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The Amplitude
of Convection
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13.1 Introduction

As a ubiquitous source of motion, both astrophysical
and geophysical, convection has attracted theoretical
attention since the last century. In the ocean, many
different scales are called convection; from the deep
circulation due to the seasonal production of Arctic
bottom water (see chapter 1) to micromixing of salt
fingers (see chapter 8). In the atmosphere, convection
dominates the flow from subcloud layers to Hadley
"cells." It is proposed that convection in the earth's
core powers the geomagnetic field. The nonperiodic
reversals of that field, captured in the rock, define the
evolution of the ocean basin. Recent recognition that
this latter process is caused by convection in the man-
tle has produced a new geophysics.

In the past, understanding the central features of
convection has come from the isolation of "simplest"
mechanistic examples. Although large-scale geophysi-
cal convection never coincides with the idealized sim-
plest problem, these examples (e.g., Lord Rayleigh's
study of the Btnard cells) have generated much of the
formal language of inquiry used in the field. Students
of dynamic oceanography have favored this formal lan-
guage mixed in equal parts with more pragmatic en-
gineering tongues when interpreting oceanic convec-
tive processes.

Speculations beyond these mathematically access-
ible problems take the form of hypotheses, experiments,
and numerical experiments in which one seeks to iso-
late the central processes responsible for the qualitative
and quantitative features of fully evolved flow fields.
The many facets of turbulent convection represent the
frontier. This chapter reviews only a narrow path to-
ward that frontier. This path is aimed at an understand-
ing of the elementary processes responsible for the am-
plitude of convection, in the belief that quantitative
theories permit the theorist the least self-deception.

Of course the heat flux due to a prescribed thermal
contrast, like the flow due to a given stress, has been
observed for a century. The relation between force and
flux has been rationalized with models emerging
largely from linear theory and kinetic theory-in par-
ticular, with the use of observationally determined
"eddy conductivities" (estimated for the oceans in
Sverdrup, Johnson, and Fleming, 1942). Early theoreti-
cal interpretations of oceanic transport processes that
go beyond these simple beginnings were explored by
Stommel (1949), while current usage and extensions of
"mixing" theories are discussed in chapter 8.

Central to the most recent of such proposals is the
idea that some large scale of the motion or density field
is steady or statistically stable, while turbulent trans-
port due to smaller scales can be parameterized. Chang-
ing the amplitude of the small-scale transports is pre-
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sumed to lead to a new equilibrium for the large scale,
so that the statistical equilibrium is marginally stable.
This view lurks behind most traditional oceanic model
building and its quasi-linear form is used on small-
scale phenomena as well-from inviscid marginal sta-
bility for the purpose of quantifying aspects of the wind
mixed layer (Pollard, Rhines, and Thompson 1973) to
viscous marginal stability for the purpose of quantify-
ing double diffusion (Linden and Shirtcliffe, 1978).

It has not yet been possible to establish either the
limits of validity or generalizability of this quasi-linear
use of marginal stability in the geophysical setting.
There can be little doubt that it is "incorrect"-that
fluids typically are destabilized by the extreme fluc-
tuations-yet it appears to be the only quantifying con-
cept of sufficient generality to have been used in
oceanic phenomena from the largest to the smallest
scales. Of course, our idealizations in the realm of
geophysics are all "incorrect." We turn to observation
to establish in what sense and in what degree these
idealizations are good "first-order" descriptions of real-
ity.

This chapter explores the hierarchy of quantifying
idealizations in convection theory. The quasi-linear
marginal-stability problem is drawn from the full for-
mal statement for stability of the flow. A theory of
turbulent convection based on marginal stability is pre-
sented, incorporating both the qualitative features de-
termined by inviscid processes and the quantitative
aspects determined by dissipative processes.

Observations provide better support for both the
quantitative and qualitative results from quasi-linear
marginal-stability theory than might have been antic-
ipated, encouraging its continued application in the
oceanic setting.

13.2 Basic Boussinesq Description

The primary simplification that permitted mathemat-
ical progress in the study of motion driven by buoyancy
was the Boussinesq statement of the equations of mo-
tion. In retrospect, the central problem was to translate
the correct energetic statement

(u.VP) = ,

into the approximate form

(yWT)= 0,

where u is the vector velocity of the fluid, P the pres-
sure, y the coefficient of thermal expansion times the
acceleration of gravity, W the vertical component of
velocity, T the temperature field, the total dissipa-
tion by viscous processes in the fluid, and the brackets
a spatial average over the entire fluid. This has been
achieved (e.g., Spiegel and Veronis, 1960; Malkus 1964)
by recognizing that the Boussinesq equations are the

leading terms in an asonic asymptotic expansion away
from a basic adiabatic hydrostatic temperature distri-
bution. This expansion is usually made in two small
parameters; one is the ratio of the height of the con-
vecting region to the total "adiabatic depth" of the
fluid, while the second is the ratio of the superadiabatic
temperature contrast across the convecting region to
the mean temperature.

In suitably scaled variables, the leading equations of
the expansion are

V'u = O,

1 Du
Dr- = -VP + V2u + RaTk,

DT = V2T,
Dt

(13.1)

(13.2)

(13.3)

where

D a
Dt at

v yATd3v- Ra =
K KV

k is the unit vector in the antidirection of gravitational
acceleration, d the depth of the convecting region, AT
the superadiabatic temperature contrast, K the ther-
mometric conductivity of the fluid and v is its kine-
matic viscosity, Ra the Rayleigh number, and a the
Prandtl number. Other symbols are defined above. The
Boussinesq equations retain the principal advective
nonlinearity, but have no sonic solutions. Higher-order
equations are linear and inhomogeneous, forced by the
lower-order solutions.

The most accessible problem in free convection has
been the study of motion in a horizontal layer of fluid
bounded by good thermal conductors at prescribed
temperatures. Such a layer is the thermal equivalent of
the constant-stress layer in shear flow. This is seen by
taking an average over the horizontal plane of each
term in the heat equation. One writes from 13.3

aT ( aT
at az az + (13.4)

where the overbar indicates the horizontal average. For
steady or statistically steady convection, T/at van-
ishes, and one may integrate (13.4) twice to obtain

Nu =- + WT = + (WT),at (13.5)

where the constant of integration Nu is called the Nus-
selt number and is the ratio of the total heat flux to
that due to conduction alone.

Two other integrals of considerable interest can be
constructed from the Boussinesq equations. The first
of these is the power integral found by taking the scalar
product of (13.2) with u and integrating over the entire
fluid. One obtains
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(-U.V2U) = (IVul2) = Ra(WT), (13.6)

due to the vanishing of the conservative advective
terms. Multiplying (13.6) by the fluctuation tempera-
ture,

T = T - T, (13.7)

one obtains an integral similar to (13.6), which may be
written by means of (13.5) as

(-TV2T) = (IvT12) = (-WT aT.)

= (WT) + (WTr)2 - (WT2). (13.8)

The integrals (13.5), (13.6), and (13.8) are the principal
constraints used in the "upper bound" theories of con-
vection (see section 13.3).

This section would not be complete without a state-
ment of those equations that determine the stability of
any solution, say u, P0, T, of the basic equations
(13.1)-(13.3). Consider a general disturbance v, p, 0 to
the solution Uo, Po, To. Then

u = uo + v, P = P +p, T = To + . (13.9)

One concludes from (13.1)-(13.3) that, the time evolu-
tion of v, p, 0 is determined by

V-v = 0, (13.10)

1 Dt + V-VuO + vVv)
I t

form of (13.10)-(13.12) can determine a maximum
Ra = Ra(a) beyond which u0, Po, To is assuredly un-
stable. In principal these linear problems can be solved
when Uo, Po, To is time independent, and solved at least
approximately when u0, P0, To is periodic in time. How-
ever, analytic techniques for determining the condi-
tions leading to eventual decay of v, p, 0 on a nonper-
iodic solution no, Po, To have not been developed.

In concluding this description of the "simple" Bous-
sinesq fluid one should note how many interesting
problems lie outside the formalism. Just outside the
framework, but capable of incorporation, are porous
boundaries, variable viscosity, and nonlinear equations
of state. Much farther outside the framework are con-
vection through several scale heights and velocities
comparable to the sound speed.

13.3 Initial Motions

The state of pure conduction without motion, u0 = 0,
To = -z, where z is the vertical coordinate measured
from the lower surface, is a solution to the Boussinesq
equations at all Ra. The determination of that critical
value of Ra at which this conduction solution is un-
stable is the classical Rayleigh convection problem
(e.g., Chandrasekhar, 1961). This problem is the lin-
earized form of (13.10)-(13.12) for Uo = 0, To = -z, and
is written

V'u = 0, (13.15)

(13.11) i1 c2 = -Vp + V2v + RaOk,
0 &

t_ + vVT + u.VO) = V20 (13.12)

where, as before, DIDt = alat + uV.
For a solution Uo, Po, To to be stable (hence realize-

able), arbitrary infinitesimal disturbances, v, p,0 must
eventually decay. For a solution, Uo, Po, To to be abso-
lutely stable, arbitrary disturbances of any amplitude
must eventually decay. This latter problem is tractable
in some instances and has been addressed using the
"power" integrals for v and 0. These are written

I (V2) + (V-V.VUo)

= - (IVvl2) + Ra(vekO), (13.13)

D ( 02) + (v. VTo) = -(IVO2). (13.14)Dt

Equations (13.10), (13.13), and (13.14) constitute a lin-
ear problem for v and 0 whose solution can determine
a minimum Ra = Ra(ar) for which u0, P0, To is abso-
lutely stable. In contrast, the solutions to the linear

00 = w + V20,
at

(13.16)

w = vk. (13.17)

If one takes the k component of the curl of the curl of
(13.16) and, using (13.17), eliminates , one may write
the Rayleigh problem as a constant coefficient, sixth-
order partial differential equation in the single variable
w:

(I a V 2) ( V 2Vw = -Ra V2w,/o \& /) (13.18)

where V2, is the horizontal Laplacian. The problem is
separable so that

V2w = -a 2w (13.19)

defines the horizontal wavenumber a2. Also, it is not
difficult to establish that the disturbance w first starts
to grow without temporal oscillations; the instability
is "marginal." Hence, subject to appropriate boundary
conditions one is to find the eigenstructure of the or-
dinary differential operator

[( 2 - 2Raw = 0.
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The richness of solutions to this simple problem and
its "adjacent" modifications have been explored for
more than two generations and now enters a third. In
the present generation, formal techniques that had
been developed to find the initial postcritical ampli-
tude of convection are used to clarify the finite-ampli-
tude stability problems. These finite-amplitude studies
include the resolution of the infinite plan form degen-
eracy of the classical linear problem and the determi-
nation of conditions causing subcritical instabilities (or
"snap-through" instabilities). The formal finite-ampli-
tude technique, often called modified perturbation the-
ory, is the subject of a recent lengthy review (Busse,
1978). In brief, one expands v, p, 0 in terms of an
amplitude E (typically the amplitude of w), and in ad-
dition employs a parametric expansion of the control-
ling parameters, also in terms of E, to permit solvability
of the sequence of equations generated by the nonlinear
terms. One writes

v= A v,, Ra = Raef, (13.21)
n=1 n=O

with similar expansions for p and , and where Ra is
the critical Rayleigh number determined from the lin-
ear problem (13.20). Here, each of the Ran is determined
to permit a steady solution to the en set of equations
generated by inserting (13.20) into (13.10)-(13.12). Par-
alleling (13.10)-(13.12) and (13.20), an expansion can be
constructed for potential disturbances v', p', ' in order
to determine their stability at each order E.

Among the many interesting conclusions reached in
these studies is that the amplitude of the stable con-
vection forms are determined principally by a modifi-
cation of T due to the convective flux w0. The finite-
amplitude distortions of w and from their infinites-
imal form also affects their equilibrium amplitude, and
although a smaller effect than the modification of the
mean, it is always present. Conditions for subcritical
instability, from (13.21), are seen to be that either
Ra, < 0, Ra2 > 0 (as is the case when hexagonal cellular
convection is observed), or Ra2 < 0, Ra4 > 0 (as occurs
in penetrative convection in water cooled below 4°C),
or some mixture of these two conditions. It is found to
order e2 in each case that the preferred (stable) convec-
tion is that which transports the most heat. However,
there is now an example of a convective process in
which the maximum heat-flux solution at large am-
plitude is not the most stable form. No simple integral
criterion has been found that assures the stability of a
Boussinesq solution at large Ra.

Many papers have been written using modified per-
turbation theory, and more appear each year. Unusual
current studies include nonperiodic behavior of initial
convection in rotating systems and the onset of mag-
netic instabilities due to finite-amplitude convection
in electrically conducting fluids. Busse's review ex-

hibits the significant enrichment of our knowledge and
language of inquiry of fluid dynamics by these finite-
amplitude studies. This same review, however, clari-
fies the intractable character of convection mathemat-
ics beyond e2.

This section on initial motions will be concluded by
noting E. Lorenz's (1963b) minimal nonlinear convec-
tion model, first explored by Saltzman (1962), is an
abruptly truncated E2 Rayleigh convection process.
This third-order autonomous system exhibits a tran-
sition to "convection," then at higher "Rayleigh" num-
ber a transition to exact solutions with nonperiodic
behavior. A group of mathematicians and physicists
has emerged to explore these "strange attractors" and
similar models, hoping among other things to find new
access to the turbulent process in fluids. One can be
confident that the study of these autonomous models
will lead eventually to elementary insights of value to
the geophysical dynamicist, yet such study is only one
facet of the third generation beyond linear convective
instability mentioned earlier. The path to be followed
here through the ever-growing convection literature
must include the theory of upper bounds on turbulent
heat flux, for this theory deductively addresses convec-
tion amplitude. The blaze mark along this path, how-
ever, continues to be stability theory, and the final
section explores its relation to the observed fully
evolved flow.

13.4 Quantitative Theories for High Rayleigh
Number

Beyond modified perturbation theory one finds hy-
potheses, speculation, and assorted ad hoc models re-
lated to aspects of turbulent convection or designed to
rationalize a body of data. In this section three unique
theories that predict an amplitude for convection are
discussed. The first of these is the mean-field theory of
Herring (1963). The second is the theory of the upper
bound on heat flux, first formulated by Howard (1963),
and its "multi-a" extension by Busse (1969). The third
theory, by Chan (1971), is also a heat-flux upper-bound
theory, but for the idealized case of infinite Prandtl
number. The link between the first and last theories
proves to be most informative.

The mean-field theory is equivalent to the first ap-
proximation of many formal statistical closure propos-
als, and is the only contact this study will make with
such proposals. As implemented by Herring (1963), the
equation describing the motion and temperature field
are obtained by retaining only those nonlinear terms
in the basic equations that contain a nonzero horizon-
tally averaged part. From (13.1)-(13.4) and (13.7) one
writes the mean-field equations thusly:

(13.22)V-u = 0,
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