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CHAPTER 13 PARTIAL DERIVATIVES

13.1 Surfaces and Level Curves (page 475)

The graph of z = f(z,y) is a surface in zyz space. When f is a linear function, the surface is flat (a plane].
When f = z2 + y? the surface is curved (a parabola is revolved to make a bowl). When f = /22 + y? the
surface is pointed (a cone resting on the origin). These three examples carry you a long way.

To visualize a surface we cut through it by planes. Often the cutting planes are horizontal, with the simple
equation z = ¢ (a constant). This plane meets the surface in a level curve, and the equation of that curve is
¢ = f(z,y). The cutting is up at all different heights ¢, but we move all the level curves down to the zy plane.
For the bowl z = z2 4 y? the level curves are ¢ = z2 + y2 (circles). For the cone z = \/22 + y2 the level curves
are ¢ = /22 + y? (again circles — just square both sides). For the plane z = z + y the level curves are straight
lines ¢ = z + y (parallel to each other as ¢ changes).

The collection of level curves in the zy plane is a contour map. If you are climbing on the surface, the map
tells you two important things:

1. Which way is up: Perpendicular to the level curve is the steepest direction.

2. How steep the surface is: Divide the change in ¢ by the distance between level curves.

A climbing map shows the curves at equal steps of ¢c. The mountain is steeper when the level curves are closer.
1. Describe the level curves for the saddle surface z = zy.

e The curve zy = 1 is a hyperbola. One branch is in the first quadrant through (1,1). The other branch
is in the third quadrant through (—1,—1). At these points the saddle surface has z = 1.

The curve zy = —1 is also a hyperbola. Its two pieces go through (1,—1) and (—1,1). At these points the
surface has z = zy = —1 and it is below the plane z = 0.

2. How does a maximum of f(z,y) show up on the contour map of level curves?

e Think about the top point of the surface. The highest cutting plane just touches that top point. The
level curve is only a point! When the plane moves lower, it cuts out a curve that goes around the top
point. So the contour map shows “near-circles” closing in on a single maximum point. A minimum
looks just the same, but the c’s decrease as the contour lines close in.

Read-throughs and selected even-numbered solutions :

The graph of z = f(z,y) is a surface in three-dimensional space. The level curve f(z,y) = 7 lies down in
the base plane. Above this level curve are all points at height 7 in the surface. The plane z = 7 cuts through
the surface at those points. The level curves f(z,y) = ¢ are drawn in the zy plane and labeled by c. The family
of labeled curves is a contour map.

For z = f(z,y) = z? — y2, the equation for a level curve is x% — y2 = ¢. This curve is a hyperbola. For

z = z — y the curves are straight lines. Level curves never cross because f(x,y) cannot equal two numbers
c and c’. They crowd together when the surface is steep. The curves tighten to a point when f reaches a
maximum or minimum. The steepest direction on a mountain is perpendicular to the level curve.

6 (z + y)? = 0 gives the line y = —x; (z + y)% = 1 gives the pair of lines z+ y = 1 and z + y = —1; similarly
x+y =12 and x +y = —V2; no level curve (z + y)? = —4.
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16 f(z,y) = { maximum of z% + y? — 1 and zero } is zero inside the unit circle.
18 \/422 + y2 = ¢ + 2z gives 422 + y? = c? + 4cz + 422 or y% = c2 + 4cx. This is a parabola opening to the

left or right.

30 Direct approach: zy = (fma)(Bi8) = Loy + 2oy2 + Taye + 2oy1) = F(1+ 1+ B+ 22)
=1+ Lﬁ‘—;}z—’,’— > 1. Quicker approach: y = 1 is concave up (or convex) because y" = % is positive.

Note for convez functions: Tangent lines below curve, secant line segments above curve!

=Cc

13.2 Partial Derivatives (page 479)

I am sure you are good at taking partial derivatives. They are like ordinary derivatives, when you close your
eyes to the other variables. As the text says, “Do not treat y as zero! Treat it as a constant.” Just pretend
that y = 5. That applies to 2 e*¥ =y ¥ and (2% + zy?) = 2z + ¢°. )

Remember that %JL: is also written f,. The y-derivative of this function is 55‘5‘5 or fzy. A major point 1s that
fzy = fyz- The y-derivative of %ﬁ equals the z-derivative of gﬁ. Take f = 2% + zy? with g'yt = 2zy:

% f

82f o ) 3
3y 07 £(2z+y ) =2y and 3207 —a—;(2zy) = 2y.

Problem 43 proves this rule f;, = f,;, assuming that both functions are continuous. Here is another example:

1. The partial derivatives of f(z,y) = €™ are f, = ye®¥ and fy = z¢®¥. Find f,4, foy, fyz, and fyy.

o foz is 2L or ;—x(%) This is £ (ye™) = y?e®Y. Similarly f,, is ;‘—y(xew) = z2¢"¥. The mixed

Jx
derivatives are equal as usual:
a o o]
5;(55) — .@.(yezy) = y(ze®™) + 1(¢*¥) by the product rule
0,8 a
&(55) - 5;(9:6”) = z(ye®) + 1(e¥) by the product rule

You must notice that it is 8 f above and dz* below. We divide A(Af) by (Az)2.

2. What does that mean? How is A(Af) different from (A f)2?

e Start with f(z). The forward difference Af is f(z + Az) — f(z). This is a function of z. So we can

take its forward difference:
A(Af) = Af(z+ Az) - Af(z) = [f(z + 24z) — f(z + Az)] — [f(z + Az) — f(2)]

This is totally different from (A f)? = [f(z + Az) — f(z)]?. In the limit g%'gﬁ is totally different from (%)2.

3. Which third derivatives are equal to fy,7 This is a‘j—y(fm) or Wa’a%‘

e We are taking one y-derivative and two z-derivatives. The order does not matter (for a smooth

function). Therefore frzy = foyz = fyze-
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Notice Problems 45 — 52 about limits and continuity for functions f(z,y). This two-variable case is more subtle
than limits and continuity of f(z). In a course on mathematical analysis this topic would be expanded. In a
calculus course I believe in completing the definitions and applying them.

More important in practice are partial differential equations llke %& and %;; —§ and —L E{'
Those are the one-way wave equatlon and the two-way wave equation a.nd the heat equation. Problem 42 says
that if —L —L then automatically # %{-. A one-way wave is a special case of a two-way wave.

4. Solve Problem 42. Then find f(z,t) that satisfies the 2-way equation but not the 1-way equation.

e Suppose a particular function satisfies fy = fy. Take t-derivatives to get f;; = f,:. Take z-derivatives
to get fiz = fzz. The mixed derivatives agree for any smooth function: fz; = fi,. Therefore fi; = frz.

Example of a 1-way wave: f = (z +t)?. The function f = (z — t)? does not satisfy the 1-way equation,
because f; = 2(z —t) and f; = —2(z —t). It satisfies the other-way wave equation f; = —f, with a minus
sign. But this is enough for the 2-way equation because f;; = 2 and f;; = 2.

In general F(z + t) solves the one-way equation, G(z — t) solves the other-way equation, and their sum
F + G solves the two-way equation.

Read-throughs and selected even-numbered solutions :

The partial derivative 8 f /3y comes from fixing x and moving y. It is the limit of (f(x,y + Ay)— f(x,y))/Ay.
If f = e2®siny then 8f/3z = 2e2X gin y and of [dy = e?X cosy. If f = (22+y?)'/2 then f, = x/(x2 +y2)1/2
and fy, =y/ (x2 + yz)l/ 2 At (=0, yo) the partial derivative f, is the ordinary derivative of the partial function
f(z,y0). Similarly f, comes from f(xg,y). Those functions are cut out by vertical planes z = zo and y =yj,
while the level curves are cut out by horizontal planes.

The four second derivatives are f,.,fxy, fyx,fyy. For f = zy they are 0,1,1,0. For f = cos 2z cos 3y they
are —4 cos2x cosy, 6 sin2x sin 3y, —9 cos2x cos3y. In those examples the derivatives fxy and fyx are the
same. That is always true when the second derivatives are continuous. At the origin, cos 2z cos 3y is curving
down in the z and y directions, while zy goes up in the 45° direction and down in the —45° direction.

8 ...L - af _ _2
z+2y’ dy ~ z+2y

18 fzz = n(n_ 1)(z+ 3!)"—2 = fzy = fyz fyy

20 frz = (T_,_zTy‘)‘:‘; fry = fyz = (z+,y)a ) fyy (zi:y)a (z.,.,y)a Note fzz + fyy = 0.

28 3L = —y(z) and %6 = v(y)-

36 f, = \}_ 23)6_12/41 Then foz = f; = 15%31_\‘3—1’/“ + %’_e—z’/4t

38 ™ """t ginmz cosny solves fy = foz + fyy. Also f = lc_("’ +97)/4t has f, = fou + foy =
(-5 + TﬁL)e—(z +y*)/at

2

50 Along y = mz the function is ;—.I‘;—:a’, — 0 (the ratio is near ”':;“‘:, for small z). But on the parabola y = z

the function is ﬁ:; = % So this function f(z,y) has no limit: not continuous at (0,0).
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13.3 Tangent Planes and Linear Approximations (page 488)

A smooth curve has tangent lines. The equation of the line uses the derivative (the slope). A smooth surface
has tangent planes. The equation of the plane uses two partial derivatives f. and f, (two slopes). Compare

line y— f(a) = f'(a)(z—a) with z— f(a,b) = fz(a,b)(z — a) + fy(a,b)(y — b) plane.

These are linear equations. On the left is y = mz + constant. On the right is z = Mz + Ny + constant. Linear
equations give lines in the zy plane, and they give planes in zyz space. The nice thing is that the first slope
M = 3f/3z stays completely separate from the second slope N = 3f/3y.

I will follow up that last sentence. Suppose we change a by Az and b by Ay. The basepoint is (a, b) and the
movement is to (a+ Az, b+ Ay). Knowing the function f and its derivatives at the basepoint, we can predict the
function (linear approzimation) at the nearby point. In one variable we follow the tangent line to f(a)+ f'(a)Az.
In two variables we follow the tangent plane to the nearby point:

fla+ Az,b+ Ay) =~ f(a,b) + Az f3(a,) + Ay fy(a,b).
We add on two linear corrections, in the z and y directions. Often these formulas are written with z instead of
a and y instead of b. The movement is from f(z,y) to f(z + Az,y+ Ay). The change is Az f, + Ay f,.
1. Estimate the change in f(z,y) = z3y* when you move from (1,1) to (1 + Az,1+ Ay).

e The z-derivative is f, = 3z2y* = 3 at the basepoint (1,1). The y-derivative is f, = 4z%y® = 4 at the
basepoint. The change Af is approximately f;Az + fyAy. This is 3Az + 4Ay:

f(z,y) = (14 Az)3(1 + Ay)* ~ 1+ 3Az+ 4Ay.

On the left, the high powers (Az)3(Ay)* would multiply. But the lowest powers Az and Ay just add. You
can see that if you write out (1+ Az)® and (1 + Ay)* and start multiplying:

(1+3Az+3(Az)? + (Az)®)(1 +4Ay + ) =1+ 3Az + 4Ay + higher terms.

These higher terms come into the complete Taylor series. The constant and linear terms are the start of
that series. They give the linear approximation.

2. Find the equation of the tangent plane to the surface z = z3y* at (z,y) = (1,1).
The planeis z—1=3(z—1)+4(y—1). fz— 1is Az and y — 1 is Ay, this is z = 1+ 3Az + 4Ay. Same

as Question 1. The tangent plane gives the linear approximation!

Some surfaces do not have “explicit equations” z = f(z,y). That gives one z for each z and y. A more
general equation is F(z,y,2z) = 0. An example is the sphere F = z2 + y? + 22 — 4 = 0. We could solve to find

z = 1/4— 2% — y? and also 2 = —/4 — 22 — y2. These are two surfaces of the type z = f(z,y), to give the top

half and bottom half of the sphere. In other examples it is difficult or impossible to solve for z and we really
want to stay with the “implicit equation” F(z,y,2) =0.

How do you find tangent planes and linear approzimations for F(z,y,z) = 07 Problem 3 shows by example.

3. The surface zz + 2yz — 10 = 0 goes through the point (zo, ¥0, 20) = (1,2,2). Find the tangent plane and
normal vector. Estimate 2 when z = 1.1 and y = 1.9.
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e Main idea: Go ahead and differentiate F' = zz + 2yz — 10. Not only z and y derivatives, also z :

oF aF
%i— =z=2 and By =2z=4 and 5 =z+2y=2>5 at the basepoint (1,2,2).
The tangent plane is 2(z — 1) + 4(y — 2) + 5(z — 2) = 0. The normal vector is N = (2,4,5). Notice how
F,, F,, and F, multiply Az and Ay and Az. The total change is AF which is zero (because F' is constant:
the surface is F = 0). A linear approximation stays on the tangent plane! So if you know z = 1.1 and
y = 1.9 you can solve for z on the plane:

2(.1 -
2(1.1-1)+4(1.9-2)+5(2—2) =0 gives 2 =2 — %— 4—(5—1) This is 2 = 2z — %Az— %Ay.

I would memorize the tangent plane formula, which is (F;)(z — zo) + (F,)(y — yo) + (F:)(2 — z0) = 0.

In this example you could solve F = zz + 2yz — 10 = 0 to find 2. The explicit equation z = f(z,y) is

10
z+2y°

The last topic in this important section is Newton's method. It deals with two functions g(z,y) and

z= Its z and y derivatives give the same tangent plane as the z,y, z derivatives of F.

h(z,y). Solving g(z,y) = 0 should give a curve, solving h(z,y) = 0 should give another curve, and solving
both equations should give the point (or points) where the two curves meet. When the functions are

complicated — they usually are — we “linearize.” Instead of g(z,y) = 0 and h(z,y) = 0 Newton solves

9(zo0, y0) + (g%)o(Az) + (%)O(Ay) =0

o, 1) + (52)0(A2) + (5)o(A) = 0.

Those are linear equations for Az and Ay. We move to the new basepoint (z1,y1) = (2o + Az, yo + Ay)

and start again. Newton’s method solves many linear equations instead of g(z,y) = 0 and h(z,y) = 0.
4. Take one Newton step from (zo,yo) = (1,2) toward the solution of g=2zy—3=0and h=z+y—2=0.

e The partial derivatives at the basepoint (1,2) are g, =y =2and gy =z=1and h, = 1and hy, = 1.
The functions themselves are ¢ = —1 and h = 1. Newton solves the two linear equations above

(tangent equations) for Az and Ay:

“1+28zs+Ay = 0 ive Az = 2 The new guess is ~* -0 tAz = 3
1+Az+Ay = 0 8 Ay = -3 & i = w+Aly = -L
The new point (3, —1) exactly solves h = z + y — 2 = 0. It misses badly on g = zy — 3 = 0. This surprised

me because the method is usually terrific. Then I tried to solve the equations exactly by algebra.
Substituting y = 2 — z from the second equation into the first gave z(2 — z) — 3 = 0. This is a quadratic

22 —2z+3 = 0. But it has no real solutions! Both roots are complex numbers. Newton never had a chance.

Read-throughs and selected even-numbered solutions :

The tangent line to y = f(z) is y — yo = f'(xg)(x — xg). The tangent plane to w = f(z,y) is w — wp =
(8f/3x)g(x —xqg) +(8f/8y)o(y — ¥o)- The normal vector is N = (fx,fy, —1). For w = z° + y> the tangent
equation at (1,1,2) is w — 2 = 8(x — 1) + 3(y — 1). The normal vector is N = (3,3, —~1). For a sphere, the
direction of N is out from the origin.

The surface given implicitly by F(z,y,z) = c has tangent plane with equation (8F/dz)o(z — zo)+
(8F/8y)(y —vo) + (8F/3z)g(z —2g) =0. For zyz = 6 at (1,2,3) the tangent plane has the equation
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6(x — 1) + 3(y — 2) + 2(z — 8) = 0. On that plane the differentials satisfy 6dz + 8dy + 2dz = 0. The differ-
ential of z = f(z,y) is dz = fxdx + fydy. This holds exactly on the tangent plane, while Az ~ fxAx + fy Ay
holds approximately on the surface. The height z = 3z + 7y is more sensitive to a change in y than in z,
because the partial derivative 8z/3y = 7 is larger than 9z/0x = 3.

The linear approximation to f(z,y) is f(zo, yo) + (8f/9x) g (x — xg) + (8f/3y)o(y — ¥g)- This is the same as
Af = (9f/3x) Az + (3f /9y) Ay. The error is of order (Ax)2 + (Ay)2. For f = sin zy the linear approximation
around (0,0) is fr = 0. We are moving along the tangent plane instead of the surface. When the equation is
given as F(z,y,2) = c, the linear approximation is FxAz + FyAy+ FzAz = 0.

Newton’s method solves g(z,y) = 0 and h(z,y) = O by a linear approximation. Starting from z,,y, the
equations are replaced by gx Ax + gy Ay = —g(Xn,yn) and hx Ax + hyAy = —h(xp, yn). The steps Az and
Ay go to the next point (Xp, 3,¥n41)- Each solution has a basin of attraction. Those basins are likely to be
fractals.

8 N =28ri+4nj —k;8n{r—2)+4n(h - 2)=V —8x

ij k
12 N; =2i+4j—k and Ny =2i+6j — k give v = 1 2 4 -1 |=2i+ 4k tangent to both surfaces
2 6 -1
14 The direction of N is 22y?i + 222y j—k = 8i + 4j — k. So the line through (1,2,4) has z = 1 + 8t,y = 2 + 4t,

z=4-—t.

18 df = yz dz + zz dy + zy d=.

32 %Az — Ay = % and —Az + %Ay = % give Az = Ay = —%. The new point is (—1, —1), an exact solution.
The point (é—, %) is in the gray band (upper right in Figure 13.11a) or the blue band on the front cover.

38 A famous fractal shows the three basins of attraction — see almost any book on fractals. Remarkable
property of the boundaries points between basins: they touch all three basins! Try to draw 3 regions

with this property.

13.4 Directional Derivatives and Gradients (page 495)

The partial derivatives 8f/8z and 8f/3y are directional derivatives, in special directions. They give the
slope in directions u = (1,0) and u = (0, 1), parallel to the z and y axes. From those two partial derivatives

we can quickly find the derivative in any other direction u = (cos#4,sin §):

a
directional derivative Dyf = (—f) cos  + (B_f) sin .
Az 3y
It makes sense that the slope of the surface z = f(z,y), climbing at an angle between the z direction and
y direction, should be a combination of slopes df/3z and 8f/8y. That slope formula is really a dot product

between the direction vector u and the derivative vector (called the gradient):

af ad
gradient = (é, a—i) =Vf direction = (cosf,sinf) =u directional derivative = Vf - u.

183



13.4 Directional Derivatives and Gradients (page 495)

1. Find the gradient of f(z,y) = 4z + y — 7. Find the derivative in the 45° direction, along the line y = z.

e The partial derivatives are f, = 4 and fy, = 1. So the gradient is the vector Vf = (4,1).
e Along the 45° line y = z, the direction vector is u = (cos §,sin ). This is u = (32@, Azé) The dot
product Vf -u = 439 + 1;2@ = 5@ is Dy f, the directional derivative.

2. Which direction gives the largest value of Dy f7 This is the steepest direction.

e The derivative is the dot product of Vf = (4,1) with u = (cosf,sinf). A dot product equals the
length |V f] = V42 + 12 = /17 times the length |u| = 1 times the cosine of the angle between V f
and u. To maximize the dot product and maximize that cosine, choose u in the same direction as
V f. Make u a unit vector:

u

_Vf 41 4 117
== Ve v (& = ym =V

This is the general rule: The steepest direction is parallel to the gradient Vf = (f,, fy). The steepness

(the slope) is [V f| =/ fZ + f2. This is the largest value of Dy f.

3. Find a function f{z,y) for which the steepest direction is the z direction.

and Vf-u=4

e The question is asking for %5 = 0. Then the gradient is (%‘5,0). It points in the z-direction. The

maximum slope is \/(%{;)2 + 02 which is just |%£|_

The answer is: Don’t let f depend on y. Choose f = z or f = €* or any f(z). The slope in the y-direction
1s zero! The steepest slope is in the pure z-direction. At every in-between direction the slope is a mixture
of %ﬁ and 0. The steepest slope is [%ﬂ with no zero in the mixture.

V f -u is the directional derivative along a straight line (in the direction u). What if we travel along a curve?
The value of f(z,y) changes as we travel, and calculus asks how fast it changes. This is an “instantaneous”
question, at a single point on the curved path. At each point the path direction ts the tangent direction. So
replace the fixed vector u by the tangent vector T at that point: Slope of f(z,y) going along path = Vf-T.

The tangent vector T was in Section 12.1. We are given z(t) and y(t), the position as we move along the

path. The derivative (%f—, ii—“u) is the velocity vector v. This is along the tangent direction (parallel to T}, but T

is required to be a unit vector. So divide v by its length which is the speed |v| = (%)2 + (%%)2 = ds/dt :
v o= (%, %) gives Vf-v= 5002 4 2o Thisis &
N T E = i is 1 dt _
WT - da/dt =T gives Vf -T. This is % = %.

The speed is divided out of the slope df /ds. The speed is not divided out of the rate of change df /dt. One says
how steeply you climb. The other says how fast you climb.

4. How steeply do you climb and how fast do you climb on a roller-coaster of height f(z,y) = 2z + y? You
travel around the circle £ = cos4t, y = sin 4t with velocity v = (—4sin 4¢,4 cos 4t) and speed |v| = 4.

e The gradient of f = 2z + y is Vf = (2,1). The tangent vector is T = —v—l = (—sin 4¢, cos4t).

Slope of path = Vf T = —2sin4t + cos4t Maximum slope /5.

Climbing rate = Vf.v = —8sin4t + 4cos4t Maximum rate 4v/5.

How fast you climb = (how steeply you climb) x (how fast you travel).
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Read-throughs and selected even-numbered solutions :

Dy f gives the rate of change of f(x,y) in the direction u. It can be computed from the two deriva-
tives 9f /0x and 8f /3y in the special directions (1,0) and (0,1). In terms of u;, up the formula is Dy f =
fxuy + fyug. This is a dot product of u with the vector (fx,fy), which is called the gradient. For the linear
function f = az + by, the gradient is grad f = (a,b) and the directional derivative is Dy f = (a,b) - u.

The gradient Vf = (f,, fy) is not a vector in three dimensions, it is a vector in the base plane. It
is perpendicular to the level lines. It points in the direction of steepest climb. Its magnitude |gradf| is

the steepness \/f,% +f}g. For f = z% + y® the gradient points out from the origin and the slope in that
steepest direction is |(2x, 2y)| = 2r.

The gradient of f(z,y, z) is (fx,fy,fz). This is different from the gradient on the surface F(z,y, 2z} = 0, which
is —(Fy/F,)i—(Fy/F,)j. Traveling with velocity v on a curved path, the rate of change of f is df /dt = (grad f) - v.
When the tangent direction is T, the slope of f is df /ds = (grad f) - T. In a straight direction u, df/ds is the
same as the directional derivative Dy f.
12 In one dimension the gradient of f(z) is g’;—i. The two possible directions are u = i and u = -i. The two
directional derivatives are +g§ and —%. The normal vector N is %i -J.
14 Here f = 2z above the line y = 2z and f = y below that line. The two pieces agree on the line. Then
grad f = 2i above and grad f = j below. Surprisingly f increases fastest along the line, which is the
direction u = 71——5(1 + 2j) and gives Dy f = %
28 (a) False because f + C has the same gradient as f (b) True because the line direction (1,1, —1) is also the
normal direction N (c) False because the gradient is in 2 dimensions.

80 6 =tan~ ! Y has grad 6 = (1_:(”!{/27),, H_(l!{/xz),) = g;i:,) . The unit vector in this direction is

— — z — 2423 1
T = (-———L—,;_'_—y,, ————W) Then grad § - T = T?;LW = .
34 The gradient is (2az + c)i + (2by + d)j. The figure shows ¢ = 0 and d ~ } at the origin. Then b ~ 1 from

the gradient at (0,1). Then a ~ —; from the gradient at (2,0). The function —1z% + 142 + 1y has

hyperbolas opening upwards as level curves.
44 v = (2¢,0) and T = (1,0); grad f = (y,z) so % = 2ty = 6t and % =y=23.
48 D% = (z — 1)> + (y — 2)% has 2D 42 =2(z — 1) or 32 = 251, Similarly 2D40 = 2(y — 2) and 42 = 42

==
Then |grad D| = (25%)? + (¥52)? = 1. The graph of D is a 45° cone with its vertex at (1,2).
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13.5 The Chain Rule (page 503)

Chain Rule 1 On the surface z = g(z, y) the partial derivatives of f(z) are gﬁ = %g—; and %5 = %%:—.
z = z2 + y? gives a bowl. Then f(z) = \/z = \/z2 + y? gives a sharp-pointed cone. The slope of the cone

in the z-direction is 5f df o )
8f _dfdx _ 1 yppyn B _ T
8z dz0z (22 )(22) Vz T2 + y2

Check that by directly taking the z-derivative of f(g(z,y)) = /22 + 2.

Chain Rule 2 For z = f(z,y) on the curve z = z(t) and y = y(t) the t-derivative is 22 = 2L dz 4 %5%%.

This is exactly the climbing rate from the previous section 13.4.

Chain Rule 3 For z = f(z,y) when z = z(t,u) and y = y(t, u) the t-derivative is 35 = 2L 2z 4 %%'
This combines Rule 1 and Rule 2. The outer function f has two variables z,y as in Rule 2. The inner

functions z and y have two variables as in Rule 1. So all derivatives are partial derivatives. But notice:

oz | not Oz a_a: The correct rule is % 6_1: + (—9—'-2- ?ﬁ
du 8z Ou’ dz0u Jdydu
1. A change in u produces a change in 7 = tu and y = t/u. These produce a change in z = 3z + 2y. Find
dz/3u.
dz ., 0z0z  9z9y _ —t
du ® 3zaut dydu (3)(8) + (2)(11,2 )

2. When would Rule 3 reduce to Rule 27 e  The inner functions z and y depend only on ¢, not u.

Please read the paradox on page 501. Its main point is: For partial derivatives you must know which

variable is moving and also which variable is not moving.

Read-throughs and selected even-numbered solutions :

The chain rule applies to a function of a function. The z derivative of f(g(z, y)) is 8 f/dz = (8f/3g)(3g/8x).
The y derivative is 3 f /0y = (9f/3g) (g /3y). The example f = (z+y)" has g = x +y. Because dg/3z = dg/dy
we know that 8f /3x = 8f /3y. This partial differential equation is satisfied by any function of z + y.

Along a path, the derivative of f(z(t), y(t)) is df /dt = (8f/3x)(dx/dt) +(3f/3y)(dy/dt). The derivative of
f(=(t),y(t), 2(t)) is fxx¢ + fyyg + fzz¢. If f = zy then the chain rule gives df /dt = y dx/dt +x dy/dt. That
is the same as the product rule! When z = u;¢ and y = ust the path is a straight line. The chain rule for
f(z,y) gives df /dt = fxuj + fyug. That is the directional derivative Dy f.

The chain rule for f(z(t,u),y(t,u)) is 8f/8t = (0f/dx)(8x/at) + (8f/3y)(8y/at). We don’t write df /dt
because f also depends on u. If z = rcosf# and y = rsind, the variables ¢,u change to r and 4. In this case
3f /8r = (8f/3x) cos b + (3f/3y) sin 6 and 8f/30 = (8f/3x)(—r sin §) + (df/dy)(r cos ). That connects the
derivatives in rectangular and polar coordinates. The difference between dr/3z = z/r and 8r/3z = 1/cosf

is because y is constant in the first and § is constant in the second.

With a relation like zyz = 1, the three variables are not independent. The derivatives (8f/8z), and
(8f/3z). and (8f/3z) mean that y is held constant, and z is constant, and both are constant. For
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f = 2%+ y2 + 2% with zyz = 1, we compute (3f/dz), from the chain rule 8f/dx + (3f /8y)(dy/dx). In that
rule 8z/9z = —1/x2y from the relation zyz = 1.

4 f, = #y' and f, = z_+77_1;;7f” = fy-

6 & = 2lds | O]dy ;q¢p duct rule y9X -+-x%z In terms of u and v this is % (uv) = v%% 4 u2¥
4t = az at T 3y a¢ 15 the product rule y-qv t dat dt dt”

12 (a) f, = 2re®®, f,, = 22, fpy = r2(2i)2¢%? and f,, + L= + L& = 0. Take real parts throughout to find
the same for r2 cos 20 (and imaginary parts for r%sin 26). (b) Any function f(re*’) has
fr = €9 (re®) and f,, = (¢')2f"(re*®) and fo = ire’® f'(re’?) and fag = 4%re’? f' + (ire'®)2 5"

Any f(re®) or any f(z + ty) will satisfy the polar or rectangular form of Laplace’s equation.

: 1 daf __ : : ldz _ =z dy _ _1 ty _ e ty _
16 Since Z = 5 we must find 3 = 0. The chain rule gives /G — &3 = 50 (¢') = = (2¢f) = 0.
o _z alr _ _zdr _ _zy_ _3zy
szaz_randthenayaz_ r? 3y~  rir rd

—

22 + %)% so gf = 2x—{-4=x(x2 +y2)
2x + 4x(x2 + y2) (d) y is constant for (3L),.

40(a)§£=2x(b)f=a:2+y2+

(<) %ﬂ{— + %ng = 2z + 22(2z)

13.6 Maxima, Minima, and Saddle Points (page 512)

A one-variable function f(z) reaches its maximum and minimum at three types of critical points:
. . df . . .
1. Stationary points where T 0 2. Rough points 3. Endpoints (possibly at co or — 00).
z

A two-variable function f(z,y) has the same three possible types of critical points:

) 3 3 . .
1. Stationary points where a—f =0 and éi =0 2. Rough points 3. Boundary points.
T )
The stationary points come first. Notice that they involve two equations (both partial derivatives are zero).
There are two unknowns (the coordinates z and y of the stationary point). The tangent is horizontal as usual,
but it is a tangent plane to the surface z = f(z,y).
It is harder to solve two equations than one. And the second derivative test (which was previously f” > 0

for a minimum and f” < 0 for a maximum) now involves all three derivatives f.z, fyy, and foy = fyz:

Minimum , == > 0 Mazimum |, 2= <0 Saddle foofyy < (fay)?

feafuy fay)? foafyy > (fay)?

When fzz fyy = (fzy)? the test gives no answer. This is like f" = 0 for a one-variable function f(z).

Our two-variable case really has a 2 by 2 matrix of second derivatives. Its determinant is the critical quantity
foxfyy — (fzy)?. This pattern continues on to f(z,y,z) or f(z,y,2,t). Those have 3 by 3 and 4 by 4 matrices
of second derivatives and we check 3 or 4 determinants. In linear algebra, a positive definite second-derivative

matriz indicates that the stationary point is a minimum.

1. (13.6.26) Find the stationary points of f(z,y) = zy— ;z* — Jy* and decide between min, max, and saddle.
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e The partial derivatives are f, = y — z°> and fy=2z~— y>. Set both derivatives to zero:
y=2z° and z = ¢° lead to y = y°. This gives y =0, 1, or — 1. Then z = ¢ gives z =0, 1, or —1.
The stationary points are (0,0) and (1,1) and (—1, —1). The second derivatives are f,, = —3z2 and
fyy = —3y? and f,y = L:

(0,0) is a saddle point because f.; f,, = (0)(0) is less than (1)?
(1,1) and (~1, —1) are maxima because fzz fyy = (—3)(—3) is greater than (1)? and f,, = —3.

3 is our example of the two — variable Newton method in Section 11.3. This is

4

Solvingz=y® andy ==z
really important in practice. For this function zy — ia: - %y‘ we found a saddle point and two maximum

points. The mintmum is at infinity. This counts as a “boundary point”.

2. (This is Problem 13.6.56) Show that a solution to Laplace’s equation f;; + fyy = O has no maximum or

minimum stationary points. So where are the maximum and minimum of f(z,y)?

e A maximum requires fy; < 0. It also requires f,, < 0. We didn’t say that, but it follows from the
requirement fr; fyy > (fzy)?. The left side has to be positive, so f,; and fy, must have the same sign.

If fzz + fyy = O this can’t happen; stationary points must be saddle points (or f = constant). A maz

or min is impossible. Those must occur at rough points or boundary points.

Example A f(z,y) = In(z® + y?) has a minimum of —oo at (z,y) = (0,0), since In0 = —oco. This is a

rough point because f, = F% is unbounded. You could check Laplace’s equation two ways. One is to

compute fzz = ;35,7 — (122:!,: )2. Also fyy = ﬁ — (z—;‘}’?—)z Add to get zero. The other way is to write
f = Inr? = 2Inr in polar coordinates. Then f, = % and f,, = ~%. Substitute into the polar Laplace

equation to get fr, + %fr + ;lz—fea = 0.

Example B f(z,y) = zy satisfies Laplace’s equation because f,; + fyy, = 0+ 0. The stationary point
at the origin cannot be a max or min. It is a typical and famous saddle point: We find f;y = 1 and then

fzz fuy = (0)(0) < (1)%. There are no rough points. The min and max must be at boundary points.

Note: Possibly there are no restrictions on z and y. The boundary is at infinity. Then the max and min
occur out at infinity. Maximum when z and y go to +o0o. Minimum when z — +o00 and y — —oo, because

then zy — —oco. (Also max when z and y go to —oco. Also min when z — —o0 and y — +00).

Suppose z and y are restricted to stay in the square 1 < z < 2 and 1 < y < 2. Then the max and min
of £y occur on the boundary of the square. Maximum at z = y = 2. Minimum at z = y = 1. In a way

those are “rough points of the boundary,” because they are sharp corners.

Suppose z and y are restricted to stay in the unit circle £ = cost and y = sin¢. The maximum of zy is on

the boundary (where zy = costsint). The circle has no rough points. The maximum is at the 45° angle

r

Tsin g = % To emphasize again: This maximum occurred

t = % (also at t = 2). At those points zy = cos

on the boundary of the circle.
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Finally we call attention to the Taylor Series for a function f(z,y). The text chose (0,0) as basepoint. The
whole idea is to match each derivative (3";)”(-8%)"‘ f(z,y) at the basepoint by one term in the Taylor series.
Since %’:—g has derivative equal to 1, multiply this standard power by the required derivative to find the correct
term in the Taylor Series.

When the basepoint moves to (2o, yo), change from z”y™ to (z — zo)"(y — yo)™. Divide by the same n!m!
3. Find the Taylor series of f(z,y) = ¢*~¥ with (0,0) as the basepoint. Notice f(z,y) = ¢* times e~ ?.

e Method 1: Multiply the series for e and e™¥ to get e* ¥ = (1+z+ gz° +---)(1-y+ Zy* — ) =
1+z-y+iz2—zy+.-

e Method 2: Substitute z — y directly into the series to get e*™ ¥ =1+ (z—y) + Z(z—y)% + -

e Method 3: (general method): Find all the derivatives of f(z,y) = e*~¥ at the basepoint (0,0):
f(0,0)=1 f.(0,0)=1 f,(0, 0)=-1 fz2(0, 0)=1 fz(0, 0)=-1 fu,(0,0)=1

Then the Taylor Series is gk + F52 + G¥ + 5575 + %Y + i ¥° + - - - Remember that 0! = 1.

Read-throughs and selected even-numbered solutions :

A minimum occurs at a stationary point (where f, = f, = 0) or a rough point (no derivative) or a
boundary point. Since f = 2% — zy + 2y has f, = 2x — y and f, = 2 — X, the stationary point is z = 2,y = 4.

This is not 2 minimum, because f decreases when y = 2z increases.

The minimum of d? = (z— z;)?+ (y — y1)? occurs at the rough point (xy,yy). The graph of d is a cone and
grad d is a unit vector that points out from (xj,yy). The graph of f = |zy| touches bottom along the lines x
= 0 and y = 0. Those are “rough lines” because the derivative does not exist. The maximum of d and f

must occur on the boundary of the allowed region because it doesn’t occur inside.

When the boundary curve is z = z(t), y = y(t), the derivative of f(z,y) along the boundary is fxx¢ + fyy¢
(chain rule). If f = 22 + 2y® and the boundary is z = cost,y = sint, then df /dt = 2 8in t cos t. It is zero at
the points t = 0,7/2,7,87/2. The maximum is at (0,+1) and the minimum is at (+1,0). Inside the circle f

has an absolute minimum at (0,0).

To separate maximum from minimum from saddle point, compute the second derivatives at a stationary
point. The tests for a minimum are fxx > 0 and fxxfyy > f,%y. The tests for a maximum are fyx < 0 and
Pexfyy > f,%y. In case ac < b? or foafyy < f,%y, we have a saddle point. At all points these tests decide
between concave up and concave down and “indefinite”. For f = 8z — 6zy + y?, the origin is a saddle point.
The signs of f at (1,0) and (1,3) are + and —. A

The Taylor series for f(z,y) begins with the terms £(0, 0) + xfx + yfy + %—xzfxx + xyfxy +%y2fyy. The
coefficient of z*y™ is GB+1f /3xP 9y™(0,0) divided by n!'m! To find a stationary point numerically, use
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Newton’s method or steepest descent.

18 Volume = zyz = zy(1l — 3z — 2y) = zy — 32% — 2zy*;V, =y — 6z —2y? and V, = z — 4zy, at (0,3,0) and
(1,0,0) and (0,0,1) the volume is V = 0 (minimum); at {55, 32, 21) the volume is V = m (mazimum)

22 %ﬁ = 2z + 2 and g-';— = 2y + 4. (a) Stationary point (—1, —2) yields fmin = —5. (b) On the boundary y = 0
the minimum of 22 + 2z is —1 at (—1,0) (c) On the boundary z > 0,y > 0 the minimum is O at (0,0).

_ - _ — )2 — — 2!.1: 1) _ . 2
1 ’ ) -
28d, =z,dy=ds =/(1-2)2+ 1, L(z+2/(1 - 2)? =1+ —— =0 when (1-2)2+1=4(z—1)

orl—z= % orz=1- —1—3 From that point to (1,1) the line goes up 1 and across ﬁ’ a 60° angle
with the horizontal that confirms three 120° angles.

34 From the point C = (0, —/3) the lines to (—1,0) and (1,0) make a 60° angle. C is the center of the circle
22 + (y — v/3)? = 4 through those two points. From any point on that circle, the lines to (—1,0) and (1,0)
make an angle of 2 x 60° = 120°. Theorem from geometry: angle from circle = 2 X angle from center.

44 ﬁ%;—m-(zey) = ze¥ for n = 0,eY for n = 1, zero for n > 1. Taylor series ze¥ =x + xy + él'xy2 + %xy3 + -

50 f(x+h,y+k)zf(:c,y)+h%£(z, )+kﬂ( )+h2 a—zl,:(x y)+hkaxay(x y) + K ———Z( ,Y)

58 A house costs p, a yacht costs ¢ : & f(z, =EE) = oL —L( B) =0 gives — 9L /oL =
13.7 Constraints and Lagrange Multipliers (page 519)

In reality, a constraint g(z,y) = k is very common. The point (z,y) is restricted to this curve, when we are
minimizing or maximizing f(z,y). (Not to the inside of the curve, but right on the curve.) It is like looking for
a maximum at a boundary point. The great difficulty is that we lose the equations %ﬁ =0 and gf— = 0.

v

The great success of Lagrange multipliers is to bring back the usual equations “z derivative equals zero”

and “y derivative equals zero.” But these are not f; and f,. We must account for the constraint g(z,y) = k.

The idea that works is to subtract an unknown multiple A times g(z, y) — k. Now set derivatives to zero:

Bﬁ:;{f(xvy)—’\(g(z:y)—k)l = 0 or %‘5:)‘%
%{f(z,y)—)\(g(z,y)—lc)] = 0 or 2—5:,\%%_

The text explains the reasoning that leads to these equations. Here we solve them for z,y, and A. That locates
the constrained maximum or minimum.
1. (This is Problem 13.7.6) Maximize f(z,y) = z +y subject to g(z,y) = z'/%y?/%> = 1. That is a special case
of the Cobb-Douglas constraint: z¢y'~¢ = k.

o fa=Agris 1 =A(32 =2/3y2/%) and f, = Agy is 1 = A(%zl/sy“l/s). The constraint is 1 = z1/3y2/3,

Square the second equation and multiply by the first to get 1=(22)2(3) or (3)> =1 or 3 =471/ Then
divide the constraint by the ﬁrsl: equation to get 1 = :c or z = 5 = 471/3_ Divide the constraint by the

2

second equation to get 1 = 2A yory = 3’\ =2-471/3, The constramed maximum is f = z+y = 3-471/3,

2. (This is Problem 13.7.22 and also Problem 13.7.8 with a twist. It gives the shortest distance to a plane.)
Minimize f(z,y,z) = z2 + y? + 2% with the constraint g(z,y, z) = az + by + cz = d.
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o Now we have three variables z,y, z (also A for the constraint). The method is the same:
fe=Afz 182z = Aa fy = Agy is 2y = Ab f: = Ags i8 2z = Aec.

Put z = 1)a and y = Ab and z = })c in the constraint to get 3A(a? + b2 + c?) = d. That yields A.

The constrained minimum is 22 + y? + 22 = (3)?(a% + b2 + ¢2) = m';:—.,.,g-

3 4b34c3°

. . d] . . d
The shortest distance to the plane is the square root Vabite This agrees with the formula iHT from
Section 11.2, where the normal vector to the plane was N=ai+bj+c k.

The text explains how to handle two constraints g(z,y,2) = k; and h(z,y, 2) = ko. There are two Lagrange
multipliers A; and A;. The text also explains inequality constraints g(z,y) < k. The point (z, y) is either on the
boundary where g(z,y) = k or it is inside where g(z, y) < k. We are back to our old problem:

The minimum of f(z,y) may be at a boundary point. Using Lagrange multipliers we find A > 0.

The minimum of f(z,y) may be at a stationary point. Using Lagrange multipliers we find A = 0.

The second case has an inside minimum. The equation f; = Ag, becomes f; = 0. Similarly f, = 0. Lagrange is
giving us one unified way to handle stationary points (inside) and boundary points. Rough points are handled
separately. Problems 15-18 develop part of the theory behind A. I am most proud of including what calculus
authors seldom attempt — the meaning of A. It is the derivative of fy,i, with respect to k. Thus A measures the
sensitivity of the answer to a change in the constraint.

This section is not easy but it is really important. Remember it when you need it.
Read-throughs and selected even-numbered solutions :

A restriction g(z,y) = k is called a constraint. The minimizing equations for f(z,y) subject to g = k are
of /dx = A\3g/dx,df /3y = A3g/dy, and g = k. The number A is the Lagrange multiplier. Geometrically, grad
f is parallel to grad g at the minimum. That is because the level curve f = f,,i, is tangent to the constraint
curve g = k. The number X turns out to be the derivative of fy;, with respect to k. The Lagrange function is
L = f(x,y) — A(g(x,y) — k) and the three equations for z,y, A are 9L/9x = 0 and dL/3y = 0 and dL/3) = 0.

To minimize f = z2 — y subject to g = z — y = 0, the three equations for z,y,\ are 2x = A, —1 = —},
x —y = 0. The solution is x = —zl-,y = %,/\ = 1. In this example the curve f(z,y) = fmin = —% is a parabola
which is tangent to the line g = 0 at (Zmin, Ymin)-

With two constraints g(z,y,z) = ki and h(z,y,z) = k; there are two multipliers )y and 5.
The five unknowns are x,y,z,Ay, and Ay. The five equations are fx = Ajgx + Aghx,fy = A1gy + Aghx,
fz = A1gz + Aghz,g = 0, and h = 0. The level surface f = fiin is tangent to the curve where g = k; and
h = ko. Then grad f is perpendicular to this curve, and so are grad g and grad h. With nine variables and
six constraints, there will be six multipliers and eventually 15 equations. If a constraint is an inequality g < k,
then its multiplier must satisfy A < 0 at a minimum.

2 22 + y? = 1 and 2zy = A(2z) and z2 = A(2y) yield 202 + A2 = 1. Then A = -% gives Tyyax = ﬂ:lsé,

Ymax = @,fmax = l\gé Also A = “% gives fi,in = _'ZJQE-
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18 f = 2z + y = 1001 at the point z = 1000,y = —999. The Lagrange equations are 2= A and 1 = A
(no solution). Linear functions with linear constraints generally have no maximum.

20 (a)yz=M\zz=XN\zy=Xandz+y+tz=kgivez=y=2z= '3—° and)\=% (b) Vmax=(]§()3
80 Vinax/3k = k2 /9 (which is A!) (c) Approximate AV = X times Ak = 198 (111 — 108) = 3888 in®.
Exact AV = (112)3 — (108)3 = 3677 in®.

26 Reasoning: By increasing k, more points satisfy the constraints. More points are available to minimize f.
Therefore fimin goes down.

28 A =0 when h > k (not h = k) at the minimum. Reasoning: An increase in k leaves the same minimum.
Therefore fiin is unchanged. Therefore A = dfpi,/dk is zero.

13 Chapter Review Problems

Graph Problems
G1 Draw the level curves of the function f(z,y) = y — z. Describe the surface z =y — z.

G2 Draw the level curves of f(z,y) = "z"_'—;. Label the curve through (3,3). Which points (z,y) are not on
any level curve? The surface has an infinite crack like an asymptote.

Computing Problems

C1 Set up Newton’s method to give two equations for Az and Ay when the original equations are y = z°

and z = y°. Start from various points (zo, yo) to see which solutions Newton converges to. Compare the
basins of attraction to Figure 13.3 and the front cover of this Guide.

Review Problems

R1 For f(z,y) = z"y™ find the partial derivatives f;, fy, fzz, fay, fyz, and fyy.

R2 If 2(z,y) is defined implicitly by F(z,y,z) = zy — yz + zz = 0, find 3z/3z and 3z/dy.
R3 Suppose z is a function of z/y. From z = f(z/y), show that z32 + y%:-, = 0.

R4 Write down a formula for the linear approximation to z = f(z,y) around the origin. If f(z,y) =9 + zy
show that the linear approximation at (1,1) gives f =~ 11 while the correct value is 10.

R5 Find the gradient vector for the function f(z,y) = zy?. How is the direction of the gradient at the point
z =1,y = 2 related to the level curve zy? = 47

R6 Find the gradient vector in three dimensions for the function F(z,y,2) = z — z%y?. How is the direction
of the gradient related to the surface z = z%y2?

R7 Give a chain rule for df /dt when f = f(z,y,2) and z,y, z are all functions of ¢.
RS Find the maximum value of f(z,y) = z + 2y — 22 + zy — 24°.
RO The minimum of z2 + y? occurs on the boundary of the region R (not inside) for which regions?

R10 To minimize z2 + y? on the line z + 3y = k, introduce a Lagrange multiplier A and solve the three
equations for z,y, A. Check that the derivative dfmin/dk equals A.
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Drill Problems

D1 If z = In\/22 + y2 show that zg—: + yg—; =1 and 25 + zyy = 0 except at

D2 The equation of the tangent plane to z = z2 + y°® at (1,1,2) is — .

D3 The normal vector to the surface zyz? =1 at (1,1,1)isN=___.

D4 The linear approximation to z2 + y? near the basepoint (1,2) is — .

D5 Find the directional derivative of f(z,y) = ze¥ at the point (2,2) in the 45° direction y = z. What is u?
Compare with the ordinary derivative of f(z) = ze® at z = 2.

Dé What is the steepest slope on the plane z = z + 2y? Which direction is steepest?

D7 From the chain rule for f(z,y) = zy*® with £ = u+ v and y = uv compute %5 at u = 2,v = 3. Check by
taking the derivative of (u + v)(uv)2.

D8 What equations do you solve to find stationary points of f(z,y)? What is the tangent plane at those
points? How do you know from fz;, fzy, and f,, whether you have a saddle point?

D9 Find two functions f(z,y) that have 8f/3z = 3f/dy at all points. Which is the steepest direction on
the surface 2 = f(z,y)? Which is the level direction?

_ e . _ | 8z/dr 8z/d6
D10 If z=rcosf and y = rsinf compute the determinant J = dy/dr 3y)30 ‘
D11  Ifr=/z2 + 32 and § = tan"! ¥ compute the determinant J* = i

dr/dz dr[dy | _
30/0z 90/dy |~
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