14.1 Double Integrals (page 526)

CHAPTER 14 MULTIPLE INTEGRALS

14.1 Double Integrals (page 526)

The double integral [f,, f(z, y)dA gives the volume between R and the surface z = f(x,y). The base is first
cut into small squares of area A A. The volume above the :th piece is approximately f(x 1, ¥§ JAA. The limit of
the sum ) f(x;,y;) AA is the volume integral. Three properties of double integrals are jJ J(f+g)dA = [[fdA
+ ff gdA and ffcfdA— ¢ [[fdA and [fpfdA = [[gfdA + [[pf dAif R splitsinto S and T.

If R is the rectangle 0 < z < 4,4 < y < 6, the integral ff z dA can be computed two ways. One is ff z dy dz,
when the inner integral is xylg = 2x. The outer integral gives x2]6 = 16. When the z integral comes first it

equals f z dz = %x2]3 = 8. Then the y integral equals 8y]2 = 16. This is the volume between the base
rectangle and the plane z = x.

The area R is [[ 1dy dz. When R is the triangle between z = 0,y = 2z, and y = 1, the inner limits on y
are 2x and 1. This is the length of a thin vertical strip. The (outer) limits on z are 0 and % The area is %

In the opposite order, the (inner) limits on z are 0 and %—y. Now the strip is horizontal and the outer integral

is f(:)l %y dy = % When the density is p(z,y), the total mass in the region R is f f p dx dy. The moments are
M, = [[ px dx dy and M, = [[ py dx dy. The centroid has T = M, /M.
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z=—31lny x
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28 [} [P dydz+ [7 [277) ay dz = [y [ S grdy=b 25 f(a,b) — f(a,0) — £(0,8) + £(0,0)
27 [} [l(2z—3y+1)dzdy=1L 29 [ f(z)dz= [ [/ 1dydz 31 50,000%

33fff12:1:2dzdy‘=1§i . 352f0/\/_f'1y1dzdy——
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37 ;1—1;2;7‘:12?:1“ ) is exact for f = 1,z,y, zy 89 Volume 8.5 41 Volumes In 2,21n(1 + v/2)

43 fol fol z¥dz dy = fo y_de ln2;f01 fol z¥dy dz = fol fln;;-dz =1n2
45 With long rectangles Y y;,AA=Y AA=1but [[ydA=1

2 [} 20y do = 2?y] = (¢ — )y; [2°(e2 — Dy dy = (% — 1) %53 = (% — 1)(2¢% — 2) = 2(e% — 1)3;

e_q;_lnz _l 2e dy __ _ — 2e _
| S = ]1_ 2 y—ln2c In2=In% =

4 flz ye™Vdz = Y| = ¢2¥ — ¢¥; fol(ezy —eV)dy = [JeV —e¥]§ = %— ~-e+ 5 fo \/W =2y/3+2z+ ]0 =
2v6 + 2z — 2v/3 + 2z; the z integral is [2(6 + 22)°/2 — 2(3 +22)3/2L | = §83/2 53/2 -343/2
Note! 3 + 2z + y is not zero in the region of integration.

6 The region is above y = z° and below y = z (from 0 to 1). Area = fol(a: -2%)dz = [‘—‘;— - %]3 = %
8 The region is below the parabola y = 1 — z? and above its mirror image y = z% — 1.
Area = [1 (1-42 — 22+ 1)dz = [22- 32°]1, = §.
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14.1 Double Integrals (page 526)

10 The area is all below the axis y = 0, where horisontal strips cross from z = y to z = |y| (which is —y). Note
that the y integral stops at y = 0. Area = ffl fy_” dz dy= ffl —2ydy=[-y?]°, =1.

12 The strips in Problem 6 from y = z° up to z are changed to strips from z = y across to z = y/3. The outer
integral on y is by chance also from 0 to 1. Area = [} (y!/% — y)dy = [3y*/3 — 123 = %

14 Between the upper parabola y = 1 — z2 in Problem 8 and the z axis, the strips now cross from the
left side z = —\/_ to the right mde z = +4/1 — y. This half of the area is fo f dz dy =
fo 2yT—ydy=-4(1-y)*?} = 4. The other half has strips from left side to nght 81de of y=2z%-1
orz==x%1+y. Thls area is [° lf_\/ﬂ_-—dzdy (also $).

16 The triangle in Problem 10 had sides z = y, z = —y, and y = —1. Now the strips are vertical. They go
from y = —1 up to y = z on the left side: area = [° [* dydz = [° (z+1)dz = 1(z +1)?]°, = 1. The
strips go from —1 up to y = —z on the right side: area = folf_—: dydz = [y (-z+ 1)dz = '3
Check: % + -;f =1

18 The triangle has corners at (0,0) and (~1,0) and (~1,—1). Its area is [°, [, " dy dz = Jo I~V dz dy(= %)

20 The triangle has corners at (0,0) and (2,4) and (4,4). Horisontal strips go fromz = £ toz=y:
area = fo‘ f:/2 dz dy = 4. Vertical strips are of two kinds: from y = z up to y = 2z or to y = 4.

Area = f:f:zdydz+f;f:dydz= 2+2=4.

22 (Hard Problem) The boundary lines are y = 1z from (—2,-1) to (0,0), and y = —2z from (0,0) to
(1,-2), and y = =%=5 or z = —3y — 5 from ( —2,-1) to (1,—2). (This is the hardest one: note first the
slope — ) Vertlcal stnps go from the third line up to the first or second: area = f 2 (z/:_s) /3 dy dz+
fol ]'(:2:_ 5) /3 dydz =3 + g— Horisontal strips cross from the first or third lines to the second:
area = [, f ;’ﬁsd dy+f_l 2y"/2dzdy= t+s= g-

24 The top of the tnangle is (a,b). From z = 0 to a the vertical strips lead to [ [, :: //: dy dz =

[ﬁ!— - — 0 = "“ 92_ From z = a to ¢ the strips go up to the third side:
I fb:/(cz—a)(d—b)/(c a) dy dz = [bz + 1—;({:%‘—1 25 ]a =blc—a)+ ic_ﬂlzbul - d‘f':-
The sum is %* + —(%l —(%)- - % = bj—‘fd This is half of a parallelogram.

26 [y [y §Ldz dy = J;[f(a,9) ~ £(0,9)]dy.

28 Over the square folfol(ze” ~ye®)dydz = fol(ze -% —z)dz= ["23 - % - %’ t=f-%-3+1=0
(Looking back: sero is not a surprise because of symmetry.) Over the triangle the integral up to
y=zis fol 3 (ze¥ — ye®)dy dz. Over the triangle across to y = z the integral is fol J3 (ze¥ — ye®)dz dy.
Exchange y and z in the second double integral to get minus the first double integral.

30 f_lll(l —2?)dz=[z-L|L, =4 With horisontal strips this is [y [V} ¥ dz dy =
foevT—ydy=-3(1- )*’/zl1

82 The height is 2 = ———b" Integrate over the triangular base (z = 0 gives the side az + by = 1) :
volume = flla (I—M)/b —_‘Hﬂdy dz = fll : cly—azy— lbyzl(l g flla i“'ﬁ"d -

z=0 y-—O (4]

!1 as! l/a

= Bch
34 From Problem 33 the mass is 1! The moments are fl fl z3dz dy = fa -1ty y =18 and f1 fl yz?dz dy =

fl ydy—28 Theni—+ andg ——;— 2.

86 The area of the quarter-circle is §. The moment is zero around the axis y = 0 (by symmetry): X = 0.
The other moment, with a factor 2 that accounts for symmetry of left and right, is

f‘/_/zf' l_z’ydydxz 2f°1(l-"2—” - %)dz:Z[%— %‘]6/5/2 = isé. Then § = 354@ —4/2
38 The integral [, [ z%dz dy has the usual midpoint error —1%): for the integral of z? (see Section 5.8).

The y integral fol dy = 1 is done exactly. So the error is — A5 (and the same for [ [ y?dz dy). The
integral of zy is computed exactly. Errors decrease with exponent p = 2, the order of accuracy.
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14.2 Change to Better Coordinates (page 534)

40 The exact integral is fo fo 77;',,-2 =2 ;/4 ;eco'd"w —2[“/4sec0 df = Zln(sec0+tan0)]"/4
2In(vZ +1).

42 The exact integral is folfol e*sinnydz dy = [, (¢ — 1) sinxy dy = <=1 (- coswy)]} = 2(e—1).

14.2 Change to Better Coordinates (page 534)

We change variables to improve the limits of integration. The disk z? + y? < 9 becomes the rectangle
0<r<8,0<0 < 2x. The inner limits of f [ dy dz are y = +V9 — x2. In polar coordinates this area integral
becomes [[ r dr df = 9.

A polar rectangle has sides dr and r df. Two sides are not straight but the angles are still 90°. The area
between the circles r =1 and r = 3 and the rays 6 =0 and § = x /4 is %(32 —12%) = 1. The integral [f z dy dz
changes to [ r2cos § dr df. This is the moment around the y axis. Then Z is the ratio My /M. This is the z
coordinate of the centroid, and it is the average value of z.

In a rotation through «, the point that reaches (u,v) starts at z = u cosa — vsina,y = usin o + v cos a.
A rectangle in the uv plane comes from a rectangle in zy. The areas are equal so the stretching factor is

J = 1. This is the determinant of the matrix [ cosa —sma

sina  cosa |- The moment of inertia Jf zdz dy changes to
[[ (u cos a — v sin a)2du dv.

For single integrals dz changes to (dx/du)du. For double integrals dz dy changes to J du dv with J =
3(x,y)/8(u;v). The stretching factor J is the determinant of the 2 by 2 matrix T

dx/du 3x/3v Th
dy/du dyfev |* T°
functions z(u, v) and y(u, v) connect an zy region R to a uv region S, and [, dz dy = [[; J du dv = area of R.

For polar coordinates z = u cos v and y = u sin v (or r sin §). For z = u,y = u+ 4v the 2 by 2 determinant is
J = 4. A square in the uv plane comes from a parallelogram in zy. In the opposite direction the change has
vu=zandv=%(y—z) andanew J = % This J is constant because this change of variables is linear.

:/“4/4 fo rdrdf = 8 § = quarter-circle with 4 > 0 and v > 0; fo V1= du dv
5 R is symmetric across the y axis; fo IN -7y dudv = 1 divided by area gives (&, ) = (4/37,4/37)

f 2f0 /V,_ fll-:-z o=t

dy dz; zy region R* becomes R in the z*y* plane; dz dy = dz*dy* when region moves
dz/or* 9z/06* cosf* —r*sind* O SN
dy/or* dy/ae* sinf* r*cosf* i Juja Jo rrdrtds
111, = [[,2%dz dy = fs"ﬂforzcosaﬂrdrdﬂ:—l’% =%+ b=%
13 (0,0), (1,2), (1,3), (0, 1) area of parallelogram is 1

15 z = 4,y = u + 3v + uy; then (u,v) = (1,0),(1, 1), (0, 1) give corners (z,y) = (1,0), (1,5), (0, 3)
17 Corners (0,0), (2,1), (3,3), (1,2); sides y = 3z,y =2z —3,y=1z+ 2,y =2z

19 Corners (1,1), (€%, €), (¢, €3), (¢, €?); sides z = y?,y = 22/e3, z = y?/e3, y = 22

21 Corners (0,0), (1,0), (1,2), (0,1); sides y =0,z=1,y=1+2%,z=0

9J=
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14.2 Change to Better Coordinates (page 534)

2 1 11 2e2utv  L2utv
1 21 3, area fo fo 3dudv=3;J = u+20 gu+2v

S (e3¥50 — e)dv = (e ~ 263 +1)
25 Corners (z,y) = (0,0),(1,0), (1, £(1)), (0, £(0)); (3, 1) gives z =3,y = f(3); J =

27 B2 =2 [J/* [}/ 90 vy dp df = [T14(c~1/5i”0 _ 1)dg
20 7= [[ridr d0/ [[rdrdf= [ %a%sin®0df/xa? =322 381 f rzr drdf =%

88 Along the right side; along the bottom; at the bottom right corner
85 [[zydzdy= fol [, (ucos a — vsin)(usin @ + v cos a)du dv = 1(cos? a — sin® @)

28 J =

= 3e3utdv fol fol 33839y dy =

1 0
of'(u) f(u)

= f(u)

87 foz"ffrzrzr drdf=25(5°—-4%) 39z=cosa—sina,y=sina+cosagoestou=1,v=1

2 Area = f ‘/‘;/—72 fl“ 1-2? dy dz splits into two equal parts left and right of z =
f‘/_/z(\/-—_ - z)dz = [zV1— 22 +sin 'z - :.:2](‘,/_/2 =sin~! 32£ = %- The limits on

V1i-y2
J [ dz dy are f v32/2 f! dx dy for the lower triangle plus f\l/'i 12 I \}Il—dx dy for the circular top.

0: 2]'\/—/2"-\/1—::’ dy dz =

4 (See Problem 36 of Section 14.1) f 3x/4 fol (r sinf)rdr df = [%]&[-— cos 9]‘:7{‘ L divide by area T to reach

7= =42 .
6 Area of wedge = 2 (ma?). Divide f: J5 (r cosf)r dr d6 = B+-sin b by this area "—%—’ to find
z= g% sin b. (Interesting limit: £ — sza as the wedge angle b approaches zero: like the centroid of a triangle.)

3
For § divide f:foa(r sin6)r dr df = g3—(1 — co8 b) by the area bL’ to find gy = 22 85(1 —cosb).
8 The limits on r,# are extremely awkward for R*. Contrast with the simple hmnts 0<r<1,§<6*< T"

when the coordinates are recentered at (0,1). (A point on the lower boundary of the wedge has

un

T = m(ree) by the law of sines.)
10 The centroid (0, §) of R moves up to the centroid (0,¥ + 1) of R*. The centroid of a circle is its

center (1,2). The centroid of the upper half is (1,2 + %—) because a half-circle has f; f: (r sin@)r dr df = 18
divided by its area % (which gives 1).

12 Iz-—f:/’;ﬂfo(r sm0+l)2rdrd9— [ sin? 0d0+2fs1n0d0+ lfdo—[“'M—-cosﬂ+2]‘:’;£4=
16+ 16+3£ = [[(r cos)?rdrdf = 5 — § (as in Problem 11); h = I, + I, —_+4325_

14 The corner (1,2) should be (a,c), when u = 0 and v = 1; the corner (0,1) should be (b,d), when u =1 and
v =0. Check at u = v = 1; there z = au + bv = 1 and y = cu + dv = 3 to give the correct corner (1,3).
Then J = ad — be = (1)(1) — (0)(2) = 1. The unit square has area 1; so does R.

16 A linear change takes the square S into a parallelogram R (with one corner at (0,0)). Reason: The vector
sum of the two sides from (0,0) is still the vector to the far corner.

18 Corners when u =0 or 1, v = 0 or 1: (0,0), (3,1), (5,2), (2,1). The sides have equations
y= —z,y— 1z - %, = %z+31;, = %z.

20 Corners when u=0or 1, v=0or 1: (0,0), (0,-1),(1,0), (0,1). Actually (0,0) is not a corner because one
side comes down the y axis. The side withu=lisz=v,y=v  —lory = x2 — 1. The
sidewithv=1isz=u,y=1-ulory=1—x2.

22 Here u=0o0r 1, v =0 or 1 gives the corners (0,0),(1,0), (cos 1,sin 1). The side with u = 1 is a circular arc
Z = cos v,y = sinv between the last two corners. The other sides are straight: the region is pie-shaped

(a fraction 5= of the unit circle).
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14.3 Triple Integrals (page 540)

24 Problem 18 has J = | E; f | = 1. So the area of R is 1X area of unit square = 1. Problem 20 has

= 2u 2u | = 2(u? + v2), and integration over the square gives area of R =

fo 2042 + 2)du do = §. Check in 2,y coordinates: area of R = 2 [3(1 - 2)dz = .
dr/d3z dr/dy I=| z/r y/r |_ =1

= ;. As in equation 12, this new J is ﬁ.

26| a9/0c a8/ay | =| Zyp2 2/

28 [= 22e = /2dz = (u)(v) — [ vdu = (:c)(—e"‘z/z)]??oo +[%, ¢=*'/2dg = 0 + \/2r by Example 5. Divide
by v2x to find 02 = 1.

30 R is an infinite strip above the interval [0,1] on the z axis. Its boundary z =11is r cosf = 1 or r = sec 4.
The limits are 0 < r < secf and 0 < § < Z. The integral is f’rlz f;eca rdrdd - f"/z(oo)dﬂ = infinite.
For a finite example integrate (z2 + y2)~ 1/ 2=1

r’

32 Equation (3) with y instead of z has [ [y2dA = fo fo (u sina + vcosa)?du dv = sina [ [ u? du dv +

sinacosa [ [ 2uv du dv + cos? a [ [ vidu dv = Bui <+ B_ID_aZC_O_M + Lg"-.

34 (a) False (forgot the stretching factor J) (b) False (z can be larger than z2) (c) False (forgot to divide
by the area) (d) True (odd function integrated over symmetric interval) (e) False (the straight-sided
region is a trapezoid: angle from 0 to 6 and radius from r; to r; yields area 1(rZ — r2)sin6 cosf).

36 [[pdA = f02 i) 45 r2(r dr df) = 27 54244. This is the polar moment of inertia Ip with density p = 1.

38 [[ fdA = f(P) [[ dA is the Mean Value Theorem for double integrals (compare Property 7, Section
5.6). If f =z or f =y, choose P = centroid (X, §).

14.3 Triple Integrals (page 540)

Six important solid shapes are a box, prism, cone, cylinder, tetrahedron, and sphere. The integral
f f f dz dy dz adds the volume dx dy dz of small boxes. For computation it becomes three single integrals.
The inner integral [ dz is the length of a line through the solid. The variables y and z are held constant. The
double integral [ dz dy is the area of a slice, with 2 held constant. Then the z integral adds up the volumes of
slices.

If the solid region V is bounded by the planes z = 0,y = 0,z = 0, and z + 2y + 32 = 1, the limits on the
inner z integral are 0 and 1 — 2y — 8z. The limits on y are 0 and %(1 — 8z). The limits on z are 0 and % In
the new variables u = z,v = 2y, w = 3z, the equation of the outer boundary isu + v 4+ w = 1. The volume
of the tetrahedron in uvw space is % From dz = du and dy = dv/2 and dz = dw/3, the volume of an zyz box

isdzdydz= %du dv dw. So the volume of V is 3%

To find the average height z in V we compute fffz dv/ fff dV. To find the total mass if the density is
p = €* we compute the integral [[[ e® dx dy dz. To find the average density we compute [[fe%ZdV/ fff dv.
In the order f f f dz dz dy the limits on the inner integral can depend on x and y. The limits on the middle
integral can depend on y. The outer limits for the ellipsoid z? + 2y% + 32° < 8 are —2 <y < 2.

1
1 fo f;foydxdydz= él-
8 0<y<z<2z<1and all other orders zzy, yzz, zzy, zyz; all six contain (0,0, 0); to contain (1,0,1)
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5[, f1 1 dzdydz=8 7 [l [ [  dzdydz=4 9 [, [} [ldzdydz=1}
11 fo 2-2z2 fo 2—-y—22 dz dy dz=§ 18 fx/s 2-22 2-—y—2z dz dy dz = _7§_
15 fy fo ims VIR dzdydz=% 17 fy o5 [ Vi dzdydz=6x 19 [} [1 [V  dzdydz=1n

0

21 Corner of cube at (f’ 75 \/-), sides 2 \/-, area 3\/-

23 Horizontal slices are circles of area xr? = x4 — z); volume = fo x(4 — z)dz = 8x; centroid
has z= 0,§=0,z= fo z1r(4—z)dz/81r— 4

25 I=% > gives zeros; A= [ fdy dz, =[5 [5 fdzdz, &L ay == fdz

27 f—lf—1f—1(y +2%)dz dy dz = 1&; fffz2W— $:3[[[(z— 2HuEz)2gy = L8

29 f: f: JJ dzdydz=6 31 Trapesoidal rule is second-order; correct for 1,z,y, 2, 2y, 22, yz, Tyz

2 The areaof 0 <z<y<z< lhf()lf,:f;,ld:dydx. The four faces are z =0,y = z,z2 =y, z= 1.
4 [} J7 [P zdzdydzs =[] [; Ldydz = [; %dz = . Divide by the volume } to find % = 1;
fol fo’ f:y dz dy dz = f01 fo'yzdy dz = fol %dz = é and ¥ = %; by symmetry & = %
6 Volume of half-cube = [ f* [} dzdydz=4.
8 [y [, [} dzdydz= [ 2(z+1)dz=[(z+1)*]§ = 3.
10 f_ll J2, 12 dzdydz= f_ll J2 v+ 1)dydz= f:l L'1"—'21)3-:12 = [1_1+T1):]_1_1 = % (tetrahedron).
12 The plane faces are z =0,y = 0,z =0, and 2x + y + 2 = 4 (which goes through 3 pomts) The volume

lsfo - 231-04 2z—ydzdydz-—fo 47224 — 2z—y)dydx— 21——)—4—2’ ldz = =[- (—)—4 2 =4 %6-
Check: Multiply standard volume 1 by (4)(4)(2) = L. Check: Double the volume in Problem 11.

14 Put dz last and stopat z=1: fo Io (‘ v-2)/2 dz dy dz = fo 4= 4—"”"—"dy dz =

1 —2)3 — )3 3_ a3 7

I (4 :) z=[__(4l;) =458 = %_2

16 (Still tetrahedron of Problem 12: volume still 3¢). Limits of integration: the top vertex
falls from (0,0,4) onto the y axis at (0, —4,0). The corner (2,0,0) sta.ys on the z axis.

The corner (0,4,0) swings up to (0,0,4). The volume integralis [ [°, [Z dzdydz = 18.

18 The plane z = z cuts the circular base in half, leaving z > 0. Volume = fo I '\l/lfj fo dzdydz =

fo 2zV1 — z2dz = [-3(1- 22)3/2)} = 2.
20 Lying along the z axis the cylinder goes from z = 0 to z = 6. Its slices are circular disks y? + (z— 1)2 =1

resting on the z axis. Volume = fo f__ f 1+ \/—Vl:, dz dy dz = still 6x.

22 Change variables to X = 2,Y = ¥,Z = £; then dXdYdZ = —-dw Volume = [ [ [ abc dXdeZ =
Eabc Centroid (%,§,2) = (aX by cZ) = (% 4,2 4). (Recall volume ¢ and centroid (%, 1, 1) of standard
tetrahedron: this is Example 2.)

24 (a) Change variables to X = 2,Y = ¥,Z = 32 Then the solid is X2 + Y2 + Z2 = 1, a unit sphere of volume
4% . Therefore the original volume is 4(4)(2)(%) = % (b) The hypervolume in 4 dimensions is 2—14-,

following the pattern of 1 for interval, 1 for triangle, g L for tetrahedron.

26 Averageof f=[[ [, f (z, y, 2)dv/ [ [ fv dv = mtegral of f(x,y,z) divided by the volume.

28 Volume of unit cube = E,_.l EI/AZ ,lc/_Ala’(Az)3 =1.

80 In one variable, the midpoint rule is correct for the functions 1 and z. In three variables it is correct for
1, x, y, %, Xy, X2, Y%, XyZ.

82 Simpson’s Rule has coeﬂiclents & s’ 6 over a unit interval. In three dimensions the 8 corners of the cube will
have coefﬁaents (2)® = 515 The center will have (3)3 = ﬁ The centers of the 12 edges will have
(£)2(4) = 735~ The centers of the 6 faces have (1)($)? = 2. (Check: 8(1) + 64 + 12(4) + 6(16) = 216.)
When N3 cubes are stacked together, with N small cubes each way, there are only 2N + 1 meshpoints
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along each direction. This makes (2N + 1)® points or about 8 per cube. (Visualise the 8 new points
of the cube as having z,y, z equal to sero or %)

14.4 Cylindrical and Spherical Coordinates (page 547)

The three cylindrical coordinates are rfz. The point at z =y =2 =1hasr = V2,0 = n/4,z2 = 1. The
volume integral is [f[ r dr d4 ds. The solid region 1 < r < 2,0 < ¢ < 2x,0 < z < 4 is a hollow cylinder (a
pipe). Its volume is 12x. From the r and 0 integrals the area of a ring (or washer) equals 8x. From the z and
¢ integrals the area of a shell equals 2xrs. In rfz coordinates the shapes of cylinders are convenient, while
boxes are not.

The three spherical coordinates are pgf. The point at z =y =2z =1has p = /8,4 = cos"ll/\/s,ﬂ = /4.
The angle ¢ is measured from the z axis. § is measured from the x axis. p is the distance to the origin,
where r was the distance to the s axis. If p¢f are known then x = psin ¢ cos 6,y = psin ¢ sin §,z = p cos ¢.
The stretching factor J is a 3 by 3 determinant and volume is [ff r2 gin ¢ dr d¢ df.

The solid region 1 < p < 2,0 < ¢ < x,0 < 8 < 2x is a hollow sphere. Its volume is 41\'(28 - 13)/8. From
the ¢ and 4 integrals the area of a spherical shell at radius p equals 41rp2. Newton discovered that the outside
gravitational attraction of a sphere is the same as for an equal mass located at the center.

1(r,0,2) = (D,0,0); (0, ¢,0) = (D, §,0) 8 (r,0,2) = (0, any angle, D);(p, ¢,6) = (D, 0, any angle)

5 (z,v,2) = (2,-2,2V2); (r,6,2) = (2\/—,—{-,2\/5) 7 (z,y,2) = (0,0,—1);(r,0, 2) = (0, any angle, —1)
9 ¢ =tan"'(Z) 11 45° cone in unit sphere: 2%(1 - -\}—5) 18 cone without top: ZF

15 } hemisphere: £ 17 "%:- 19 Hemisphere of radius n: 2x* 21 x(R? — 22);dxrvR? — 42
28 2a%tana (see 8.1.39) 27 X = e—_D_:&Q = ﬁﬁ‘:—e =cosa
81 Wedges are not exactly similar; the error is higher order => proof is correct
838 Proportional to 1+ (/a2 + (D — k)2 — Va2 + D?)

a
35 J= b = abe; straight edges at right angles 37
c

39 °—’Z,‘i; 2 41 p3; p?; force = 0 inside hollow sphere

cosd —rsind O
sind rcosf O
0 0 1

=r

2 (r,0,2) = (D, 3 2:0);(0,6,0)= (D, 5,3 4 (r,0,2) = (5,cos7* 2,5); (p, 4,6) = (5v/2, %, cos7? 2)

6 (z,y,2) = (2, 2,1) (r,0,2) = (V3,%,1) 8z=rontheposnt1vexaxxs (z>0,y=0(=6),z=0)

10z=cos t,y= 32£sm t,z= £sm t. The unit sphere intersects the plane y = z.

12 The surface 2 = 1+ ¢ = 1+ 22 + y? is a paraboloid (parabola rotated around the z axis). The region is
above the half-disk 0 < r < 1,0 < § < x. The volume is %x.

14 This is the volume of a half-cylinder (because of 0 < # < ) : height =, radius , volume %11'4.

16 The upper surface p = 2 is the top of a sphere. The lower surface p = sec ¢ is the plane z = pcos o=1
(The angle ¢ = § is the meeting of sphere and pla.ne where sec ¢ = 2.) The volume is
21rf“/3(—'3&9)sm¢ dé = 2x[-3cos¢ - eco.w]o =2x[-% - 57; +8+1= T'
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14.4 Cylindrical and Spherical Coordinates (page 547)

18 The region 1 < p < 3 is a hollow sphere (spherical shell). The limits 0 < ¢ < 7 keep the part that lies

above a 45° cone. The volume is 5%’1(1 - 3?)

20 From the unit ball p < 1 keep the part above the cone ¢ = 1 radian and inside the wedge 0 < 6 < 1 radian.
Volume = 1 fol sin ¢d¢ = -41-(1 —cos 1).

22 The curve p = 1 — cos ¢ is a cardioid in the zz plane (like r = 1 — cos 6 in the zy plane). So we have a
cardioid of revolution. Its volume is §F as in Problem 9.3.35.

24 Mass = [2" [ [ ¥ psin ¢(p + 1)dp d¢ df = $7R3 + 2aR2.

. . . . 3, 3_ 3 .
26 Newton’s achievement The cosine law (see hint) gives cosa = D—";;D—"—. Then integrate %’1‘1 :

fff(%%;—bi + 3,5)dV. The second integral is sl %= %ﬂ. The first integral over ¢

uses the same u = D? — 2pDcos ¢ + p? = ¢ as in the text: [ ’i—"q‘;&‘é = [ d‘:‘f,p =

[‘,Dﬁ'uln]z:; = ;}—)-(D—l_—p - D:_p) = B D,z__p,) . The # integral gives 2x and then the p integral is

foR 21’—5@%;—0,7 Q%dpzdp = %,&. The two integrals give %3-1-3- as Newton hoped and expected.

28 The small movement produces a right triangle with hypotenuse AD and almost the same angle . So the

new small side Ag is ADcosa.
2
30 [fqdA=4xp’D + %"-%. Divide by 47p? to find § =D + 'SED for the shell. Then the integral over p gives

[[fadVv=2R*D+4 %5—. Divide by the volume *R3 to find =D + %"; for the solid ball.

82 Yes. First concentrate the Earth to a point at its center — this is OK for each point in the Sun. Then
concentrate the Sun at its center — this does not change the force on the (concentrated) Earth.

84 J=aes +bfg+ cdh — ceg— afh — bds.

36 Column 1: V/sin® $(cos? § + sin® §) + cos? ¢ = 1; Column 2: v/ p? cos? $(cos? 8 + sin® §) + p? sinZ ¢ = p;
Column 3: v/p?sin® ¢(sin? § + cos? f) = p sin ¢. These are the edge lengths of the box. The dot
products of these columns are zero; so J = volume of box = (1) (p)(psin ¢) as before.

88 Column 1: Vcos? 8 + sin? 6 = 1; Column 2: Vr2sin? 8 + r2 cos? § = r; Column 3: V02402 + 12 = 1.
Again the dot products of the columns are zero and J = volume of box = (1)(r)(1) =r.

40 I = 5 xR5;J = Z; the mass is closer to the axis.
42 The ball comes to a stop at Australia and returns to its starting point. It continues to oscillate in harmonic

motion y = Rcos(\/c/mt).
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