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Long Waves and
Ocean Tides

Myrl C. Hendershott

10.1 Introduction

The main purpose of this chapter is to summarize what
was generally known to oceanographers about long
waves and ocean tides around 1940, and then to indi-
cate how the subject has developed since then, with
particular emphasis upon those aspects that have had
significance for oceanography beyond their importance
in understanding tides themselves. I have begun with
a description of astronomical and radiational tide-gen-
erating potentials (section 10.2), but say no more than
is necessary to make this chapter self-contained. Cart-
wright (1977) summarizes and documents recent de-
velopments, and I have followed his discussion closely.

The fundamental dynamic equations governing tides
and long waves, Laplace's tidal equations (LTE), re-
mained unchanged and unchallenged from Laplace's
formulation of them in 1776 up to the early twentieth
century. By 1940 they had been extended to allow for
density stratification (in the absence of bottom relief)
and criticized for their exclusion of half of the Coriolis
forces. Without bottom relief this exclusion has re-
cently been shown to be a good approximation; the
demonstration unexpectedly requires the strong strat-
ification of the ocean. Bottom relief appears able to
make long waves in stratified oceans very different
from their flat-bottom counterparts (section 10.4); a
definitive discussion has not yet been provided. Finally,
LTE have had to be extended to allow for the gravita-
tional self-attraction of the oceans and for effects due
to the tidal yielding of the solid earth. I review these
matters in section 10.3.

Laplace's study of the free oscillations of a global
ocean governed by LTE was the first study of oceanic
long waves. Subsequent nineteenth- and twentieth-
century explorations of the many free waves allowed
by these equations, extended to include stratification,
have evolved into an indispensible part of geophysical
fluid dynamics. By 1940, most of the flat-bottom so-
lutions now known had, at least in principle, been
constructed. But Rossby's rediscovery and physical in-
terpretation, in 1939, of Hough's oscillations of the
second class began the modem period of studying so-
lutions of the long-wave equations by inspired or sys-
tematic approximation and of seeking to relate the
results to nontidal as well as tidal motions. Since then,
flat-bottom barotropic and baroclinic solutions of LTE
have been obtained in mid-latitude and in equatorial
approximation, and Laplace's original global problem
has been completely solved. The effects of bottom re-
lief on barotropic motion are well understood. Signifi-
cant progress has been made in understanding the ef-
fects of bottom relief on baroclinic motions. I have
attempted to review all those developments in a self-
contained manner in section 10.4. In order to treat this
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vast subject coherently, I have had to impose my own
view of its development upon the discussion. I have
cited observations when they appear to illustrate some
property of the less familiar solutions, but the central
theme is a description of the properties of theoretically
possible waves of long period (greater than the buoy-
ancy period) and, consequently, of length greater than
the ocean's mean depth.

Although the study of ocean surface tides was the
original study of oceanic response to time-dependent
forcing, tidal studies have largely proceeded in isolation
from modem developments in oceanography on ac-
count of the strength of the tide-generating forces, their
well-defined discrete frequencies, and the proximity of
these to the angular frequency of the earth's rotation.
A proper historical discussion of the subject, although
of great intellectual interest, is beyond the scope of
this chapter. To my mind the elements of such a dis-
cussion, probably reasonably complete through the
first decade of this century, are given in Darwin's 1911
Encyclopedia Britannica article "Tides." Thereafter,
with a few notable exceptions, real progress had to
await modem computational techniques both for solv-
ing LTE and for making more complete use of tide
gauge observations. Cartwright (1977) has recently re-
viewed the entire subject, and therefore I have given a
discussion in section 1].0.5 that, although self-con-
tained, emphasizes primarily changes of motivation
and viewpoint in tidal studies rather than recapitulates
Cartwright's or other recent reviews.

This discussion of tides as long waves continuously
forced by lunar and solar gravitation logically could be
followed by a discussion of tsunamis impulsively
forced by submarine earthquakes. But lack of both
space and time has forced omission of this topic.

Internal tides were first reported at the beginning of
this century. By 1940 a theoretical framework for their
discussion had been supplied by the extension of LTE
to include stratification, and their generation was
(probably properly) ascribed to scattering of barotropic
tidal energy from bottom relief. The important devel-
opments since then are recognition of the intermittent
narrow-band nature of internal tides (as opposed to the
near-line spectrum of surface tides) plus the beginnings
of a statistically reliable characterization of the inter-
nal tidal spectrum and its variation in space and time.
The subject has recently been reviewed by Wunsch
(1975). Motivation for studying internal tides has
shifted from the need for an adequate description of
them through exploration of their role in global tidal
dissipation (now believed to be under 10%) to specu-
lation about their importance as energy sources for
oceanic mixing. In section 10.6 I have summarized
modem observational studies and their implications
for tidal mixing of the oceans.

Many features of the presentday view of ocean cir-
culation have some precedent in tidal and long-wave
studies, although often unacknowledged and appar-
ently not always recognized. The question of which
parts of the study of tides have in fact influenced the
subsequent development of studies of ocean circulation
is a question for the history of science. In some cases,
developments in the study of ocean circulation subse-
quently have been applied to ocean tides. In section
10.7 I have pointed out some of the connections of
which I am aware.

10.2 Astronomical Tide-Generating Forces

Although correlations between ocean tides and the po-
sition and phase of the moon have been recognized and
utilized since ancient times, the astronomical tide-gen-
erating force (ATGF) was first explained by Newton in
the Principia in 1687. Viewed in an accelerated coor-
dinate frame that moves with the center of the earth
but that does not rotate with respect to the fixed stars,
the lunar (solar) ATGF at any point on the earth's
surface is the difference between lunar (solar) gravita-
tional attraction at that point and at the earth's center.
The daily rotation of the earth about its axis carries a
terrestrial observer successively through the longitude
of the sublunar or subsolar point [at which the lunar
(solar) ATGF is toward the moon (sun)] and then half
a day later through the longitude of the antipodal point
[at which the ATGF is away from the moon (sun)]. In
Newton's words, "It appears that the waters of the sea
ought twice to rise and twice to fall every day, as well
lunar or solar" [Newton, 1687, proposition 24, theorem
19].

The ATGF is thus predominantly semidiurnal with
respect to both the solar and the lunar day. But it is
not entirely so. Because the tide-generating bodies are
not always in the earth's equatorial plane, the terres-
trial observer [who does not change latitude while
being carried through the longitude of the sublunar
(solar) point or its antipode] sees a difference in ampli-
tude between the successive semidiumal maxima of
the ATGF at his location. This difference or "daily
inequality" means that the ATGF must be thought of
as having diurnal as well as semidiurnal time variation.

Longer-period variations are associated with period-
icities in the orbital motion of earth and moon. The
astronomical variables displaying these long-period
variations appear nonlinearly in the ATGF. The long-
period orbital variations thus interact nonlinearly both
with themselves and with the short-period diurnal and
semidiurnal variation of the ATGF to make the local
ATGF a sum of three narrow-band processes centered
about 0, 1, and 2 cycles per day (cpd), each process
being a sum of motions harmonic at multiples 0,1,2 of
the frequencies corresponding to a lunar or a solar day
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plus sums of multiples of the frequencies of long-period
orbital variations.

A complete derivation of the ATGF is beyond the
scope of this discussion. Cartwright (1977) reviews the
subject and supplies references documenting its mod-
ern development. For a discussion that concentrates
upon ocean dynamics (but not necessarily for a prac-
tical tide prediction), the most convenient representa-
tion of the ATGF is as a harmonic decomposition of
the tide-generating potential whose spatial gradient is
the ATGF. Because only the horizontal components of
the ATGF are of dynamic importance, it is convenient
to represent the tide-generating potential by its hori-
zontal and time variation U over some near-sea-level
equipotential (the geoid) of the gravitational potential
due to the earth's shape, internal mass distribution,
and rotation. To derive the dynamically significant part
of the ATGF it suffices to assume this surface spheri-
cal. U/g (where g is the local gravitational constant,
unchanging over the geoid) has the units of sea-surface
elevation and is called the equilibrium tide . Its prin-
ciple term is (Cartwright, 1977)

,OEt) = U(,O,t)g

= Y (Amcosm4 + B sinm)Pz', (10.1)
m=0.12

in which 4A,O are longitude and latitude, the P-() are
associated Legendre functions

P0 = (3 cos2 - 1),

P = 3 sin6 cos ,

the N}'1 are sets of small integers (effectively the Dood-
son numbers); and the S,(t) are secular arguments that
increase almost linearly in time with the associated
periodicity of a lunar day, a sidereal month, a tropical
year, 8.847 yr (period of lunar perigee), 18.61 yr (period
of lunar node), 2.1 x 104 yr (period of perihelion), re-
spectively.

The frequencies of the arguments XNi' Sj(t) fall into
the three "species"-long period, diurnal, and semidi-
urnal-which are centered, respectively, about 0, 1, and
2 cpd (N1 = 0,1,2). Each species is split into "groups"
separated by about 1 cycle per month, groups are split
into "constituents" separated by one cyle per year, etc.
Table 10.1 lists selected constituents. In the following
discussion they are referred to by their Darwin symbol
(see table 10.1).

An important development in modern tidal theory
has been the recognition that the ATGF is not the only
important tide-generating force. Relative to the ampli-
tudes and phases of corresponding constituents of the
equilibrium tide, solar semidiurnal, diurnal, and an-
nual ocean tides usually have amplitudes and phases
quite different from the amplitudes and phases of other
nearby constituents. Munk and Cartwright (1966) at-
tributed these anomalies in a general way to solar heat-
ing and included them in a generalized equilibrium
tide by defining an ad hoc radiational potential (Cart-
wright, 1977)

UR(+, ,t) = { S(/1) cosa,
0,(10.2)

P2 = 3 sin 2 0

of colatitude 8 = (r/2) - 0, and A2m, B 2 are functions of
time having the form

A (t) = EXMics [ N"Si(tJ)]. (10.3)

The MI are amplitudes obtained from Fourier analysis
of the astronomically derived time series U(,0O,t)/g;

0 < a < r/2:

7r/2 < a < r:
(10.4)

which is zero at night, which varies as the cosine of
the sun's zenith angle a during the day, and which is
proportional to the solar constant S and the sun's par-
allax 6 (mean f). Cartwright (1977) suggests that for the
oceanic S2 (principal solar) tide, whose anomalous por-
tion is about 17% of the gravitational tide (Zetler,
1971), the dominant nongravitational driving is by the
atmospheric S2 tide. Without entering further into the
discussion, I want to point out that the global form of

Table 10.1 Charactenstlcs of Selected Constituents of the Equilibrium Tide

Period
Darwin (solar days Amplitude M Spatial
symbol N1, N 2, N3, N 4 or hours) (m) variation

S 0 0 2 0 182.621 d 0.02936
Mm 0 1 0 -1 27.55 d 0.03227 ½(3 cos2 - 1)
M, 0 2 0 0 13.661 d 0.0630
0, 1 -1 0 0 25.82 h 0.06752
P, 1 1 -2 0 24.07 h 0.03142 3sin0cos0 x sin(wt + k)
Kl 1 1 0 0 23.93 h 0.09497
N 2 2 -1 0 1 12.66 h 0.01558
M2 2 0 0 0 12.42 h 0.08136 3sin28 x cos(w2t + 20)
S2 2 2 -2 0 12.00 h 0.03785
K 2 2 2 0 0 11.97 h 0.01030
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the atmospheric S2 tide is well known (Chapman and
Lindzen, 1970), so that the same numerical programs
that have been used to solve for global gravitationally
driven ocean tides could easily be extended to allow
for atmospheric-pressure driving of the oceanic S2 tide.

Ocean gravitational self-attraction and tidal solid-
earth deformation are quantitatively even more impor-
tant in formulating the total tide-generating force than
are thermal and atmospheric effects. They are dis-
cussed in the following section, since they bring about
a change in the form of the dynamic equations govern-
ing ocean tides.

10.3 Laplace's Tidal Equations (LTE) and the Long-
Wave Equations

Laplace (1775, 1776; Lamb, 1932, §213-221) cast the
dynamic theory of tides essentially in its modem form.
His tidal equations (LTE) are usually formally obtained
from the continuum equations of momentum and mass
conservation (written in rotating coordinates for a fluid
shell surrounding a nearly spherical planet and having
a gravitationally stabilized free surface) by assuming
(Miles, 1974a)

(1) a perfect homogeneous fluid,
(2) small disturbances relative to a state of uniform
rotation,
(3) a spherical earth,
(4) a geocentric gravitational field uniform horizon-
tally and in time,
(5) a rigid ocean bottom,
(6) a shallow ocean in which both the Coriolis accel-
eration associated with the horizontal component of
the earth's rotation and the vertical component of the
particle acceleration are neglected.

The resulting equations are

0- - 2f sin v = --h( ~ - r/g)/a cos0, (10.5a)

-t + 2sinOu = -- ( - /g)/a, (10.5b)

+ 1 (u D) + (vD cos)] = 0. (10.5c)It a cos r0 ce

In these, (, ) are longitude and latitude with corre-
sponding velocity components (u, v), the ocean sur-
face elevation, F the tide-generating potential, D(0, )
the variable depth of the ocean, a the earth's spherical
radius, g the constant gravitational attraction at the
earth's surface, and 12 the earth's angular rate of rota-
tion.

Two modern developments deserve discussion. They
are a quanitative formulation and study of the mathe-
matical limit process implicit in assumptions (1)
through (6), and the realization that assumptions (4)

and (5) are quantitatively inadequate for a dynamic
discussion of ocean tides.

It has evidently been recognized since the work of
Bjerknes, Bjerknes, Solberg, and Bergeron (1933) that
assumption (6) (especially the neglect of Coriolis forces
due to the horizontal component of the earth's rota-
tion) amounts to more than a minor perturbation of
the spectrum of free oscillations that may occur in a
thin homogeneous ocean. Thus Stern (1963) and Israeli
(1972) found axisymmetric equatorially trapped normal
modes of a rotating spherical shell of homogeneous
fluid that are extinguished by the hydrostatic approx-
imation. Indeed, Stewartson and Rickard (1969) point
out that the limiting case of a vanishingly thin ho-
mogeneous ocean is a nonuniform limit: the solutions
obtained by solving the equations and then taking the
limit may be very different from those obtained by first
taking the limit and then solving the resulting approx-
imate (LTE) equations. Quite remarkably, it is the rein-
statement of realistically large stratification, i.e., the
relaxation of assumption (1), that saves LTE as an ap-
proximate set of equations whose solutions are uni-
formly valid approximations to some of the solutions
of the full equations when the ocean is very thin.

The parodoxical importance of stratification for the
validity of the ostensibly unstratified LTE appears to
have been recognized by Proudman (1948) and by
Bretherton (1964). Phillips (1968) pointed out its im-
portance at the conclusion of a correspondence with
Veronis (1968b) concerning the effects of the "tradi-
tional" approximation (Eckart, 1960; N. A. Phillips,
1966b), i.e., the omission of the Coriolis terms
2t cosOw and -2flcosOu, in (10.6)-(10.8) below. But
it was first explicitly incorporated into the limit proc-
ess producing LTE by Miles (1974a) who addressed all
of assumptions (1) through (6) by defining appropriate
small parameters and examining the properties of ex-
pansions in them. He found that the simplest set of
uniformly valid equations for what I regard as long
waves in this review are

-- 21 sin Ov + 2 cos Ow = p 1
at a p 0alcos0 '

v + 2 sin Ou - p I
at O0 poa

Ou 0 2p 1N2w - 21 cos 0A- ip at az at p0 '

au a(v cos ) aw- + + a cos - = 0,
'go a6 az

with boundary conditions

w =0 at z = -D,

(for uniform depth D),

(10.6a)

(10.6b)

(10.6c)

(10.6d)

(10.7)
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p = - 0 g 0 at z = 0. (10.8)

In these, z is the upward local vertical with associated
velocity component w, p the deviation of the pressure
from a resting hydrostatic state characterized by the
stable density distribution p,(z), p a constant charac-
terizing the mean density of the fluid (the Boussinesq
approximation has been made in its introduction); the
buoyancy frequency

/g Opo g:2\ 121

N{z = ( Po Oz C2) .9)

is the only term in which allowance for compressi-
bility ({c is the local sound speed) is important in the
ocean.

Miles (1974a) further found that when N2(z) >> 42,
free solutions of LTE for a uniform-depth (D) ocean
covering the globe also solve (10.6)-(10.8) with an error
which is of order la/2f1)(412a/g) << 1, where a is the
frequency of oscillation of the free solutions. LTE sur-
face elevations are consequently in error by order
(D/a)(DN 2 /g)-314 , while LTE velocities u,v may be in
error by (D/a)(D N2 /g)- 4. Miles (1974a) obtained this
result by taking the (necessarily barotropic) solutions
of LTE as the first term of an expansion of the solutions
of (10.6)-(10.8) in the parameter (a/21f)(4112a/g), which
turns out to characterize the relative importance of
terms neglected and terms retained in making assump-
tion (6). The next term in the expansion consists of
internal wave modes (see section 10.4.3). Because their
free surface displacements are very small relative to
internal displacements, the overall free surface dis-
placement remains as in LTE although in the interior
of the ocean, internal wave displacements and currents
may well dominate the motion.

The analysis is inconclusive at frequencies or depths
at which the terms assumed to be correction pertur-
bations are resonant. Finding expressions for all the
free oscillations allowed by Miles's simplest uniformly
valid system (10.6)-(10.8) involves as yet unresolved
mathematical difficulties associated with the fact that
these equations are hyperbolic over part of the spatial
domain when the motion is harmonic in time (Miles,
1974a).

Application of this analysis to ocean tides is further
circumscribed by its necessary restriction to a global
ocean of constant depth. I speculate that if oceanic
internal modes are sufficiently inefficient as energy
transporters that they cannot greatly alter the energet-
ics of the barotropic solution unless their amplitudes
are resonantly increased beyond observed levels (sec-
tion 10.6), and if they are sufficiently dissipative that
they effectively never are resonant, then an extension
of this analysis to realistic basins and relief would
probably confirm LTE as adequate governors of the
surface elevation. The ideas, necessary for such an

extension, that is, how variable relief and stratification
influence barotropic and baroclinic modes, are begin-
ning to be developed (see section 10.4.7).

Miles (1974a) discusses assumptions (3)-(5) with ex-
plicit omission of ocean gravitational self-attraction
and solid-earth deformation. Self-attraction was in-
cluded in Hough's (1897, 1898; Lamb, 1932, §222-223)
global solutions of LTE. Thomson (1863) evidently first
pointed out the necessity of allowing for solid-earth
deformation. Both are quantitatively important. The
latter manifests itself in a geocentric solid-earth tide 8
plus various perturbations of the total tide-generating
potential F. Horizontal pressure gradients in LTE (10.5)
are associated with gradients of the geocentric ocean
tide , but it is the observed ocean tide

(10.10)

that must appear in the continuity equation of (10.5c).
All these effects are most easily discussed (although

not optimally computed) when the astronomical po-
tential U, the observed ocean tide 50, the solid earth
tide 8, and the total tide-generating potential r are all
decomposed into spherical harmonic components U,
0n, ,, and Fr. The Love numbers k,, h,, ki, h, which

carry with them information about the radial structure
of the solid earth (Munk and McDonald, 1960), and the
parameter an = (3/2n + l)(ocean/PeartI) then appear nat-
urally in the development. The total tide-generating
potential rF contains an astronomical contribution Un
(primarily of order n = 2), an augmentation knUn of
this due to solid earth yielding to -VU,, an ocean
self-attraction contribution ga,,,on, and a contribution
kgan;n due to solid-earth deformation by ocean self-
attraction and tidal column weight. Thus

rF = (1 + k,,)U + 1 + k)gan<,0,. (10.11)

There is simultaneously a geocentric solid-earth tide
8 made up of the direct yielding hnUg of the solid
earth to -VUn plus the deformation h'ganon of the
solid earth by ocean attraction and tidal column
weight. Thus

8n = hnU,/g + hngaton. (10.12)

For computation, Farrell (1972a) has constructed a
Green's function such that

{ (1 + k - h)an,,

= ff do' d,' cos 0' G(4 ,'lro)Wolo').
ocean

(10.13)

With U = U2 and with (10.13) abbreviated as IffGG,
LTE with assumptions (4) and (5) appropriately relaxed
become
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au - 2sinOv = [ - - (1 + k2 - h2)U2 g
at a cos 0 0a

-| Go] (10.14,
Ov gOeV + 2flsinOu = - 1 + k2 - h2)U2/gat ~ a 0

-ff Go], (10.14

du + 1 [a(uD) a(vDcose)] = . (10.14
at a cos + : 0. 10.14

10.4 Long Waves in the Ocean

10.4.1 Introduction

a) The first theoretical study of oceanic long waves is due
to Laplace (1775, 1776; Lamb, 1932, §213-221), who
solved LTE for an appropriately shallow ocean covering
a rotating rigid spherical earth by expanding the solu-
tion in powers of sin 0. For a global ocean of constant
depth D., Hough (1897, 1898; Lamb, 1932, §222-223)

b) obtained solutions converging rapidly for small

A = 4fQ2a2/gD,

c)

The factor 1 + k2 - h2 = 0.69 is clearly necessary for
a quantitatively correct solution. The term fJfGo was
first evaluated by Farrell (1972b). I wrote down (10.14)
and attempted to estimate the effect of fGCo on a
global numerical solution of (10.14) for the M2 tide by
an iterative procedure which, however, failed to con-
verge (Hendershott, 1972). Subsequent computations
by Gordeev, Kagan, and Polyakov (1977) and by Accad
and Pekeris (1978) provide improved estimates of the
effects (see section 10.5.3).

With appropriate allowance for various dissipative
processes (including all mechanisms that put energy
into internal tides), I regard (10.14) as an adequate ap-
proximation for studying the ocean surface tide.
Oceanic long waves should really be discussed using
(10.6) but allowing for depth variations by putting

w = u'VD at z = -D(,0) (10.15)

in place of (10.7). Miles (1974a) derives an orthogonality
relationship that could be specialized to (10.6)-(10.8)
in the case of constant depth, but even then the non-
separability of the eigenfunctions into functions of (, 0)
times functions of z has prevented systematic study of
the problem. Variable relief compounds the difficulty.
Most studies either deal with surface waves over bot-
tom relief, and thus start with LTE (10.5), or else with
surface and internal waves over a flat bottom. In the
latter case, (10.6)-(10.8) are solved but with the Coriolis
terms 2 cos Ow and -212 cos Ou arbitrarily neglected
(the "traditional" approximation). Miles' (1974a) re-
sults appear to justify this procedure for the former
case, but Munk and Phillips (1968) show that the ne-
glected terms are proportional to (mode number) 13 for
internal modes so that the traditional approximation
may be untenable for high-mode internal waves. The
following discussion (section 10.4) of oceanic long
waves relies heavily upon the traditional approxima-
tion, but it is important to note that its domain of
validity has not yet been entirely delineated.

(sometimes called Lamb's parameter) by expanding the
solution in spherical harmonics PI (sin 0) expi14). He
found the natural oscillations to be divided into first-
and second-class modes whose frequencies r are given,
respectively, by

= -+[n(n + l)gD/a 2]1 '2,

= -21ll/[n(n + 1)]

as A- 0. But A - 20 for D. = 4000 m, and is very
much larger for internal waves (see section 10.4.3). A
correspondingly complete solution of Laplace's prob-
lem, valid for large as well as small A, was given only
recently (Flattery, 1967; Longuet-Higgins, 1968a).
Physical understanding of the solutions has historically
been developed by studying simplified models of LTE.

10.4.2 Long Waves in Uniformly Rotating Flat-
Bottomed Oceans
Lord Kelvin (Thomson, 1879; Lamb, 1932, §207) intro-
duced the idealization of uniform rotation, at fl, of a
sheet of fluid about the vertical (z-axis). LTE become

au dt;
at f0o --g

av - g
at * fou = - g a9Cat - v
04 a(uD) a(vD)

+ + = 0.at ax ay

f0, here equal to 2, is the Coriolis parameter. Lord
Kelvin's plane model (10.18) is often called the f-plane.

The solid earth is nearly a spheroid of.equilibrium
under the combined influence of gravity g and centrif-
ugal acceleration f12a; the earth's equatorial radius is
about 20 km greater than its polar radius. Without
water motion, the sea surface would have a congruent
spheroidal shape. Taking the depth constant in LTE
models this similarity; the remaining error incurred by
working in spherical rather than spheroidal coordinates
is (Miles, 1974a) of order W12a/g = 10- 3. It is correspond-
ingly appropriate to take the depth constant in Lord
Kelvin's plane model (10.18) in order to obtain planar
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solutions locally modeling those of LTE with constant
depth. But the laboratory configuration corresponding
to constant depth in (10.18c) is a container with a
paraboloidal bottom Yfl2 x2 + y2)/g rather than a flat
bottom [see Miles (1964) for a more detailed analysis].

Without rotation (fo = 0) and with constant depth
(D = D*) Lord Kelvin's plane model reduces to the
linearized shallow-water equations (LSWE). For an
unbounded fluid sheet, they have plane gravity-wave
solutions

= a exp(-irot + ilx + iky), (10.19a)

u = (gl/C, (10.lob)

v = (gk/lr), (10.19c)

w =-ir(z/D, + 1)4, (10.19d)
a2 = gD(12 + k2), (10.19e)

which are dispersionless [all travel at (gD)112] and are
longitudinal [(u, v) parallel to (1, k)]. Horizontal particle
accelerations are exactly balanced by horizontal pres-
sure-gradient forces while vertical accelerations are
negligible. Such waves reflect specularly at a straight
coast with no phase shift; thus

5 = a exp(-io-t + ilx + iky)

+ a exp(-ia-t - ilx + iky)

satisfies u = 0 at the coast x = 0, the angle ta
of incidence equals the angle of reflection, 
(complex) reflected amplitude equals the incide
plitude a. The normal modes of a closed basi
perimeter P are the eigensolutions Z.(x,y)exp
a(T of

VlZn + (rnlgD*)Zn = 0

with

OZ/dO(normal) = 0 on P.

If P is a constant surface in one of the coordina
tems in which V22 separates, then the normal mc
mathematically separable functions of the tw
zontal space coordinates and so are readily dis
in terms of appropriate special functions. Even
eral basin shapes, the existence and complete
the normal modes are assured (Morse and Fes
1953).

With rotation, plane wave solutions of (10. 1
constant depth D are

5 = a exp(--it + ilx + iky),

u = g[(lar + ikfo)/(r-2 - f)1;,

v = g[(kar - ilfo)/(a2 - fA)],

w = -iozlD, + 1)5,

(10.20)

Ln-(k/l)
md the
nt am-

in with
(-iejt),

2 = gD(1 2 + k2 ) + f. (10.23e)

These are often called Sverdrup waves (apparently after
Sverdrup, 1926). Rotation has made them dispersive
and they propagate only when ao > f. The group ve-
locity cg = (Or/01, 9or/k) is parallel to the wavenumber
and rises from zero at or = f0 toward (gD,) 2 as o2 >>

fo. Dynamically these waves are LSW waves perturbed
by rotation. Particle paths are ellipses with ratio f/cr of
minor to major axis and with major axis oriented along
(1,k). Particles traverse these paths in the clockwise
direction (viewed from above) when f > 0 (northern
hemisphere). Sverdrup waves are reflected specularly
at a straight coast but with a phase shift; the sum

5 = a exp(io-t + ilx + iky)

+a[(la + ikfo)I(lr - ikfo)]

x exp (-io-t - ilx + iky) (10.24)

of two Sverdrup waves satisfies u = 0 at the coast
x = 0, the angle tan-(k/l) of incidence equals the angle
of reflection, and the reflected amplitude differs from
the incident amplitude by the multiplicative constant
(Icr + ikfo)/(la - ikfo), which is complex but of modulus
unity. The sum (10.24) is often called a Poincar6 wave.
The normal modes of a closed basin with perimeter P
are the eigensolutions Z,(x,y) exp( -iaet), a- of

V2Z. + [(Cr2 - f2o)/gD*]Z = 0

with

-ir,, OZJ/O(normal)

+ fo Znla(tangent) = 0 at P.

(10.25)

(10.26)

On account of the boundary condition (10.26), they are
(10.21) not usually separable functions of the two horizontal

space coordinates. The circular basin (Lamb, 1932,
§209-210) is an exception. Rao (1966) discusses the

(10.22) rectangular basin, but the results are not easily sum-
ite sys- marized. A salient feature, the existence of free oscil-
ides are lations with o2 < f2, is rationalized below.

o hori- With rotation, Lord Kelvin (Thomson, 1879; Lamb,
;cussed 1932, §208) showed that a coast not only reflects Sver-

in gen- drup waves for which o2 > f, but makes possible a
ness of new kind of coastally trapped motion for which Ca2 2
,.hl. f . This Kelvin wave has the form

U) with1,

8) with

(10.23a)

(10.23b)

(10.23c)

= a exp[-io-t + iky + k(fol/r)x],

u = 0,

v = (gk/or)

w = -iazlD, + 1)4,

a2 =gDk 2

(10.27a)

(10.27b)

(10.27c)

(10.27d)

(10.27e)

(10.23d) along the straight coast x = 0. The velocity normal to
the coast vanishes everywhere in the fluid and not only
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at the coast. The wave is dispersionless and propagates
parallel to the shore with speed (gD,)1x2 for 0.2 2 f{ just
like a longitudinal gravity wave but with an offshore
profile exp[k(fo/o)x] that decays or grows exponentially
seaward depending upon whether the wave propagates
with the coast to its right or to its left (in the northern
hemisphere, f > 0). For vanishing rotation, the offshore
decay or growth scale becomes infinite and the Kelvin
wave reduces to an ordinary gravity wave propagating
parallel to the coast. The Kelvin wave is dynamically
exactly a LSW gravity wave in the longshore direction
and is exactly geostrophic in the cross-shore direction.

A pair of Kelvin waves propagating in opposite di-
rections along the two coasts of an infinite canal (at,
say, x = 0 and x = W) gives rise to a pattern of sea-
level variation in which the nodal lines that would
occur without rotation shrink to amphidromic points,
at which the surface neither rises nor falls and about
which crests and troughs rotate counterclockwise (in
the northern hemisphere) as time progresses. For equal-
amplitude oppositely propagating Kelvin waves, the
amphidromic points fall on the central axis of the canal
and are separated by a half-wavelength (7rk-1). When
the amplitudes are unequal, the line of amphidromes
moves away from the coast along which the highest-
amplitude Kelvin wave propagates. For a sufficiently
great difference in amplitudes, the amphidromes may
occur beyond one of the coasts, i.e., outside of the
canal.

Such a pair of Kelvin waves cannot by themselves
satisfy the condition of zero normal fluid velocity in a
closed canal (say at y = 3). Taylor (1921) showed how
this condition could be satisfied by adjoining to the
pair of Kelvin waves an infinite sum of channel Poin-
care modes

= [cos(m7rx/W) - (fo/0 )(kW/m7r)

x sin(mrrx/W)] exp[-.iot + iky],

a2 = (m2rT2/W2 + k2)gD, + f2, m = 1, 2,...,

(10.28)

than the channel width W, then the Poincar6 modes
sum to an appreciable contribution only near the cor-
ners of the closure. The Kelvin wave then proceeds up
the channel effectively hugging one coast, turns the
corners of the closure with a phase shift [evaluated by
Buchwald (1968) for a single comer], and returns back
along the channel hugging the opposite coast. Now it
becomes apparent that, with allowance for comer
phase shifts, closed rotating basins have a class of free
oscillation whose natural frequencies are effectively
determined by fitting an integral number of Kelvin
waves along the basin perimeter. Such free oscillations
may have or2 % f. They are readily identified in Lamb's
(1932, §209-210) normal modes of a uniform-depth cir-
cular basin.

10.4.3 The Effect of Density Stratification on Long
Waves
All of the foregoing solutions are barotropic surface
waves. Stokes (1847; Lamb, 1932, §231) pointed out
that surface waves are dynamically very much like
waves at the interfaces between fluid layers of differing
densities. Allowance for continuous vertical variation
of density was made by Rayleigh (1883). Lord Kelvin's
plane model (10.18) must be extended to read

-u fov = 1p
at Po ox '

av 1 ap
- + fou = ---

1 a2p

Po a at 

au av aw
- +- +- = 0,
ax ay az

with

w =0 at z = -D,

(10.30a)

(10.30b)

(10.30c)

(10.30d)

(10.31)

and

each of which separately has vanishing normal fluid
velocity at the channel walls (x = O, W). These are just
the waveguide modes of the canal. Mode m decays
exponentially away from the closure (is evanescent) if

a2 < f2 + (m2,r2/W2)gD, . (10.29)

If o- is so low, W so small, or D so great that all modes
m = 1, 2, . . . are evanescent, then the Kelvin wave
incident on the closure has to be perfectly reflected
with at most a shift of phase. When (10.29) is violated
for the one or more lowest modes, then some of the
energy of the incident Kelvin wave is scattered into
traveling Poincare modes.

If (10.29) is satisfied for all m and if the decay scale
(gD,)l/2/fo of the Kelvin waves is a good deal smaller

P = Og at z = 0. (10.32)

Notation is as in (10.6).
For the case of constant depth D,, the principal result

is that the dependent variables have the separable form

(u,v,w,p) = {U(x,y,t), V(x,y,t), W(x,y,t),Z(x,y,t)}

(10.33)

where

W = aZ/at,

F, = F/Ipog = D,, Fw/z,

and

(10.34)
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au dZ
at fo = - x '

ov a =0,+ foU = -g-a--,

at- + aD. + ax 'I

with

2 Fw N2(z}
d2 F2g + D Fw = 0,

Fw =0 at z = -D,,

F,,, - D OF,lz = 0 at z = 0. (10.38)

According to (10.35), the horizontal variations of all
quantities are exactly as in the homogeneous flat bot-
tom case except that now the apparent depth D, is
obtained by solving the eigenvalue problem (10.36) for
the vertical structure. Typically (10.36) yields a baro-
tropic mode F,,o z + D, Do = D plus an infinite
sequence of baroclinic modes F,, characterized by n
zero crossings (excluding the one at z = -D) and by
very small equivalent depths D,. Baroclinic WKB ap-
proximate solutions (10.36)-(10.38) are

F.wz) = N-112 z) sin [ll /gDn) 112 N(z dz']

D,= [Y N(z')dz'1 (gn272).

These are exact for constant buoyancy frequei
ForD, = 4000 m and N0 = 10l1, D, = (0.1/n2 ) m
N(z) = No, it is easy to show that

[w at the free surface/interior maximum value

of w] = N&D,/n7rg << 1.

Free surface variation is thus qualitatively anc
titatively unimportant for baroclinic modes. T]
therefore usually called internal modes.

In a flat-bottomed ocean, stratification is thi
to make possible an infinite sequence of interr
licas of the barotropic LSW gravity waves, Si
waves, PoincarO waves, Kelvin waves, and bas
mal modes discussed above. All these except the
waves have a-2 > f,. They must also have a2
over part of the water column, although the 1
treatment does not make this obvious because
N2 is always assumed. The horizontal variation c
replicas is governed by the equations describi
barotropic mode, except that the depth D, is 
fraction of the actual (constant) depth D. 
rotation, the speed of barotropic long gravity w
(gD,)112 200 m s- in the deep sea. Long intern;
ity waves move at the much slower (gD

(10.35a) (l/n) m s-. For comparable frequencies, the internal
waves thus have much shorter wavelength than the
surface wave.

(10.35b) An important point is that the separation of variables
(10.33) works in spherical coordinates as well as in
Cartesian coordinates, provided only that the depth is
constant. The horizontal variation of flow variables is
then governed by LTE with appropriate equivalent
depth D, given by (10.36)-(10.38).

For plane waves of frequency or, relaxation of N 2 >>
(10.36) or2 leads to the replacement of (10.36) by

(10.37) a2Fw [N 2(z) - or2]
- + Fw = 0.arl

(10.39)

(10.41)
6 'en

High-frequency waves, for which [N2(z) - or2] changes
sign over the water column, are discussed in chapter
9.

The simplicity of these flat-bottom results is decep-
tive, because they are very difficult to generalize to
include bottom relief. The reason for this is most easily
seen by eliminating (u,v) from (10.30) for harmonic
motion [exp(-iot)] to obtain a single equation in w:

(10.42)
w 2 No ( 02w 0 =02

_ _2 _ + a =.y2

This equation is hyperbolic in space for internal waves
(for which f0 < a2 < N2,). Its characteristic surfaces are

z = +(2 + y2 )112(c 2 - o)'2lNo. (10.43)

Solutions of (10.42) may be discontinuous across char-
acteristic surfaces, and they depend very strongly upon
the relative slope of characteristics and bounding sur-
faces. Without rotation, internal waves of frequency a
are solutions of the hyperbolic equation

(10.40) 82p (No- a2) ( 2 p a2p 02 UP i sty2, )n
I quan-
.1 ...... with the simple condition

Op =0 at solid boundaries.
an

(10.44)

(10.45)

For closed boundaries (i.e., a container filled with strat-
ified fluid) this is an ill-posed problem in the sense that
tiny perturbations of the boundaries may greatly alter
the structure of the solutions. Horizontal boundaries,
although analytically tractable, are a very special case.

10.4.4 Rossby and Planetary Waves
In an influential study whose emphasis upon physical
processes marks the beginning of the modern period,
Rossby and collaborators (1939) rediscovered Hough's
second-class oscillations and suggested that they might
be of great importance in atmospheric dynamics (see
also chapters 11 and 18).
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Perhaps of even greater influence than this discovery
was Rossby's creation of a new plane model. It amounts
to LTE written in the Cartesian coordinates

x = (a cos 00 )( - o0), y = a(0 - 0o) (10.46)

tangent to the sphere at (o, o0). Rossby's creative sim-
plification was to ignore the variation of all metric
coefficients (cos = cos 0) and to retain the latitude
variation of

v = l x, u = -,Oy. (10.52)

The spherical vorticity equation (10.49) has as every-
where bounded solutions

= S,(',0'), S.(,0) -PI(sin 0) expl1), (10.53)

where (O', 0') are spherical coordinates relative to a pole
P' displaced an arbitrary angle from the earth's pole P
of rotation and rotating about P with angular velocity

f = 2f sin 21 sin Oo + y(2l/a) cos 80
(10.47)

only when f is explicitly differentiated with respect to
y. Rossby's notation

P - f/lay (10.48)

has since become almost universal. Such Boussinesq-
like approximations to the spherical equations are usu-
ally called -plane equations.

Rossby's original approximation, which I shall call
Rossby's ,-plane, further suppressed horizontal diver-
gence (1 = 0). It yields rational approximations (Miles,
1974b) for second-class solutions of LTE whose hori-
zontal scale is much smaller than the earth's radius. A
quite different approximation yielding rational-approx-
imations for both first- and second-class solutions of
LTE when they are equatorially trapped is the equa-
torial -plane (see section 10.4.5). Both Rossby's 3-
plane equations and the equatorial -plane equations
differ from those obtained by the often encountered
procedure of making Rossby's simplification but re-
taining divergence. This results in what I shall call
simply the /-plane equations, in conformity with com-
mon usage. It is a rational approximation to LTE only
at low (o2 << f20) frequencies and is otherwise best re-
garded as a model of LTE.

Without divergence, the homogeneous LTE (10.30)
may be cross-differentiated to yield a vorticity equation

-V-+ 20T =0
(10.49)

28a co -a c os 
ahere written in terms o f a streamfunction de fined by

here written in terms of a streanfunction q, defined by

c = -2fl[n(n + 1)] (10.54)

(Longuet-Higgins, 1964). WhenP' = P, (10.54) is exactly
the second part of (10.17); these are Hough's second-
class oscillations. Rossby's ,-plane equivalents are

, = Zn(x - ct, y), VIZ. + XZ. = 0,

where c = -B/X2.
Plane Rossby waves are the particular case

i = a exp(-iat + ilx + iky),

or = -l/(12 + k 2 ).

(10.55)

(10.56)

(10.57)

They are transverse [(u, v) perpendicular to (, k)] and
dispersive, with the propagation of phases always hav-
ing a westward component (ol < 0). Their frequencies
are typically low relative to f. Since or depends both
on wavelength and wave direction, these waves do not
reflect specularly at a straight coast. Longuet-Higgins
(1964) gives an elegant geometrical interpretation (fig-
ure 10.1) of their dispersion relation (10.57) and shows
that it is the group velocity (0o/01, dalk) that reflects
specularly in this case (figure 10.2).

Rossby-wave normal modes of a closed basin of pe-
rimeter P have the form (Longuet-Higgins, 1964)

tI = Z.(x,y) exp[-icrt - i(/2or)x],

. = 81/2Xn

where

VZ,, + A2Z = 0, Z. = 0 on P.

(10.58)

(10.59)

(10.60)

These Rossby-wave normal modes are in remarkable
contrast with the gravity-wave normal modes of the
same basin without rotation:

C. = Z.(x,y) exp(-i.t ), (10.61)

v cos 0 = 0od/, u = -dP/o0. (10.50)

Rossby's -plane approximation to this, obtained by
locally approximating the spherical Laplacian V as
the plane Laplacian and going to the locally tangent
coordinates (10.46), is

vq, oq,
8t+ = 0, (10.51)

where

o-a = X,gD, } 12 [OZ,/O(normal) = 0 onP]. (10.62)

The gravity-wave modes have a lowest-frequency (n
= 1) grave mode and the spatial scales of higher-fre-
quency modes are smaller. The Rossby-wave modes
have a highest frequency (n = 1) mode and the spatial
scales of lower frequency modes are smaller.

The physical mechanism that makes Rossby waves
possible is most easily seen for nearly zonal waves
(OlOy << 0/x}). Then Rossby's vorticity equation (10.51)
becomes
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-- + f3v = 0.ax at

Figure Io.I The locus of wavenumbers k = (k,1) allowed by
the Rossby dispersion relation 110.57)

(I + 1/2(o)2 + k2 = (/2~o)2

is a circle of radius f/2to centered at (-f3/2o, 0). The group
velocity vector cg =(aOlal, aalr/k) points from the tip of the
wavenumber vector toward the center of the circle and has
magnitude Icgl = 3/(12 + k2).

k

Figure IO.2 A Rossby wave with wavenumber ki is incident
on a straight coast inclined at an angle a to the east-west
direction. The wavenumber kr of the reflected wave is fixed
by the necessity that ki and kr have equal projection along the
coast. The group velocity reflects specularly in the coast.

(10.63)

North-south motions v result in changes in the local
vorticity av/ax. When the initial north-south motion
is periodic inx, then examination (figure 10.3) of (10.63)
shows that the additional north-south motion gener-
ated by the vorticity resulting from the initial pattern
of north-south motion combines with that pattern to
shift it westward, in accordance with (10.57).

Rossby's vorticity equation (10.51) corresponds to
the plane equations

au 1 ap
at Po ax

av 1 - apv + fu =- 0p '
at Po y '

au av
- + =0,ax ay

f = fo, af/lay = ,

(10.64a)

(10.64b)

(10.64c)

(10.64d)

so that Rossby's solutions are almost geostrophic
(o- << fo) and perfectly nondivergent. The absence of
divergence and vertical velocity is an extreme of the
tend.ncy, in quasigeostrophic flow, for the vertical ve-
locity to be order Rossby number (<< 1) smaller than a
scale analysis of the continuity equation would indi-
cate (Burger, 1958). This tendency is absent at planetary
length scales, and Rossby's ,3-plane (10.64) correspond-
ingly requires modification.

Remarkably, Rossby and collaborators (1939) pre-
faced their analysis with a resume of a different phys-
ical mechanism due to J. Bjerknes (1937), a mechanism
that also results in westward-propagating waves but for
a different reason, and that supplies the modification
of Rossby's 3-plane required at planetary scales. The
plane equations corresponding to Rossby's summary of
Bjerknes' arguments are

v(x,O)

av(x,t)/3tt= = Iev dx- .... -t . I ) x

v(x,At) = v(x,O) + At av/at x

Figure 10.3 The flow v(x, t) evolving from the initial flow
v(x, o) - sin(lx) as fluid columns migrate north-south (and so
exchange, planetary and! relative vorticity) is a westward dis-
placement of the initial flow. Notice that although parcels
take on clockwise-counterclockwise relative vorticity as they
are moved north-south, the westward displacement is not the
result of advection of vorticity of one sign by the flow asso-
ciated with the other as is the case in a vortex street.

ag
-fv -g ax

fu = -g y

at * au av 0,
at *\ax ay/

f =fot aflay = 3.

(10.65a)

(10.65b)

(10.65c)

(10.65d)

By physical arguments (figure 10.4), Bjerknes deduced
that an initial pressure perturbation would always
propagate westward. The corresponding analysis of
(10.65) is to form an elevation equation

a - gD*3lf) -) = 0at ax (10.66)

and to note that it has the dispersionless solutions
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= F[x + (gD.l3/f2)t, y],

where F(x,y) is the initial pressure perturbation. In
particular,

= a exp(-i(ot + ilx + iky),

( = -(gD ,0/fol.

y

(10.67)

(10.68)

All solutions travel westward at (gD(,B/f)1"12. These
motions, according to (10.65), are perfectly geostrophic
but divergent.

More complete analysis (Longuet-Higgins, 1964)
shows that the two dispersion relations (10.57) of
Rossby and (10.68) of Bjerknes are limiting cases of the
P-plane dispersion relation

o-= -3/(2 + k2 + fgD*)

A(

Figure I0o.4 If the flow is totally geostrophic but the Coriolis
parameter increases with latitude, then the flow at A con-
verges because the geostrophic transport between a pair of
isobars south of H is greater than that between the same pair
north of H. By (10.65c), pressure thus rises at A. Similarly, the
flow at B diverges and pressure there drops. The initial pattern
of isobars is then shifted westward.

(10.69)

for second-class waves displayed in figure 10.5. Ii
would be appropriate to call the two kinds of second.
class waves Rossby and Bjerknes waves, respectively,
but in practice both are commonly called Rossby
waves. I shall distinguish them as short, nondivergent
and long, divergent Rossby waves.

When divergence is allowed, the (constant) depth D.
enters the dispersion relation (10.69) in the length scale

aR = (g*/fo) ',

-I
I.
I.

(/2,0)

I.(10.70)

usually called the Rossby radius. There is not one
Rossby radius, but rather there are many, since the
constant-depth barotropic second-class waves so far
discussed have an infinite sequence of baroclinic coun-
terparts with D. = D,, n = 1, ... , given by (10.36)-
(10.39). Waves longer than the Rossby radius are long,
divergent Rossby waves; those shorter than the Rossby
radius are short, nondivergent Rossby waves.

The barotropic Rossby radius aR = (gDo/lf)112 has
Do - D. and is thus the order of the earth's radius.
Barotropic Rossby waves are consequently relatively
high-frequency (typically a few cycles per month)
waves and they are able to traverse major ocean basins
in days to weeks. Baroclinic Rossby radii a =
(gDn/fo)1/ 2 are the order of 102 km or less in mid-lati-
tudes. Baroclinic mid-latitude Rossby waves are con-
sequently relatively low-frequency waves and would
take years to traverse major mid-latitude basins. In the
tropics, f 0 becomes small and baroclinic Rossby waves
speed up to the point where they could traverse major
basins in less than a season. But a different discussion
is really necessary for the tropics (see chapter 6).

Rossby advanced his arguments to rationalize the
motion of mid-latitude atmospheric pressure patterns.
In both atmosphere and ocean, the slowness and rela-
tively small scale of most second-class waves must
make their occurrence in "pure" form very rare.
Oceanic measurements from the MODE experiment

k

afo2 /gODn

Figure o.5 The locus of wavenumbers (, k) allowed by the
,8-plane dispersion relation (10.69) for second-class waves

(a + /2o}2 + k2 = (/2(r12 - (f gD,)

is a circle( ) whose radius is [(3/2r)2 - fl/gD,)]112 cen-
tered at (-31/2r, 0). Dotted circle (... ) is the Rossby dispersion
relation (10.57) for short waves. Dashed line (---1 is the
Bjerknes dispersion relation (10.68) appropriate for long waves.
The scale a. dividing short and long waves is

aR = [2(13/2cr)(of 2lgD.)] -1 2.
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do show, however, characteristics of both short baro-
clinic (figure 10.6) and long barotropic (figure 10.7)
Rossby waves.

The oscillations having the two dispersion relations
(10.23e) with D = D for first-class waves and (10.69)
for second-class waves are mid-latitude plane-wave ap-
proximations of solutions of LTE. Figure 10.8 plots
the two dispersion relations together. A noteworthy
feature is the frequency interval between f and
({/2f)(gD,) 2 within which no plane waves propagate.
Taken at face value, this gap suggests that velocity
spectra should show a valley between these two fre-
quencies with a steep high-frequency [fo] wall and a
rather more gentle low-frequency [({/2fo)(gD,)12, n =
0,1,2, .. .] wall. Such a gap is indeed commonly ob-
served; but the dynamics of the low frequencies are
almost surely more complex than those of the linear
p-plane. The latitude dependence implicit in the defi-
nition of f and p is consistent with equatorial trapping
of low-frequency first-class waves and high-frequency
second-class waves. This is more easily seen in ap-
proximations, such as the following, which better ac-
knowledge the earth's sphericity.

)5

7

29

3 

25 t

B9 a

'13

'25

37

49

51
-300 -150 0 150 300km

Distance East of Centroal Site Mooring

Figure Io.6A Time-longitude plot of streamfunction inferred
from objective maps of 1500-m currents along 28°N (centered
at 69°49'W) by Freeland, Rhines and Rossby (1975). There is
evidence of westward propagation of phases. Currents at this
depth are not dominated by "thermocline eddies" (section
10.4.7) but are representative of the deep ocean.

10.4.5 The Equatorial ,8-Plane
For constant depth D., the homogeneous LTE (10.5)
may be equatorially approximated by expanding all var-
iable coefficients in 8 and then neglecting 2,3, . . . .
The resulting equatorial ,8-plane equations are

au do
at YV= -g 

av O~-t + fyu = -g
t & y '

Ot ( eaux TY)= 0

(10.71a})

(10.71b)

(10.71c)

where x = a , y = a , and p = 2/a. They govern both
barotropic and baroclinic motions provided that D, is
interpreted as the appropriate equivalent depth D, de-
fined by (10.36)-(10.38). Moore and Philander (1977)
and Philander (1978) give modem reviews.

Solutions of these equations can be good approxi-
mations to solutions of LTE only when they decay very
rapidly away from the equator. But the qualitative na-
ture of their solutions, bounded as y o, closely
resembles solutions of LTE bounded at the poles, even

81

93

105
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129

141

153 

165 S

177 ;-

189

201 

213

225

237

249

261
Okm

Distance North of Centrol Site Mooring

Figure o.6B As figure 10.6A but in time-latitude plot along
69°40'W. There is no evidence for a preferred direction of
latitudinal phase propagation. (Rhines, 1977.)
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Figure 10.7 Time series of bottom pressure in MODE (Brown
et al., 1975). The cluster of named gauges centered at 28°N,
69°40'W show remarkable coherence despite 0 (180-km) sep-
aration, and all are coherent with the (atmospheric pressure
corrected) sea level at Bermuda 650 km distant, labeled Ber-
muda bottom). (Brown et al., 1975.)
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SUBSURFACE

when the equatorial approximation is transgressed.
Historically these approximate solutions provided a
great deal of insight into the latitudinal variation of
solutions of LTE.

Most of the solutions are obtainable from the single
equation that results when u,C are eliminated from
(10.71). With

(10.72)v = V(y)exp(-iat + ix)

that equation is

,vy _ )-gD y2] V = 0.19y2 gD* ( D
(10.73)

It also occurs in the quantum-mechanical treatment of
the harmonic oscillator. Solutions are bounded as
y -, +oo only if

( _ 12 1) = (2m + 1)( 
+g1) (gD) 11 2 I

m = 0, 1, 2,...,

and they are then

V(y) = Hm,.fl112/(gD ) 1/4] exp[-y 2 ,/2(gD )112],

(10.74)

(10.75)

wherein the H, are Hermite polynomials (Ho(i) = 1,
H,(z) = z, ...).

The remaining solution may be taken to be v = 0
with m = - 1 in (10.74). It is obtained by solving (10.71)
with v = 0. The solution bounded as y -, _oo is

= exp[-iot + ilx - (8lIaby2/2]

-k

Figure IO.8 The f-plane dispersion relation

C"r = f + gD.12 + k2)

for first-class waves allows no waves with a2 < f. The 13-
plane dispersion relation

a = -ll'2 + k + folgDj

for second-class waves allows no waves with a >
(lf12f0o)gD.n)1 2.

(10.76)

with

I = o/(gD,) 12 (10.77)

[(10.77) is (10.74) with m = -1].
The very important dispersion relation (10.74) with

im = -1, 0, 1, ... thus governs all the equatorially
trapped solutions of (10.71). Introducing the dimen-
sionless variables o, , , -1 defined by

o- = o(211A-114), 1 = Xla-'Al4),

Ix, y) = (, )(aA-114),

110.78)

t = [(2n)-'A1/4)

(A = 4 2a2/gD,) allows us to rewrite (10.73) and its
solutions (10.72), (10.75), (10.76) as

C2V + [(,2 - X2 - X/o) - 2]V = 0,

v = Hm,(7) exp(-ioT + iX: - 2/2),

(10.79)

(10.80)

= exp[-ior + i - (Xw/co)r/2], m = -1, (10.81)

while the dispersion relation (10.74) becomes
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wo2 - 2 - X/ow = 2m + 1, m =-1, 0, 1,.... (10.82)

These forms allow easy visualization of the solutions
and permit a concise graphical presentation of the dis-
persion relation (figure 10.9).

The dispersion relation is cubic in or (or w) for given
values of 1 (or X) and m. For m > 1 the three roots
correspond precisely to two oppositely traveling waves
of the first class plus a single westward-traveling wave
of the second class. The case m = 0 (Yanai, or Rossby-
gravity, wave) is of first class when traveling eastward
but of second class when traveling westward. The case
m = -1 is an equatorially trapped Kelvin wave, dy-
namically identical to the coastally trapped Kelvin
wave (10.27) in a uniformly rotating ocean.

The most useful aspect of these exact solutions is
their provision of a readily understandable dispersion
relation [(10.74) or (10.82)]. The latitudinal variation of
flow variables is more readily discussed in terms of
WKB solutions of (10.73). One can easily see the salient
feature of the solutions, a transition from oscillatory
to exponentially decaying latitudinal variation as the
turning latitudes YT of (10.73) (at which the coefficient
[ ] of that equation vanishes), are crossed poleward. For
waves of the first class, the term lfIro is small relative
to the other terms in the dispersion relation and in the
coefficient []. The corresponding turning latitudes yT)
are therefore approximately given by

[y ]2 = (/0)2[l - 12 (gD*)/Cr2 ] I< (l3)2 (10.83)

For waves of the second class, the term r2/gD is small
relative to the other terms in the dispersion relation
and in the coefficient []. The corresponding turning
latitudes yT2 are therefore approximately given by

[Y(2)]2 = (gD*/lf 2)(-12 - 1(/cr) < gD*/4o 2 . (10.84)

Increasingly low-frequency waves of the first class and
increasingly high-frequency waves of the second class
are thus trapped increasingly close to the equator.

Only first-class waves having frequency greater than
the inertial frequency fy penetrate poleward of latitude
y [by (10.83)]. Only second-class waves having fre-
quency below the cutoff frequency (gD/4y2)112 pene-
trate poleward of latitude y [by (10.84)]. This frequency-
dependent latitudinal trapping corresponds to the mid-
latitude frequency gap between first- and second-class
waves discussed in the previous section and illustrated
in figure 10.8. The correspondence correctly suggests
that trapping and associated behavior characterize
slowly varying in the WKB sense) packets of waves
propagating over the sphere as well as the globally
standing patterns corresponding to the Hermite solu-
tions (10.75). Waves thus need not be globally coherent
to exhibit trapping and the features associated with it.

Near the trapping latitudes, (10.73) becomes

O2V
+ (-23 2 yTgDJ(y - yT)V = 0.

y 2 (10.85)

The change of variable = (2 f 2yT/gD*)113(y - YT) re-
duces this to Airy's equation

a2V _ -V = 0, (10.86)

whose solution Ai(l) bounded as -* ox is plotted in
( figure 10.10. This solution has two important features:

s (1) gentle amplification (like -vf"4) of the solution as
the turning latitude (* = 0) is approached from the

* equator; and (2) transition from oscillatory to exponen-
tially decaying behavior in a region Ar) of order roughly

. ~ unit width surrounding the turning latitude. Conse-
quently the interval Ay over which the solution of
(10.85) changes from oscillatory to exponential behav-
ior is Ay = [2, 2yT/gD * -113 A'v or, since ( = 2l/a and
A0 = 1,

Figure Io.9 The equatorial (-plane dispersion relation (10.82)

J2 - 2 _ X / = 2m + 1.

Dimensional wavelengths and frequencies are obtained from
the scaling (10.78) and are given for the barotropic mode (Do =
4000 m, A = 20) and for the first baroclinic mode (Do = 0.1
m, A = 106). For all curves but m = 0, intersections with
dotted curve are zeros of group velocity.

Ay = a(Aro/2f1)-13

= a(2-' 2A -12or/2 )1/3

(10.87)

(10.88)

for maximally penetrating first- and second-class
waves. For diurnal ( = fl) first-class barotropic (A =
20) waves, Ay 0.5a; for diurnal first-class baroclinic
(A 106) waves, Ay = 0.013a. For 10-day (o = 0.1)
second-class barotropic waves, y 0.25a. For 1-month
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Figure Io.Io The Airy function Ai.

niques for dealing with the spherical problem now exist
(section 10.4.8).

10.4.6 Barotropic Waves over Bottom Relief
Stokes (1846; Lamb, 1932, §260) had shown that shoal-
ing relief results in the trapping of an edge wave whose
amplitude decays exponentially away from the coast,
but the motion was not thought to be important.

Eckart (1951) solved the shallow-water equations
[(10.18) with fo = 0] with the relief D = ax. Solutions
of the form

= hx)exp(-iot + iky)

are governed by

a2 h Oh
x + + [/(ag) - xk2]h = 0.

a ax

(10.89)

,10.90)

(or - .0311) second-class baroclinic waves, Ay = 0.03a.
We thus obtain the important result that barotropic
modes are not noticeably trapped (Ay is a fair fraction
of the earth's radius and the Airy solution is only qual-
itatively correct anyway) but baroclinic modes are
abruptly trapped (y is a few percentage points of the
earth's radius).

The abrupt trapping of baroclinic waves at their in-
ertial latitudes means that the Airy functions may de-
scribe quite accurately the latitude variation of near-
inertial motions. Munk and Phillips (1968) and Munk
(chapter 9) discuss the structure.

The clearest observations of equatorial trapping are
by Wunsch and Gill (1976), from whose paper figure
10.11 is taken. Longer-period fluctuations at and near
the equator have been observed, but their relation to
the trapped solutions is not yet clear.

When an equatorially trapped westward-propagating
wave meets a north-south western boundary (at, say,
x = 0) it is reflected as a superposition of finite numbers
of eastward-propagating waves including the Kelvin
(m = -1) and Yanai (m = 0) waves (Moore and Philan-
der, 1977). But when an equatorially trapped eastward-
propagating wave meets a north-south eastern bound-
ary, some of the incident energy is scattered into a pole-
ward-propagating coastal Kelvin wave (10.29) and thus
escapes the equatorial region (Moore, 1968). In latitu-
dinally bounded basins, the requirement that solutions
decay exponentially away from the equator is replaced
by the vanishing of normal velocity at the boundaries.
Modes closely confined to the equator will not be
greatly altered by such boundaries; modes that have
appreciable extraequatorial amplitude will behave like
the -plane solutions of sections 10.4.1-10.4.4 near the
boundaries. A theory of free oscillations in idealized
basins on the equatorial ,8-plane could be constructed
on the basis of such observations, but powerful tech-

Solutions of this are bounded as x - oo only if

c2 =k(2n + l)ag, n = 0, 1,...,

and they are then

h(x) = L,(2kx) exp(-kx),

(10.91)

(10.92)

where the L are Laguerre polynomials [L(z) = 1,
L,(z) = z - 1, . . .]. The n = 0 mode corresponds to
Stokes's (1846) edge wave.

Eckart's solutions are LSW gravity waves refractively
trapped near the coast by the offshore increase in shal-
low water wave speed (gax)12. The Laguerre solutions
(10.92) are correspondingly trigonometric shoreward of
the turning points XT at which the coefficient [] of
(10.90) vanishes, and decay exponentially seaward.

Eckart's use of the LSW equations is not entirely
self-consistent, since D = ax increases without limit.
Ursell (1952) removed the shallow-water approxima-
tion by completely solving

2 + 2 - k 24} = 0
0z 2 Ox2 (10.93)

subject to

= (or2/g at z = O
Oz

(10.94)

and

= 0 at z =-ax
d&9

(10.95)

plus boundedness of the velocity field (0l/Ox, ik,
Od/Oz) as x - oc. He found (1) a finite number of coast-
ally trapped modes with dispersion relation

o2 = kgsin[(2n + 1) tan-'a],
(10.96)

n = 0, 1, . . . < [vr/l4tan-'a)- '2]
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Figure ro.II Energy at periods of 5.6d, m = 1 (A); 4.0d, m =
2 (B); 3.0d, m = 4 (C); in tropical Pacific sea-level records as
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from each value. Error bars are one standard deviation of x2.
The solid curves are the theoretical latitudinal structure from
the equatorial 8/3-plane. (Wunsch and Gill, 1976.)
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corresponding, for low n, to Eckart's results, plus (2) a
continuum of solutions corresponding to the coastal
reflection of deep-water waves incident from x = oo and
correspondingly not coastally trapped. Far from the
coast, the continuum solutions have the form =
cos(/x + phase) exp[-iat + iky + (12 + k2)112z] and their
dispersion relation must require o2 2 gk. They are
filtered out by the shallow-water approximation. Figure
10.12 compares Eckart's (1951) and Ursell's 1952) dis-
persion relations.

With rotation fo restored to (10.18), (10.90) becomes
(Reid, 1958)

02h Oh +[(o2 -f fk k -k2]
x- + _x+[(oa-go _f) _ Ixk~]h = 0. (10.97)

Solutions still have the form (10.89), (10.92) but now
the dispersion relation is

cr2 - f - fokaglo = k(2n + )ag, (10.98)

which is cubic in a-, whereas with fo = 0 it was quad-
ratic. Rotation has evidently introduced a new class of
motion.

That this should be so is clear from the fl-plane
vorticity equation [obtained by cross-differentiating
(10.30a,b) and with afolOy = 3]:

a (v u fo a fo D fv o ID
dt x dy D t D x r D y

n=4
n=3

n=2

n=l

n=O

-2 -1 ' '1 '2

Figure o.I2A Eckart's (1951) dispersion relation (10.91)

S2 = K(2n + 1)

for the shallow-water waves over a semi-infinite uniformly
sloping, nonrotating beach. For convenience in plotting, s =
aef and K = gak/ even though problem is not rotating.

S

n=3
n=2
n=l

n=O

-2 -1 0 1 2

=0. (10.99)

We have already seen (section 10.4.4) that the term 3v
gives rise to short and long Rossby waves (with the
vortex-stretching term folD dO/Ot important only for the
latter) when the depth is constant. But in (10.99), the
topographic vortex-stretching term ufo/DVD plays a
role entirely equivalent to that of fv = u-Vfo. Hence,
we expect it to give rise to second-class waves, both
short and long, even if / = 0. Such waves are called
topographic Rossby waves. Over the linear beach
D = -ax they are all refractively trapped near the
coast.

The nondimensionalization

Figure Io.12B Ursell's (1952) dispersion relation (10.96)

S2 = Ka-' sin[(2n + 1)tan-' a]

for edge waves, and the continuum

S2 > Ka-'

of deep-water reflected waves. For convenience in plotting, s
and K are defined as above. Plot is for a = 0.2.

(10.100)

(10.101)

which is remarkably similar to (10.82) and plotted in
figure 10.13.

The linear beach D = ax is most unreal in that there
is no deep sea of finite depth in which LSW plane
waves can propagate. When the relief is modified to

(10.102)
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s = a/f, K = kaglf2

casts the dispersion relation into the form

S3 -s[1 + (2n + 1)K] -K = 0,

= ax, 0 < x < Doa-1 (shelf)

Do, Doa - 1 <x < oo (sea),
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Figure Io.I3 The dispersion relation 10.91) for edge and
quasi-geostrophic shallow-water waves over a semi-infinite
uniformly sloping beach. The dashed curves are the Stokes
solution without rotation [(10.91) with n = 0]. Axes are as in
figure 10.12. (LeBlond and Mysak, 1977.)

the most important alteration of the dispersion relation
is an "opening up" of the long-wavelength part of the
dispersion relation to include a continuum analogous
to that of Ursell (1952) but now consisting of LSW first-
class waves incident from the deep sea and reflected
back into it by the coast and shelf. These waves are
not coastally trapped. They are often called leaky
modes because they can radiate energy that is initially
on the shelf out into the deep sea. There are no second-
class counterparts because the deep sea with constant
depth and 3 = 0 cannot support second-class waves.

The dispersion relation corresponding to (10.102) is
plotted in figure 10.14. All of Eckart's modes are mod-
ified so that cr2 > f2 save one (n = 0, traveling with the
coast to its right), which persists as cr -- 0 and is a
Kelvin-like mode. The others cease to be refractively
trapped at superinertial (>fo) individual cutoff frequen-
cies bordering the continuum of leaky modes. At sub-
inertial frequencies there is an infinite family of re-
fractively trapped topographic Rossby waves, all
traveling with the coast to their right (like the Kelvin
mode) and all tending toward the constant frequency
s = -1/(2n + 1) at small wavelengths. This dispersion
relation is qualitatively correct for most other shelf

shapes. It differs from its equatorial p-plane counter-
part (10.82) only in the absence of a mixed Rossby-
gravity (Yanai) mode and in the tendency of short sec-
ond-class modes to approach constant frequencies.

Topographic vortex stretching plus refraction of both
first- and second-class waves are effective over any
relief. Thus islands with beaches, submerged plateaus,
and seamounts can in principal trap both first- and
second-class barotropic waves (although these topo-
graphic features may have to be unrealistically large
for their circumference to span one or more wave-
lengths of a trapped first-class wave). A submarine es-
carpment can trap second-class waves (then called dou-
ble Kelvin waves; Longuet-Higgins, 1968b). Examples
of such solutions are summarized by Longuet-Higgins
(1969b) and by Rhines (1969b).

First-class waves trapped over the Southern Califor-
nia continental shelf have been clearly observed by
Munk, Snodgrass, and Gilbert (1964), who computed
the dispersion relation for the actual shelf profile and
found (figure 10.15) sea-level variation to be closely
confined to the dispersion curves thus predicted for
periods of order of an hour or less. Both first- and
second-class coastally trapped waves may be variously
significant in coastal tides [Munk, Snodgrass, and
Wimbush (1970) and section 10.5.2]. At longer periods,
a number of observers claim to have detected coastally
trapped second-class modes (Leblond and Mysak, 1977).
A typical set of observations is shown in figure 10.16,
after R. L. Smith (1978).

10.4.7 Long Waves over Relief with Rotation and
Stratification
The two mechanisms of refraction and vortex stretch-
ing that govern the behavior of long waves propagating
in homogeneous rotating fluid over bottom relief are
sufficiently well understood that qualitatively correct
dispersion relations may be found intuitively for quite
complex relief even though their quantitative con-
struction might be very involved. Stratification com-
plicates the picture greatly. In this section, emphasis
is upon problems with stratification that may be solved
with sufficient completeness that they augment our
intuition.

By appealing to the quasi-geostrophic approximation,
Rhines (1975; 1977) has given a far-reaching treatment
of the interplay between beta, weak bottom slope, and
stratification for second-class waves. If equations
(10.30a) and (10.30b) are cross-differentiated to elimi-
nate pressure, and continuity (10.30d) is then invoked,
the result is

(V a do) + fv w 0

in the 13-plane approximation (section 10.4.4) f = f,
p = Of/ly. Now this equation is recast as an approxi-
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and is linearized about z = -Do for sufficiently small
a.

With no bottom slope, solutions of (10.103)-(10.105)
are

P = cos(Az) exp(-iort + ilx + iky),

= -1/ 2 + k2 + X2f2IoN2o),

with A given by (10.105) as a solution of

sin(XD0 ) = 0

i.e.,

X = nr/Do, n = 0, 1, 2,....

(10.106)

(l0.107)

(10.108)

(10.109)

These correspond to the barotropic (n = 0) and baro-
clinic (n = 1, 2,...) Rossby waves of section 10.4.4.

With no beta but with bottom slope, solutions of
(10.103)-(10.105) are

0 1 2 3 4 5
i i I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Ii

-0.5

-1.0 o

Figure IO.I4 The dispersion relation (solid lines) for edge and
quasi-geostrophic shallow-water waves over a uniformly slop-
ing beach (slope a = 2 x 10-3) terminating in a flat ocean floor
at a depth of D = 5000 m. The dotted lines are for the semi-
infinite uniformly sloping beach. The shaded region is the
continuum of leaky modes. Axes are as in figure 10.12. (Le-
blond and Mysak, 1977.)

mate equation in p by using (10.30c) plus the
geostrophic approximation to obtain

- 'p
2p 0a2

9P 2 f p O ap = )0. (10.103)at X2 + zy2 + f x = -.

This result emerges from a more systematic treatment
(Pedlosky, 1964a) as the linearized quasi-geostrophic
approximation. It is here specialized to the case of
constant buoyancy frequency No. The free surface may
be idealized as rigid without loss of generality; the
corresponding condition on p is

dp = 0 at z =0. (10.104)
az

The inviscid bottom boundary condition w = av at the
north-south sloping bottom z = -Do + ay becomes,
in quasi-geostrophic approximation,

d2P N x Op
- Op +a--- =0 at z = -D, (10.105)

at Oz fo ax

P = cosh(Xz) exp(-iot + ilx + iky),

x = (No/fo)(12 + k2 )112,

alN2 coth (XD0 )

(10.110)

(10.111)

(10.112)

If ADO << 1, p is virtually depth independent and the
dispersion relation (10.112) becomes

O = D-afol l(12 + k2 ). (10.113)

This is a barotropic topographic Rossby wave with vor-
tex stretching over the relief playing the role of beta.
If ADO >> 1, p decays rapidly away from the bottom
and the dispersion relation (10.112) becomes

= Noll(l12 + k 2 )1 12 . (10.114)

Such bottom-trapped motions are of theoretical im-
portance because they allow mid-latitude quasi-geo-
strophic vertical shear and density perturbations at pe-
riods much shorter than the very long ones predicted
by the flat-bottom baroclinic solutions (10.106)-
(10.109). Rhines (1970) generalizes this bottom-trapped
solution to relief of finite slope and points out that it
reduces to the usual baroclinic Kelvin wave at a ver-
tical boundary. Figure 10.17 shows what appear to be
motions of this type.

With both beta and bottom slope, solutions of
(10.103) and (10.104) are

P = os (hz) exp( -irt + ilx + iky)cosh

r = -ll/(12 + k2 AX2f2IN2),

with A given by (10.105) as

aN 1
X tan(AD0) = aNo

(10.1159)

(10.116g)

(10.1 17a)
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Figure IO.I5 Comparison of theoretical and observed disper-
sion for the California continental shelf. Heavy lines O-IV
correspond to theoretical dispersion relations for the first five
trapped first-class modes. The dashed line bounds the contin-
uum of leaky modes. The observed normalized two-dimen-
sional cospectrum of bottom pressure is contoured for values
of 0.03, 0.05, 0.10, 0.25, 0.50, 0.75, and 0.90 with the area
above 0.05 shaded. (Munk, Snodgrass, and Gilbert, 1964.)
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Figure Io.I6 Low-passed wind vectors and sea-level records
from Callao (12°04' S and San Juan (15°20' S), Peru, and current
vectors from Y (80 m below surface off Callao) and from M

for case (a) and

X tanh(XD) = aN° ] (10.117b)

for case (b). Equation (10.117b) has one root X corre-
sponding to a bottom-trapped wave for large a and to
a barotropic B-wave for vanishing a. For vanishing a,
(10.117a) reproduces the familiar flat-bottom baro-
tropic and low-frequency baroclinic modes X = nrr/Do,
n = 0, 1,.... When a is large the baroclinic roots are
shifted toward X - (r/2 + n7r)IDo, so that the pressure
(10.115a) and hence the horizontal velocity have a node
at the bottom. There is thus a tendency for relief to
result in the concentration of low-frequency baroclinic
energy away from the bottom. With more realistic
stratification this concentration is increasingly in the
upper ocean. Rhines (1977) therefore calls such mo-
tions "thermocline eddies" and suggests that they are
relevant to the interpretation of the observations of
figure 10.18. It is straightforward to allow for an arbi-

(84 m below surface off San Juan). Sea level and currents show
propagation of events along the coast; wind records do not.
(R. L. Smith, 1978.)

trary direction of the bottom slope, but the results are
not easy to summarize. Rhines (1970) gives a complete
discussion.

A powerful treatment of second-class motion in a
rotating stratified fluid over the linear beach D = ax
has been provided by Ou (1979), Ou (1980), and Ou
and Beardsley (1980). They have generously permit-
ted me to make use of their results in this discussion.
Neglecting free surface displacement (so that w = 0 at
z = 0) and eliminating u,v,w from (10.30) in favor of p
yields

02p N 2 { 2p + p + P0-c \O +.yy~/=0,
GZ2 -2 -OX d -

P =0 at z = 0,
az

(i - +ior f - 0z2 
ax y) N2o a

at z = -ax

(10.118)

(10.119)

(10.120)
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Figure Io.I7A Currents at 39°10'N, 70°W (site D) at 205,
1019, 2030, and 2550 m. The total depth is 2650 m. A "ther-
mocline" eddy initially dominates the upper flow.
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Figure Io.I7B A high-passed version of figure 10.17A. The
lower layers are now dominated by fast-bottom intensified
oscillations. (Rhines, 1977.)
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a' is real and all of Ursell's (1952) results are im m edi-
ately available. There are thus coastally trapped waves
whose dispersion relation is

o = f0 a'/{(l + a'2)1 12 sin[2n + l)tan-la']}

16

82 dyn cm

(10.127)

as well as a continuum of bottom-trapped waves that
have the form

P = cos(lx' + phase) exp[-iart + iky - (12 + k2 )112
Z']

as x' X and that have their dispersion relation in-
cluded in

(r = -Nsin(tan-a ) [(12 + k2)12 (10.128)

Figure Io.I8 Time-longitude plot of 501-1500-db dynamic
height along 28'N from MODE showing westward propaga-
tion of "thermocline eddies" but at a rate significantly slower
than that observed in 1500-m currents (figure 10.6). (Rhines,
1977.)

The latter are just the bottom-trapped waves (10.110)-
(10.112) of Rhines (1970).

Equation (10.128) is their dispersion relation in a
half-plane bounded by the sloping bottom (Rhines,
1970). The frequency may be either sub- or super-
inertial. The coastally trapped waves have o >
N sin(tan - a) [by analogy with the fact that for Ursell's
(1952) edge waves oa2 < gk] and there are a finite num-
ber of them:

n = 1,2,... < [r/(4tan-'a') - 1/2]. (10.129)

as the boundary-value problem governing periodic
[exp(-it)] second-class and low-frequency first-class
internal) waves over the linear beach. Ou (1979) saw
that the affine transformation

z =3 f2 - r2)l12//No (10.121)

followed by a rotation of coordinates from (x,y,2) to
(x', y, z') such that the beach z = -ax now becomes
z' = 0 leads to

aop a¥P+ - k 2p = 0, (10.122)oz' O x12

Op kfO a'

On r (1 +a'2)1/2P
at z' = 0,

Op = 0 at z' = a'x' (10.124)
On

for motions periodic in y[exp(ky)], and furthermore
that this is exactly Ursell's (1952) problem just turned
upside down; (10.122), (10.123), and (10.124) correspond
to (10.93), (10.94), and (10.97). The transformed beach
slope a' is given by

a' = aN(f2o - r2)-'/2. (10.125)

For second-class waves

o < f, (10.126)

Note that n = 0 would imply or = f but this does not
solve the full equations (10.30) and associated boundary
conditions.

In the limit of decreasing slope a', (10.129) allows
ever more modes, and the dispersion relation (10.127)
for coastally trapped waves simplifies to

a- = -fo(2n + 1). (10.130)

This is the low-frequency, short-wavelength second-
class limit of the barotropic dispersion relation (10.98).
We thus identify Ou's coastally trapped modes as the
stratified analog of the already familiar refractively
trapped second-class topographic Rossby waves.

Over the linear beach, then, stratification limits the
number of second-class refractively trapped topo-
graphic waves and opens up a new continuum of bot-
tom-trapped waves. Figure 10.19 compares barotropic
and baroclinic dispersion relations when the ocean sur-
face is rigid. Further results are given by Ou (1979).

Suppose now that the linear beach terminates in a
flat bottom of depth Do, as in (10.102). Ou's (1979)
transformation allows us to deal efficiently with the
stratified problem. Figure 10.20 summarizes the
boundary-value problem and its alteration by Ou's
transformation into an equivalent problem in deep-
water waves (figure 10.20D). In this latter problem, the
deep-water continuum that existed for the linear beach
must now be quantized into an infinite family of modes
by repeated reflection between the shoaling and the
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Figure Io.g9A The dispersion relation (10.130), viz., s =
-1/(2n + 1) for topographic Rossby waves refractively trapped
over the linear beach D = -ax beneath rotating homogeneous
fluid. There are an infinite number n = 1,2,... of trapped
modes.
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k

Figure Io.g9B The dispersion relation (10.127)

s = a'/{(l + a'2)"'2sin[(2n + 1)tan-la']},

where a' = aNol[fo(l-s2)"12], for topographic Rossby waves
refractively trapped over the linear beach D = -ax beneath
uniformly stratified (buoyancy frequency No) rotating fluid.
There are a finite number n = 1,2,... < [r/( 4 tan-'a') - i] of
trapped modes all with frequencies s > Njal sin[tan- a]. At
lower frequencies a continuum of bottom-trapped modes re-
flected from x = exists. Sketch is for No = 10fo, a = 10-2.

'\\ *
I\

k

Figure Io.I9C Sketch of dispersion relation for topographic
Rossby waves in rotating stratified fluid over a linear beach
that terminates in a uniform-depth ocean. The continuum of
bottom-trapped modes that existed over the semi-infinite
beach is quantized. All dispersion curves pass through s = 0
as k -- 0.

overhanging coasts. Low-mode edge waves have small
amplitude at the overhanging coast and are not much
affected by it. But higher-mode edge waves have appre-
ciable amplitude at the overhanging coast and they
blend smoothly into the infinite family of modes made
up of waves repeatedly reflected between beach and
the overhanging coast. All these results have direct
analogs in the original stratified problem (figure
10.20A). There are a number of second-class topo-
graphic waves that are refractively trapped near the
coast and that have decayed to very small amplitudes
at the seaward termination of the beach. The contin-
uum of bottom-trapped waves present over the unend-
ing linear beach is replaced by an infinite family of
bottom-trapped waves reflected repeatedly between the
coast and the seaward termination of the beach. In the
special case a = of a perpendicular coast, their dis-
persion relations are easily seen to be

oa = NDok/nrr (10.131)

and they then correspond to ordinary internal Kelvin
waves in this case there are no refractively trapped
modes). Other shelf geometries invite similar treat-
ment. Figures 10.20E and 10.20F show the equivalent
deep-water wave problem for a step shelf. Deep-water
waves on surface 1 of figure 10.20F that are short
enough that their particle displacements at the level of
surface 2 are negligible correspond in the stratified
problem (figure 10.20E) to internal Kelvin waves
trapped against the coast. Deep-water waves on surface
2 of figure 10.20F correspond to baroclinic counterparts
of the double Kelvin wave that, in homogeneous fluid,
may be trapped along a discontinuity in depth (Lon-
guet-Higgins, 1968b; see also section 10.4.6).

In general, if the equivalent deep-water wave prob-
lem has the waveguide-like dispersion relations
o2/g = F.(H,y,k), n = 1, 2, ... , with H,)y as defined in
figure 10.20D, then the corresponding stratified shelf
problem must have the dispersion relation

kf a a'
(1 = ) F.[((Da'la)2 + Doa-2 )"2

~r {1 + a'2) m'

tan- ' a', k] (10.132)

so that for all the dispersion curves oa - 0 as k - 0.
The dispersion relation must thus qualitatively look
like figure 10.19C. Wang and Mooers (1976) have gen-
eralized the problem numerically to more complex
shelf profiles with nonuniform stratification N(z).

Ou's (1979) transformation is most useful for second-
class motions (10.125) because for them the trans-
formed coordinates are real. For first-class motions
with a-2 > f2 it still produces Laplace's equation but
now z' is imaginary. Wunsch (1969) has nonetheless
been able to use it to discuss first-class internal waves
obliquely incident on the linear beach without rota-
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change, i.e., provided that the relief does not scatter
energy from one mode into others. Constancy of n is
indeed a feature of Wunsch's solutions but it cannot
be expected to hold for more abrupt relief, especially
if the relief slope exceeds the characteristic slope. If
the relief couples modes efficiently, then scattering
into higher modes allows I to remain real even in deep
water far from shore so that energy is not refractively
trapped near the coast. In principle, scattering into in-
ternal modes thus even destroys the perfect trapping of
long surface gravity waves predicted by LSW theory
over a step shelf, but in practice appreciable trapping
is often observed. The efficiency of mode coupling de-
pends both on the relief and on the vertical profile N(z)
of the buoyancy frequency, so that a general result for
internal waves is difficult to formulate.

(e) Stratified Problem

P1

(f)

Figure Io.2o The deep-water surface-wave analog (d,f) of two
shelf problems involving topographic Rossby waves in uni-
formly stratified rotating fluid: (a) stratified problem; (b) result
of affine transformation; (c) result of rotation; (d) equivalent
deep-water problem (velocity potential ); (e) stratified prob-
lem; (f) equivalent deep-water problem (atmospheric pressure
P, must be maintained lower than P2 for physical realizabil-
ity).

tion. This is the stratified analog of Eckart's (1951)
nonrotating LSW study of waves over a sloping beach
(section 10.4.6).

For beach slopes much smaller than the slope (or/N)
of (low-frequency) internal wave characteristics (10.43),
Wunsch thus found that internal waves are refracted
just like surface gravity waves by the shoaling relief
and that refractively trapped edge modes occur. From
the dispersion relation

o0) 2 (1 2 + k 2 )

for plane internal waves of the form

w = sin( D) exp(-i t + ilx + iky)

over a uniform bottom Do, I must ultimately become
imaginary if Do is allowed to grow parametrically off-
shore while n and k are held fixed. One would therefore
expect a WKB treatment of internal waves over gently
shoaling relief to result in refraction and refractive
trapping provided that the mode number n does not

10.4.8 Free Oscillations of Ocean Basins
Finding the free oscillations allowed by LTE in rotating
ocean basins is difficult even in the f-plane (section
10.4.2). Platzman (1975, 1978) has developed powerful
numerical techniques for finding the natural frequen-
cies and associated flow fields of free oscillations al-
lowed by LTE in basins of realistic shape and bottom
relief. The general classification of free oscillations into
first- and second-class modes characteristic of the
idealized cases discussed in sections 10.4.2 and 10.4.5
(effectively for a global basin) persists in Platzman's
(1975) calculations. For a basin composed of Atlantic
and Indian Oceans, there are 14 free oscillations with
periods between 10 and 25 hours. Some of these are
very close to the diurnal and semidiurnal tidal periods,
and all of them, being within a few percentage points
of equipartition of kinetic and potential energies, are
first-class modes. There are also free oscillations of
much longer period, for which potential energy is only
about 10% or even less of kinetic energy; they are
second-class modes.

I know of no extratidal peaks in open-ocean sea-level
records that correspond to these free oscillations. There
is some evidence in tidal admittances for the excitation
of free modes but the resonances are evidently not very
sharp (see section 10.5.1). Munk, Bryan, and Zetler
(private communication) have searched without suc-
cess for the intertidal coherence of sea level across the
Atlantic that the broad spatial scale of these modes
implies. The modes are evidently very highly damped.

10.5 The Ocean Surface Tide

10.5.1 Why Ocean Tides Are of Scientific Interest
The physical motivation for studying and augmenting
the global ensemble of ocean-tide records has expanded
enormously since Laplace's time. In this section I have
tried to sketch the motivating ideas without getting
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