) reaches its minimum. There is 
no need to tell you a hundred applications. Begin with the formula. How do you find 
the point x* where y(x) is smallest? 

First, draw the graph. That shows the main features. We should see (roughly) where 
x* lies. There may be several minima, or possibly none. But what we see depends on 
a decision that is ours to make-the range of x and y in the viewing window. 

If nothing is known about y(x), the range is hard to choose. We can accept a default 
range, and zoom in or out. We can use the autoscaling program in Section 1.7. 
Somehow x* can be observed on the screen. Then the problem is to compute it. 

I would like to work with a specific example. We solved it by calculus-to find 
the best point x* to enter an expressway. The speeds in Section 3.2 were 30 and 60. 
The length of the fast road will be b = 6. The range of reasonable values for the entering 
point is 0 < x <6. The distance to the road in Figure 3.12 is a = 3. We drive a distance 
,/=at speed 30 and the remaining distance 6 - x at speed 60: 

1
driving time y(x)= -

1 ,/- + -(6 - x). (2)30 60 

This is the function to be minimized. Its graph is extremely flat. 
It may seem unusual for the graph to be so level. On the contrary, it is common. 

AJat graph is the whole point of dyldx = 0. 
The graph near the minimum looks like y = cx2.  It is a parabola sitting on a 

horizontal tangent. At a distance of Ax = .01, we only go up by C(AX)~ = .0001 C. 
Unless C is a large number, this Ay can hardly be seen. 
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Fig. 3.12 Enter at x. The graph of driving time y(x). Zoom boxes locate x*. 

The solution is to change scale. Zoom in on x*. The tangent line stays flat, since 
dyldx is still zero. But the bending from C is increased. Figure 3.12 shows the zoom 
box blown up into a new graph of y(x). 

A calculator has one or more ways to find x*. With a TRACE mode, you direct a 
cursor along the graph. From the display of y values, read y,,, and x* to the 
nearest pixel. A zoom gives better accuracy, because it stretches the axes-each 
pixel represents a smaller Ax and Ay. The TI-81 stretches by 4 as default. Even 
better, let the whole process be graphical-draw the actual ZOOM BOX on the 
screen. Pick two opposite corners, press ENTER, and the box becomes the new 
viewing window (Figure 3.12). 

The first zoom narrows the search for x*. It lies between x = 1 and x = 3. We build 
a new ZOOM BOX and zoom in again. Now 1.5 < x* <2. Reasonable accuracy 
comes quickly. High accuracy does not come quickly. It takes time to create the box 
and execute the zoom. 

Question 1 What happens as we zoom in, if all boxes are square (equal scaling)? 
Answer The picture gets flatter and flatter. We are zooming in to the tangent line. 
Changing x to X/4 and y to Y/4, the parabola y =x2 flattens to Y =  X2/4. To see 
any bending, we must use a long thin zoom box. 

I want to change to a totally different approach. Suppose we have a formula for 
dyldx. That derivative was produced by an infinite zoom! The limit of Ay/Ax came by 
brainpower alone: 

-dy = X --I Call this f(x). 
dx 3 o J m  60' 

This function is zero at x*. The computing problem is completely changed: Solve 
Ax) =0. I t  is easier to find a root of f(x) than a minimum of y(x). The graph of f(x) 
crosses the x axis. The graph of y(x) goes flat-this is harder to pinpoint. 

Take the model function y =x2 for 1x1 c .01. The slope f =2x changes from -.02 
to +.02. The value of x2 moves only by .0001 -its minimum point is hard to see. 

To repeat: Minimization is easier with dyldx. The screen shows an order of magni- 
tude improvement, when we trace or zoom on f(x) =0. In calculus, we have been 
taking the derivative for granted. It is natural to get blask about dyldx =0. We forget 
how intelligent it is, to work with the slope instead of the function. 

zero slope Question 2 How do you get another order of magnitude improvement? 
at minimum Answer Use the next derivative! With a formula for dfldx, which is dZy/dx2, the 

Fig. 3.13 convergence is even faster. In two steps the error goes from .O1 to .0001 to .00000001. 
Another infinite zoom went into the formula for dfldx, and Newton's method takes 
account of it. Sections 3.6 and 3.7 study f(x) =0. 
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The expressway example allows perfect accuracy. We can solve dyjdx = 0 by alge- 
,/-. bra. The equation simplifies to 60x = 30 

4x2 = 32+ x2. Then 3x2 = 3'. 
Dividing by 30 and squaring yields 

The exact solution is x* = & = 1.73205.. . 
A model like this is a benchmark, to test competing methods. It also displays what 

we never appreciated-the extreme flatness of the graph. The difference in driving 
time between entering at x* = & and x = 2 is one second. 

THE CENTERING TRANSFORM AND ZOOM TRANSFORM 

For a photograph we do two things-point the right way and stand at the right 
distance. Then take the picture. Those steps are the same for a graph. First we pick 
the new center point. The graph is shifted, to move that point from (a,b) to (0,O). 
Then we decide how far the graph should reach. It fits in a rectangle, just like the 
photograph. Rescaling to x/c and y/d puts the desired section of the curve into the 
rectangle. 

A good photographer does more (like an artist). The subjects are placed and the 
camera is focused. For good graphs those are necessary too. But an everyday calcula- 
tor or computer or camera is built to operate without an artist-just aim and shoot. 
I want to explain how to aim at y = f(x). 

We are doing exactly what a calculator does, with one big difference. It doesn't 
change coordinates. We do. When x = 1, y = - 2 moves to the center of the viewing 
window, the calculator still shows that point as (1, -2). When the centering transform 
acts on y + 2 = m(x - I), those numbers disappear. This will be confusing unless x 
and y also change. The new coordinates are X = x - 1 and Y = y + 2. Then the new 
equation is Y = mX. 

The main point (for humans) is to make the algebra simpler. The computer has no 
preference for Y = mX over y - yo = m(x - x,). It accepts 2x2 -4x as easily as x2. 
But we do prefer Y = mX and y = x2, partly because their graphs go through (0,O). 
Ever since zero was invented, mathematicians have liked that number best. 

EXAMPLE 4 The parabola y = 2x2- 4x has its minimum when dyldx = 4x -4 = 0. 
Thus x = 1 and y = - 2. Move this bottom point to the center: y = 2x2- 44 is 

The new parabola Y = 2X2 has its bottom at (0,O). It is the same curve, shifted across 
and up. The only simpler parabola is y = x2. This final step is the job of the zoom. 

Next comes scaling. We may want more detail (zoom in to see the tangent line). 
We may want a big picture (zoom out to check asymptotes). We might stretch one 
axis more than the other, if the picture looks like a pancake or a skyscraper. 

36 A z m m  tram@rna scdes the X and Y axes by c and d :  

X =  EX and y =  HY change Y= F ( X )  to y =  dF(x/c). 

The new x and y are boldface letten, and the graph is re&. Often c = d. 
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EXAMPLE 5 Start with Y = 2X2. Apply a square zoom with c = d. In the new xy 
coordinates, the equation is y/c = ~ ( x / c ) ~ .The number 2 disappears if c = d = 2. With 
the right centering and the right zoom, every parabola that opens upward is y = x2. 

Question 3 What happens to the derivatives (slope and bending) after a zoom? 
Answer The slope (first derivative) is multiplied by d/c. Apply the chain rule to y = 
dF(x/c). A square zoom has d/c = 1-lines keep their slope. The second derivative is 
multiplied by d/c2, which changes the bending. A zoom out divides by small numbers 
c = d, so the big picture is more, curved. 

Combining the centering and zoom transforms, as we do in practice, gives y in 
terms of x: 

y =f(x) becomes Y=f(X+a)-b andthen y = d  f - + a  )-bl.[ (: 

Fig. 3.14 Change of coordinates by centering and zoom. Calculators still show (x, y). 

Question 4 Find x and y ranges after two transforms. Start between -1 and 1. 
Answer The window after centering is -1 <x - a < 1 and -1 <y - b < 1. The 
window after zoom is -1<c(x - a) < 1 and -1 <d(y - b) < 1. The point (1, 1) was 
originally in the corner. The point (c-' + a, d + b) is now in the corner. 

The numbers a, b, c, d are chosen to produce a simpler function (like y = x2). Or 
else-this is important in applied mathematics-they are chosen to make x and y 
"dimensionless." An example is y =f cos 8t. The frequency 8 has dimension l/time. 
The amplitude f is a distance. With d = 2 cm and c = 8 sec, the units are removed 
and y = cos t. 

May I mention one transform that does change the slope? It is a rotation. The 
whole plane is turned. A photographer might use it-but normally people are sup- 
posed to be upright. You use rotation when you turn a map or straighten a picture. 
In the next section, an unrecognizable hyperbola is turned into Y = 1/X. 

3.4 EXERCISES 

Read-through questions around the graph looks long and I .We m in to that 

The position, slope, and bending of y =f(x) are decided by box for another digit of x*. But solving dyldx =0 is more 
a b and c .IfIf(x)l+ooasx+a,thelinex= accurate, because its graph n the x axis. The slope of 

-9-

a is a vertical d . If f(x) +.b for large x, then y =b is a dyldx is 0 . Each derivative is like an p zoom. 
e . If f(x) -mx +b for large x, then y =mx + b is a To move (a, b) to (0, 0), shift the variables to X = 
f . The asymptotes of y =x2/(x2-4) are $I . This and Y = r . This s transform changes y =Ax) to 

function is even because y(-x) = h . The function sin kx Y= t . The original slope at (a, b) equals the new slope 
has period i . at u . To stretch the axes by c and d, set x =cX and 

v .The w transformchanges Y =F ( X )to y = x . 
Near a point where dy/dx =0, the graph is extremely Slopes are multiplied by Y . Second derivatives are 
I .For the model y = cx2, x =.1gives y = k .A box multiplied by . 



120 3 Applications of the Derivative 

1 Find the pulse rate when heartbeats are second or two 
dark lines or x seconds apart. 

2 Another way to compute the heart rate uses marks for 
6-second intervals. Doctors count the cycles in an interval. 

(a) How many dark lines in 6 seconds? 
(b) With 8 beats per interval, find the rate. 

(c) Rule: Heart rate =cycles per interval times . 

Which functions in 3-18 are even or odd or periodic? Find all 
asymptotes: y =b or x =a or y =mx + b. Draw roughly by 
hand or smoothly by computer. 

3 f(x) =x -(9/x) 4 f (x)=xn (any integer n) 

1 x 
5 f(x)= - 6 f(x)= -1 -x2 4 -x2 

9 f(x) =(sin x)(sin 2x) 10 f(x) =cos x +cos 3x +cos 5x 

x sin x X 
11 f(x)= - 12 f(x) = -

x2-  1 sin x 

sin x +cos x 
16 f(x)= 

sin x -cos x 

In 19-24 constructf(x) with exactly these asymptotes. 

19 x =  1 and y = 2  20 x = l , x = 2 , y = O  

21 y = x a n d x = 4  22 y = 2 x + 3  and x=O 

23 y = x ( x + m ) ,  y =  -x(x+ -a) 

24 x = l , x = 3 , y = x  

25 For P(x)/Q(x) to have y = 2 as asymptote, the polynomials 
P and Q must be 

26 For P(x)/Q(x) to have a sloping asymptote, the degrees of 
P and Q must be . 
27 For P(x)/Q(x) to have the asymptote y =0, the degrees of 
P and Q must . The graph of x4/(l + x2) has what 
asymptotes? 

28 Both l/(x - 1) and l/(x - have x = 1 and y =0 as 
asymptotes. The most obvious difference in the graphs is 

29 If f '(x) has asymptotes x = 1 and y = 3 then f (x) has 
asymptotes 

30 True (with reason) or false (with example). 
(a) Every ratio of polynomials has asymptotes 
(b) If f(x) is even so is f "(x) 
(c) Iff "(x) is even so is f(x) 
(d) Between vertical asymptotes, f '(x) touches zero. 

31 Construct an f(x) that is "even around x = 3." 

32 Construct g(x) to be "odd around x =n." 

Create graphs of 33-38 on a computer or calculator. 

35 y(x) = sin(x/3)+ sin(x/5) 

36 y(x)=(2-x)/(~+x),  - 3 ~ ~ 6 3  

37 y(x) =2x3 + 3x2- 12x + 5 on [-3, 31 and C2.9, 3.11 

38 100[sin(x + .l) -2 sin x + sin(x - .I)] 

In 39-40 show the asymptotes on large-scale computer graphs. 

x3+8x-15 x4 -6x3 + 1
39 (a) y = x2-2 (b) Y =  2X4+ X 2  

x2-2 x 2 - x + 2
40 (a) y = 

x3 + 8x- 15 (b) y = X2 -zx + 1 

41 Rescale y =sin x so X is in degrees, not radians, and Y 
changes from meters to centimeters. 

Problems 42-46 minimize the driving time y(x) in the text. 
Some questions may not fit your software. 

42 Trace along the graph of y(x) to estimate x*. Choose an 
xy range or use the default. 

43 Zoom in by c =d =4. How many zooms until you reach 
x* = 1.73205 or 1.7320508? 

44 Ask your program for the minimum of y(x) and the solu- 
tion of dyldx = 0. Same answer? 

45 What are the scaling factors c and d for the two zooms in 
Figure 3.12? They give the stretching of the x and y axes. 

46 Show that dy/dx = - 1/60 and d 2 y / d ~ 2  = 1/90 at x =0. 
Linear approximation gives dyldx z - 1/60+x/90. So the 
slope is zero near x = . This is Newton's method, 
using the next derivative. 

Change the function to y(x)=d l 5  + x2/30+ (10 -x)/60. 

47 Find x* using only the graph of y(x). 

48 Find x* using also the graph of dyldx. 

49 What are the xy and X Y and xy equations for the line in 
Figure 3.14? 



3.5 Parabolas, Ellipses, and Hyperbolas 

50 Define f,(x) = sin x + 4 sin 3x + f sin 5x + (n terms). 
Graph f5 and f,, from - x  to 71. Zoom in and describe the 
Gibbs phenomenon at x = 0. 

On the graphs of 51-56, zoom in to all maxima and minima 
(3 significant digits). Estimate inflection points. 

51 y = 2x5- 16x4+ 5x3-37x2+ 21x + 683 

52 y = x 5 - ~ 4 -  J W - 2  

53 y = x(x - l)(x -2)(x -4) 

54 y = 7 sin 2x + 5 cos 3x 

55 y=(x3-2x+1)/(x4-3x2-15), -3 ,<x<5 

56 y = x sin (llx), 0.1 ,< x Q 1 

57 A 10-digit computer shows y = 0 and dy/dx = .O1 at x* = 1. 
This root should be correct to about (8 digits) (10 digits) 
(12 digits). Hint: Suppose y = .O1 (x - 1 + error). What errors 
don't show in 10 digits of y? 

58 Which is harder to compute accurately: Maximum point 
or inflection point? First derivative or second derivative? 

Here is a list of the most important curves in mathematics, so you can tell what is 
coming. It is not easy to rank the top four: 

1. straight lines 
2. sines and cosines (oscillation) 
3. exponentials (growth and decay) 
4. parabolas, ellipses, and hyperbolas (using 1, x, y, x2, xy, y2). 

The curves that I wrote last, the Greeks would have written first. It is so natural to 
go from linear equations to quadratic equations. Straight lines use 1,x, y. Second 
degree curves include x2, xy, y2. If we go on to x3 and y3, the mathematics gets 
complicated. We now study equations of second degree, and the curves they produce. 

It is quite important to see both the equations and the curves. This section connects 
two great parts of mathematics-analysis of the equation and geometry of the curve. 
Together they produce "analytic geometry." You already know about functions and 
graphs. Even more basic: Numbers correspond to points. We speak about "the point 
(5,2)." Euclid might not have understood. 

Where Euclid drew a 45" line through the origin, Descartes wrote down y = x. 
Analytic geometry has become central to mathematics-we now look at one part of it. 

Fig. 3.15 The cutting plane gets steeper: circle to ellipse to parabola to hyperbola. 




