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Internal Waves
and Small-Scale
Processes

Walter Munk

9.1 Introduction

Gravity waves in the ocean's interior are as common
as waves at the sea surface-perhaps even more so, for
no one has ever reported an interior calm.

Typical scales for the internal waves are kilometers
and hours. Amplitudes are remarkably large, of the
order of 10 meters, and for that reason internal waves
are not difficult to observe; in fact they are hard not to
observe in any kind of systematic measurements con-
ducted over the appropriate space-time scales. They
show up also where they are not wanted: as short-
period fluctuations in the vertical structure of temper-
ature and salinity in intermittent hydrocasts.

I believe that Nansen (1902) was the first to report
such fluctuations;l they were subsequently observed
on major expeditions of the early nineteen hundreds:
the Michael Sars expedition in 1910, the Meteor ex-
peditions in 1927 and 1938, and the Snellius expedition
in 1929-1930. [A comprehensive account is given in
chapter 16 of Defant (1961a)]. In all of these observa-
tions the internal waves constitute an undersampled
small-scale noise that is then "aliased" into the larger
space- time scales that are the principal concern of clas-
sical oceanography.

From the very beginning, the fluctuations in the hy-
drocast profiles were properly attributed to internal
waves. The earliest theory had preceded the observa-
tions by half a century. Stokes (1847) treated internal
waves at the interface between a light fluid overlaying
a heavy fluid, a somewhat minor extension of the the-
ory of surface waves. The important extension to the
case of a vertical mode structure in continuously strat-
ified fluids goes back to Rayleigh (1883). But the dis-
creteness in the vertical sampling by hydrocasts led to
an interpretation in terms of just the few gravest
modes, with the number of such modes increasing with
the number of sample depths (giving j equations in j
unknowns). And the discreteness in sampling time led
to an interpretation in terms of just a few discrete
frequencies, with emphasis on tidal frequencies.

The development of the bathythermograph in 1940
made it possible to repeat soundings at close intervals.
Ufford (1947) employed three vessels from which bath-
ythermograph lowerings were made at 2-minute inter-
vals! In 1954, Stommel commenced three years of tem-
perature observations offshore from Castle Harbor,
Bermuda, initially at half-hour intervals, later at 5-min-
ute intervals. 2 Starting in 1959, time series of isotherm
depths were obtained at the Navy Electronics Labora-
tory (NEL) oceanographic tower off Mission Beach, Cal-
ifornia, using isotherm followers (Lafond, 1961) in-
stalled in a 200-m triangle (Cox, 1962).

By this time oceanographers had become familiar
with the concepts of continuous spectra (long before
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routinely applied in the fields of optics and acoustics),
and the spectral representation of surface waves had
proven very useful. It became clear that internal waves,
too, occupy a frequency continuum, over some six oc-
taves extending from inertial to buoyant frequencies.
[The high-frequency cutoff had been made explicit by
Groen (1948).] With regard to the vertical modes, there
is sufficient energy in the higher modes that for many
purposes the discrete modal structure can be replaced
by an equivalent three-dimensional continuum.

We have already referred to the measurements by
Ufford and by Lafond at horizontally separated points.
Simultaneous current measurements at vertically sep-
arated points go back to 1930 Ekman and Helland-
Hansen, 1931). In all these papers there is an expression
of dismay concerning the lack of resemblance between
measurements at such small spatial separations of os-
cillations with such long periods. I believe (from dis-
cussions with Ekman in 1949) that this lack of coher-
ence was the reason why Ekman postponed for 23 years
(until one year before his death) the publication of
"Results of a Cruise on Board the 'Armauer Hansen' in
1930 under the Leadership of Bjrnm Helland-Hansen"
(Ekman, 1953). But the decorrelation distance is just
the reciprocal of the bandwidth; waves separated in
wavenumber by more than Ak interfere destructively
at separations exceeding (Ak)-. The small observed
coherences are simply an indication of a large band-
width.

The search for an analytic spectral model to describe
the internal current and temperature fluctuations goes
back over many years, prompted by the remarkable
success of Phillips's (1958) saturation spectrum for sur-
face waves. I shall mention only the work of Murphy
and Lord (1965), who mounted temperature sensors in
an unmanned submarine at great depth. They found
some evidence for a spectrum depending on scalar
wavenumber as k-5'3, which they interpreted as the
inertial subrange of homogeneous, isotropic turbu-
lence. But the inertial subrange is probably not appli-
cable (except perhaps at very small scales), and the
fluctuations are certainly not homogeneous and not
isotropic.

Briscoe (1975a) has written a very readable account
of developments in the early 1970s. The interpretation
of multipoint coherences in terms of bandwidth was
the key for a model specturm proposed by Garrett and
Munk (1972b). The synthesis was purely empirical,
apart from being guided by dimensional considerations
and by not violating gross requirements for the finite-
ness of certain fundamental physical properties. Sub-
sequently, the model served as a convenient "straw-
man" for a wide variety of moored, towed and
"dropped" experiments, and had to be promptly mod-
ified [Garrett and Munk (1975), which became known

as GM75 in the spirit of planned obsolescence]. There
have been further modifications [see a review paper by
Garrett and Munk (1979)]; the most recent version is
summarized at the end of this chapter.

The best modem accounts on internal waves are by
O. M. Phillips '(1966b), Phillips (1977a), and Turner
(1973a). Present views of the time and space scales of
internal waves are based largely on densely sampled
moored, towed, and dropped measurements. The pi-
oneering work with moorings was done at site D in the
western North Atlantic (Fofonoff, 1969; Webster,
1968). Horizontal tows of suspended thermistor chains
(Lafond, 1963; Charnock, 1965) were followed by towed
and self-propelled isotherm-following "fishes" (Katz,
1973; McKean and Ewart, 1974). Techniques for
dropped measurements were developed along a number
of lines: rapidly repeated soundings from the stable
platform FLIP by Pinkel (1975), vertical profiling of
currents from free-fall instruments by Sanford (1975)
and Sanford, Drever, and Dunlap (1978), and vertical
profiling of temperature from a self-contained yo-yoing
capsule by Cairns and Williams (1976). The three-di-
mensional IWEX (internal wave experiment) array is
the most ambitious to date (Briscoe, 1975b). These ex-
periments have served to determine selected parame-
ters of model spectra; none of them so far, not even
IWEX, has been sufficiently complete for a straight-
forward and unambiguous transform into the multi-
dimensional (co,k)-spectrum. The FLIP measurements
come closest, giving an objective spectrum in the two
dimensions o, k, with fragmentary information on ka,
k,. Otherwise only one-dimensional spectra can be
evaluated from any single experiment, and one is back
to model testing. Yet in spite of these observational
shortcomings, there is now evidence for some degree
of universality of internal wave spectra, suggesting that
these spectra may be shaped by a saturation process
(the interior equivalent of whitecaps), rather than by
external generation processes.

Internal waves have surface manifestations consist-
ing of alternate bands of roughened and smooth water
(Ewing, 1950; Hughes, 1978), and these appear to be
visible from satellites (figure 9.1). High-frequency sonar
beams are a powerful tool for measuring internal wave
related processes in the upper oceans (figures 9.2, 9.3).
The probing of the deep ocean interior by acoustics is
ultimately limited by scintillations. due to internal
waves (Flatte et al., 1979; Munk and Wunsch, 1979)
just as the "diffraction-limited" telescope has its di-
mensions set by the small-scale variability in the upper
atmosphere.

It will be seen that internal waves are a lively subject.
The key is to find the connections between internal
waves and other ocean processes. The discovery of ever
finer scales, down to the scale of molecular processes,
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Figure 9.I SEASAT synthetic aperture radar image off Cabo area. The pattern in the right top area is most likely formed
San Lzaro, Baja California (24°48'N, 112°18'W) taken on 7 by internal waves coming into the 50 fathom line. (I am
July 1978. Scale of image nearly matches that of bathymetric indebted to R. Bernstein for this figure.)
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Figure 9.2 The water column is insonified with a narrow
downward sonar beam of 200 kHz (wavelength 0.75 cm). The
dark band is presumably a back-scattering layer convoluted
by shear instabilities. In a number of places the instabilities
have created density inversions. This is confirmed by the two
o-t-profiles. The acoustic reflection from the sinking CTD
along the steeply slanting lines shows the depth-time history
of the rr,-profiles. The profiling sound source was suspended
from a drifting ship. The horizontal distance between over-
turning events was estimated to be 60-70 m. (I am indebted
to Marshall Orr of Woods Hole Oceanographic Institution for
this figure; see Haury, Briscoe, and Orr, 1979.)
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has been a continuing surprise to the oceanographic
community for 40 years. Classical hydrographic casts
employed reversing (Nansen) bottles typically at 100-
m intervals in the upper oceans beneath the thermo-
cline, and half-kilometer intervals at abyssal depths.
Only the gross features can be so resolved. Modem
sounding instruments (BT, STD, CTD) demonstrated
a temperature and salinity3 fine structure down to me-
ter scales. An early clue to microstructure was the
steppy traces on the smoked slides of bathythermo-
graphs. These steps were usually attributed to "stylus
stiction," and the instruments suitably repaired.

Free-fall apparatus sinking slowly (-0.1 ms-}) and
employing small, rapid-response (-0.01 s) transducers,
subsequently resolved the structure down to centime-
ter scales and beyond. The evolving terminology

gross structure:
fine structure:
microstructure:

a,
CW

larger than 100 m vertical
1 m to 100 m vertical
less than 1 m vertical

01 02 03 04

II June 1977 (hr)

is then largely based on what could be resolved in a
given epoch (see chapter 14). The fine-structure meas-
urements of temperature and salinity owe much of
their success to the evolution of the CTD (Brown,
1974). The pioneering microscale measurements were
done by Woods (1968a) and by Cox and his collaborators
(Gregg and Cox, 1972; Osborn and Cox, 1972). Meas-
urements of velocity fine structure down to a few me-
ters have been accomplished by Sanford (1975) and
Sanford, Drever, and Dunlap (1978). Osborn (1974,
1980) has resolved the velocity microstructure between
40 and 4 cm. Evidently velocity and temperature struc-
ture have now been adequately resolved right down to
the scales for which molecular processes become dom-
inant. At these scales the dissipation of energy and
mean-square temperature gradients is directly propor-
tional to the molecular coefficients of viscosity and
thermal diffusivity. The dissipation scale for salinity
is even smaller (the haline diffusivity is much smaller
than the thermal diffusivity) and has not been ade-
quately resolved. The time is drawing near when we
shall record the entire fine structure and microstruc-
ture scales of temperature, salinity and currents [and
hence of the buoyancy frequency N(z) and of Richard-
son number Ri(z)] from a single free-fall apparatus.

Perhaps the discovery of very fine scales could
have been anticipated. There is an overall ocean bal-
ance between the generation and dissipation of mean-
square gradients. Eckart (1948) refers to the balancing
processes as stirring and mixing. Garrett (1979) has put
it succinctly: "Fluctuations in ocean temperature pro-
duced by surface heating and cooling, and in salinity
due to evaporation, precipitation, run-off and freezing,
are stirred into the ocean by permanent current sys-
tems and large scale eddies." Mixing ultimately occurs

Figure 9.3 Measurements of Doppler vs. range were made at
2-minute intervals with a quasi-horizontal 88-kHz sound
beam mounted on FLIP at a depth of 87 m. Bands of alternat-
ing positive and negative Doppler in velocity contours) are
the result of back scatter from particles drifting toward and
away from the sound source (the mean drift has been re-
moved). The velocities are almost certainly associated with
internal wave-orbital motion. The range-rate of positive or
negative bands gives the appropriate projection of phase ve-
locity. The measurements are somewhat equivalent to suc-
cessive horizontal tows at 3000 knots! (I am indebted to Rob-
ert Pinkel of Scripps Institution of Oceanography for this
figure.)

through dissipation by "molecular action on small-
scale irregularities produced by a variety of processes."
The microstructure (where the mean-square gradients
largely reside) are then a vital component of ocean
dynamics. This leaves open the question whether mix-
ing is important throughout the ocean, or whether it
is concentrated at ocean boundaries and internal fronts,
or in intense currents an extensive discussion may be
found in chapter 8).

What are the connections between internal waves
and small-scale ocean structure? Is internal wave
breaking associated with ocean microstructure? Is
there an associated flux of heat and salt, and hence
buoyancy? Does the presence of internal waves in a
shear flow lead to an enhanced momentum flux, which
can be parameterized in the form of an eddy viscosity?
What are the processes of internal-wave generation and
decay? I feel that we are close to having these puzzles
fall into place (recognizing that oceanographic "break-
throughs" are apt to take a decade), and I am uncom-
fortable with attempting a survey at this time.

Forty years ago, internal waves played the role of an
attractive nuisance: attractive for their analytical ele-
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gance and their accessibility to a variety of experimen-
tal methods, a nuisance for their interference with
what was then considered the principal task of physical
oceanography, namely, charting the "mean" density
field. Twenty years from now I expect that internal
waves will be recognized as being intimately involved
with the vertical fluxes of heat, salt, and momentum,
and so to provide a vital link in the understanding of
the mean fields of mass and motion in the oceans.

9.1.1 Preview of This Chapter
We start with the traditional case of a two-layer ocean,
followed by a discussion of continuous stratification:
constant buoyancy frequency N, N decreasing with
depth, a maximum N (thermocline), a double maxi-
mum. Conditions are greatly altered in the presence of
quite moderate current shears. Short (compliant) inter-
nal waves have phase velocities that are generally
slower than the orbital currents associated with the
long (intrinsic) internal waves, and thus are subject to
critical layer processes. There is further nonlinear cou-
pling by various resonant interactions.

Ocean fine structure is usually the result of internal-
wave straining, but in some regions the fine structure
is dominated by intrusive processes. Microstructure is
concentrated in patches and may be the residue of
internal wave breaking. Little is known about the
breaking of internal waves. Evidently, there are two
limiting forms of instability leading to breaking: ad-
vective instability and shear instability.

The chapter ends with an attempt to estimate the
probability of wave breaking, and of the gross vertical
mixing and energy dissipation associated with these
highly intermittent events. An important fact is that
the Richardson number associated with the internal
wave field is of order 1. Similarly the wave field is
within a small numerical factor of advective instabil-
ity. Doubling the mean internal wave energy can lead
to a large increase in the occurrence of breaking events;
halving the wave energy could reduce the probability
of breaking to very low levels. This would have the
effect of maintaining the energy level of internal waves
within narrow limits, as observed. But the analysis is
based on some questionable assumptions, and the prin-
cipal message is that we do not understand the prob-
lem.

9.2 Layered Ocean

We start with the conventional discussion of internal
waves at the boundary between two fluids of different
density. The configuration has perhaps some applica-
tion to the problem of long internal waves in the ther-
mocline, and of short internal waves in a stepwise fine
structure.

Following Phillips (1977a), this can be treated as a
limiting case of a density transition from p, above z =
-h to pi beneath z = -h, with a transition thickness
8h (figure 9.4). The vertical displacement {(z) has a peak
at the transition, and the horizontal velocity u z)
changes sign, forming a discontinuity (vortex sheet) in
the limit 8h -O 0. For the second mode (not shown), C(z)
changes sign within the transition layer and u(z)
changes sign twice; this becomes unphysical in the
limit Ah - 0. For higher modes the discontinuities are
even more pathological, and so a two-layer ocean is
associated with only the gravest internal mode.

For the subsequent discussion it is helpful to give a
sketch of how the dependent variables are usually de-
rived and related. The unknowns are u,v,w,p (after
eliminating the density perturbation), where p is the
departure from hydrostatic pressure. The four un-
knowns are determined by the equations of motion and
continuity (assuming incompressibility). The linear-
ized x,y equations of motion are written in the tradi-
tional f-plane; for the vertical equation it is now stan-
dard [since the work of Eckart (1960)] to display the
density stratification in terms of the buoyancy (or
Brunt-Vaisala) frequency

(9.1)

thus giving

Ow = 1 P- N 2
= 0.

Ot po t

The last term will be recognized as the buoyancy force
-g 8ppo of a particle displaced upwards by an amount
l = fwdt.

For propagating waves of the form (z) expi(kx - t)
the equations can be
and §5.7) into

combined (Phillips, 1977a, §5.2

o U- U -'

o o

'l

p N-
_Z i

+ ' l 0

iif~

iH

Figure 9.4 A sharp density transition from p, to PI takes place
between the depths -z = h - 8h and -z = h + 18h. This is
associated with a delta-like peak in buoyancy frequency N(z).
Amplitudes of vertical displacement 4(z), horizontal velocity
u(z), and shear u'(z) = duldz are sketched for the gravest
internal wave mode.
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d2-- + Nk2 - =o. (9.2)
dz2 w 2 -f 2

The linearized boundary conditions are 0 = 0 at the
surface and bottom.

A simple case is that of f = 0 and N = 0 outside the
transition layer. We have then

C. = A sinhkz,

1 = B sinhk(z + H),

above and below the transition layer, respectively. The
constants A and B are determined by patching the ver-
tical displacement at the transition layer:

u = =a at z = -h.

The dispersion relation is found by integrating Eq. (9.2)
across the transition layer:

C - 1 = -k24 N(Z) - W2

- 9(g- p - 28h) at z = -h,

transition where N reaches a maximum, but just the
opposite is true. To prove this, we use the condition of
incompressibility, iku(z) - io4' = 0, and equation (9.2)
to obtain

U = c = N 2z) - ka
k o~~~~c (9.3)

and so u' - N2 for small wIN; accordingly u'/N varies
as N. Thus the layers of largest gravitational stability
(largest N) are also the layers of largest shear instability
(largest u'/NI).

9.3 Continuously Stratified Ocean

The simplest case is that of constant N. The solution
to (9.2) is

4(z) = a sinmz, m2 = k2N '2 -
(a _2 f2 (9.4)

with m so chosen that ; vanishes at z = -H. Solving
for to2,

where 5' ddz. In the limit of small k h, that is, for
waves long compared to the transition thickness, the
foregoing equations lead to the dispersion relation

g(2plp)k
cothkh + cothk(H - h)

For a lower layer that is deep as compared to a wave-
length, the denominator becomes cothk(h - H) + 1.
If the upper layer is also deep, it becomes 1 + 1, and

1 p 1 k P lk P'- P,
2 p 2 g(pt + p.)'

As p, - 0, O2 --) gk, which is the familiar expression
for surface waves in deep water.

The case of principal interest here is that of an iso-
lated density transition 8p << p and k 8h << 1. Then
o2 = tgk 8pip. The vertical displacement is a maximum
at the transition and dies off with distance & from the
transition as a exp( -kl&l).

A question of interest is the variation of Richardson
number across the transition layer. We know from the
work of Miles and Howard [see Miles (1963)] that for
a transition p(z) and a steady u(z) of the kind shown in
figure 9.4, the flow becomes unstable to disturbances
of length scale h if Ri < . I find it convenient to refer
to the root-reciprocal Richardson number

Ri-1 2 = Iu'/NI,

so that large values imply large instabilities (as for Rey-
nolds numbers); the critical value is u'/N = 2. One
would think offhand that u'/N is a minimum at the

2 k2N2 + mjf 2

o= m + k2' mH = jrr,
mJ +k

j = 1,2,.... (9.5)

This dispersion relation is plotted in figure 9.5. The
vertical displacements for the first and third mode are
shown in figure 9.6. Very high modes (and the ocean
is full of them) in the deep interior are many wave-
lengths removed from the boundaries, and we can ex-
pect the waves to be insensitive to the precise config-
uration of top and bottom. The discrete dispersion %w(k)
is then replaced by an equivalent continuous dispersion
c(k, m).

The standard expressions for the particle velocities
u,w and the group velocities c with components
ol/Ok, aOwOm as functions of the propagation vector

N

C,

k (cpkm)

Figure 9.5 The dispersion Blwk) [equation (9.5)], for modes
j = 1, 10, 100, 1000, corresponding to vertical wavenumbers
m = 0.1, 1, 10, 100 cpkm in an ocean of depth 5 km. The in-
ertial frequency is taken at f = 0.0417 cph (1 cpd), and the
buoyancy frequency at N = 1 cph.
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Figure 9.6 Vertical displacements i(z) in a constant-N ocean,
for modes = 1 and i = 3.

z

near inertial
frequency

k
I>8

x

Cg

z
near buoyancy
frequency

i,k

Cg

Figure 9.7 The wavenumber vector k = (k, m) and group ve-
locity cg near the inertial frequency to = f + E) and near the
buoyancy frequency {to = N - E}, respectively. A packet of
wave energy is projected on the (x, z)-plane. Crests and troughs
in the wave packet are in a plane normal to k, and travel with
phase velocity c in the direction k. The wave packet travels
with group velocity cg at right angles to k, thus sliding side-
ways along the crests and troughs. The particle velocity u (not
shown) is in the planes at right angles to k.

k = (k, m) are easy to derive, but hard to visualize. Con-
sider a wave packet (figure 9.7) with crests and troughs
along planes normal to the paper and inclined with
respect to the (x, z)-axis as shown. The phase velocity
is in the direction k normal to the crests, but the group
velocity cg is parallel to the crests, and the wave packet
slides sideways. k is inclined to the horizontal by

m (N 2
- a1/2tan 8 = = (2_f2 (9.6a)

and so the angle is steep for inertial waves (o = f + E)
and flat for buoyancy waves (0o = N - E). The energy
packet is propagated horizontally for inertial waves,
and vertically for buoyancy waves, but the group ve-
locity goes to zero at both limits.

The flow u = (u, w) takes place in the plane of the
crest and troughs. For inertial waves, particles move in
horizontal circles. The orbits become increasingly el-
liptical with increasing frequency, and for buoyancy
waves the particle orbits are linear along the z-axis, in
the direction of cg. The wavenumber k is always nor-
mal to both cg and u. [The nonlinear field accelerations
(u V)u vanish for an isolated elementary wave train,
leading to the curiosity that the linear solution is an
exact solution.] Readers who find it difficult to visu-
alize (or believe) these geometric relations should refer
to the beautiful laboratory demonstrations of Mowbray
and Rarity (1967).

It is not surprising, then, that internal waves will do
unexpected things when reflected from sloping bound-
aries. The important property is that the inclination 0
relative to the x-axis depends only on frequency [equa-
tion (9.6a)]. Since frequency is conserved upon reflec-
tion, incident and reflected 0 must be symmetric with
respect to a level surface rather than with respect to
the reflecting surface. At the same time the flow u for
the combined incident and reflected wave must be par-
allel to the reflecting boundary. For a given co, there is
a special angle for which the orbital flow is parallel to
the boundary. This requires that the boundary be in-
clined at a slope

tan/i(z) = tan(900- =0) =[:z - L2] (9.6b)

It can be shown that for slopes steeper than /, the
energy of "shoreward" traveling internal waves is re-
flected "seaward": for slopes of less than /3, the energy
is forward reflected. Repeated reflections in a wedge-
shaped region such as the ocean on the continental
slope can lead to an accumulation of energy at ever
smaller scales (Wunsch, 1969). For a given slope, we
can expect an amplification of the internal waves at
the frequency co determined by (9.6b). Wunsch (1972b)
has suggested that a peak in the spectrum of temper-
ature fluctuations measured southeast of Bermuda
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could be so explained. Pertinent values are N =

2.6 cph, f = 0.045 cph, and i- 13°. Equation (9.6b)
gives o = 0.59 cph, in agreement with the observed
spectral peak at 0.5 cph.

9.4 Turning Depths and Turning Latitudes

Figure 9.8 shows the situation for an ocean with vari-
able N(z). For frequencies that are less than N through-
out the water column, the displacements are similar to
those for constant N (figure 9.6) except that the posi-
tions of the maxima and zeros are displaced somewhat
upward, and that the relative amplitudes are somewhat
larger at depth. The important modification occurs for
frequencies that exceed N(z) somewhere within the
water column. At the depths ZT where o = NIZT), called
turning depths, we have the situation shown to the
right in figure 9.8. Equation (9.2) is locally of the form
C' + z = 0 wherez is now a rescaled vertical coordinate
relative to ZT. The solution (called an Airy function)
has an inflection point at the turning depth (here z =
0), is oscillatory above the turning depth, and is expo-
nentially damped beneath. The amplitudes are some-
what larger just above the turning depth than at greater
distance, but nothing very dramatic happens.

The refraction of a propagating wave packet is illus-
trated in figure 9.9. As the packet moves into depths
of diminishing N(z) the crests and troughs turn steeper,
and the direction of energy propagation becomes more
nearly vertical. The waves are totally reflected at the
turning depth ZT where = N(zT). Modal solutions
;(z) x exp i(kx - ot) with 6(z) as illustrated in figure
9.8 can be regarded as formed by superposition of prop-
agating waves with equal upward and downward en-
ergy transport. The wave energy remains trapped be-
tween the surface and the turning depth.

The common situation for the deep ocean is the
main thermocline associated with a maximum in N(z).
Internal waves with frequencies less than this maxi-
mum are in a waveguide contained between upper and
lower turning depths. For relatively high (but still
trapped) frequencies the sea surface and bottom bound-
aries play a negligible role, and the wave solutions can
be written in a simple form (Eriksen, 1978). The bottom
boundary condition (9.5) for a constant-N ocean, e.g.,
mjH = jr, j = 1,2,..., is replaced in the WKB approxi-
mation by

n0

-z

0

WI, W

~z~I

C=W,

Figure 9.8 Vertical displacements (z) in a variable-N ocean,
for modes i = 1 and i = 3. o, is taken to be less than N(z) at
all depths. o2 is less than N(z) in the upper oceans above z =
-z, only.

-z

N-
N(z)

Figure 9.9 Propagation of a wave packet in a variable-N(z)
ocean without shear (U = constant). The turning depth ZT

occurs when w = N(zT).

u-
_z

k

. . -

IN" w 24\ 112 Figure g.ro
mjb = is l) /2 = rN/No, 19.7) ocean with

C(c).
where b is a representative thermocline (or stratifica-
tion) scale. Equation (9.7) assures an exponential atten-
uation outside the waveguide. For the case of a double
peak in N(z) with maxima N1 and N2, the internal wave
energy is concentrated first at one thermocline, then

Propagation of a wave packet in a constant-N
shear. The critical depth z, occurs where U =

27I
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the other, migrating up and down with a frequency
IN - N2,I (Eckart, 1961). This is similar to the behavior
of two loosely coupled oscillators. The quantum-me-
chanical analogy is that of two potential minima and
the penetration of the potential barrier between them.

There is a close analogy between the constant- and
variable-N ocean, and the constant- and variable-f
ocean (the f-plane and /3-plane approximations). For a
fixed , the condition co = f = 2 sin T determines the
turning latitude T. Eastward-propagating internal
gravity waves have solutions of the form
n(y)4(z) expi(kx - cot). The equation governing the local
north-south variation is (Munk and Phillips, 1968)

4' + yr- = 0, " = d2 /qdy2,

where y is the poleward distance (properly scaled) from
the turning latitude. This is in close analogy with the
up-down variation near the turning depth, which is
governed by

" + z4 = 0, 4" = d24/dz2.

Thus il(y) varies from an oscillatory to an exponentially
damped behavior as one goes poleward across the turn-
ing latitude. Poleward-traveling wave packets are re-
flected at the turning latitude.

From an inspection of figure 9.7, it is seen that the
roles of horizontal and vertical displacements are in-
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terchanged in the N(z) and f(y) turning points. In the
N(z) case the motion is purely vertical; in the f(y) case
the motion is purely horizontal (with circular polari-
zation).

It has already been noted that nothing dramatic is
observed in the spectrum of vertical displacement (or
potential energy) near o = N-only a moderate en-
hancement, which can be reconciled to the behavior of
the Airy function (Desaubies, 1975; Cairns and Wil-
liams, 1976). Similarly we might expect only a mod-
erate enhancement in the spectrum of horizontal mo-
tion (or kinetic energy) near co = f. In fact, the spectrum
is observed to peak sharply. If the horizontal motion is
written as a sum of rotary components (Gonella, 1972),
it is found that the peak is associated with negative
rotation (clockwise in the northern hemisphere).

I have made a parallel derivation of the spectra at the
two turning points (figure 9.11), assuming horizontally
isotropic wave propagation within the entire equatorial
waveguide. It turns out that the buoyancy peak is in
fact much smaller than the inertial peak at moderate
latitudes. But at very low latitude the inertial peak
vanishes. This is in accord with the equatorial obser-
vations by Eriksen (1980). Fu (1980) gives an interesting
discussion of the relative contributions to the spectral
peak at the local inertial frequency co = foca from two
processes: (1) local generation of resonant inertial

N i/2

N max 2

.if .2f .5f f 2f 5f

w
Figure 9.II Enhancement of the kinetic-energy spectrum
(left) and of the potential-energy spectrum (right) at the iner-
tial and buoyancy frequencies, respectively. The inertial spec-

.2N .5N N 2N

trum is drawn for latitudes 1°, 5°, 10 °, 30°, 45 °. The buoyancy
spectrum is drawn for two depths, corresponding to N = , 4

times the maximum buoyancy frequency.
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waves co = ocal; and (2) remote generation of waves of
the same frequency o = fiocal at lower latitudes (where
f < focal}. Figure 9.11 is drawn for case 2 under the
assumption that the equatorial waveguide is filled with
horizontally isotropic, freely propagating radiation.
Take the curve marked 30°, say. Then for o > f a
station at lat. 30° is within the equatorial waveguide;
for co < f the spectrum is the result of evanescent
extensions from a waveguide bounded by lower lati-
tudes. Over rough topography and in regions of strong
surface forcing, the case can be made for local genera-
tion of the inertial peak. It would seem that the buoy-
ancy peak at mid-depth must always be associated with
remote generation.

9.5 Shear

Internal waves are greatly modified by an underlying
shear flow.4 A variable U(z) can have a more traumatic
effect on internal waves than a variable Niz). For ready
comparison with figure 9.9 showing the effect of a
variable N(z) on a traveling wave packet, we have
sketched in figure 9.10 the situation for a wave packet
traveling in the direction of an increasing U(z). As the
wave packet approaches the "critical depth" zc where
the phase velocity (in a fixed frame of reference) equals
the mean flow, c = U(zc), the vertical wavenumber
increases without limit (as will be demonstrated).

For the present purpose we might as well avoid ad-
ditional complexities by setting f = 0. The theoretical
starting point is the replacement of Ot by Ot + Ua, +
w Oz in the linearized equations of motion. The result
is the Taylor-Goldstein equation [Phillips (1977a, p.
248)]:

d% N U" - =
dz (U - C)2 U - c = 

dzd2U
dz 2 I

-o
o0

-z

u (z)-
0

0

C (z) ~
0

I+

Figure 9.I2 First mode vertical displacements (z) in a
Couette flow (constant U' and constant N), for U'/N = 0, + 1.
Waves move from left to right, and U is positive in the direc-
tion of wave propagation. (Thorpe, 1978c.)

-z

U

-h

F

L

N(z) - , U'(z)--
0

0 +

o

Do

I

Figure 9.I3 Similar to figure 9.12, but with U' and N confined
to a narrow transition layer.

(9.8)

where c is the phase velocity in a fixed reference frame.
(This reduces to

d2 f Nk2_ - o 2

d2 + k2 = 0dz--' + (9.9)

for U = 0.) The singularity at the critical depth where
U = c is in contrast with the smooth turning-point
transition at N = o; this is the analytic manifestation
of the relative severity of the effect of a variable U(z)
versus that of a variable N(z).

Thorpe (1978c) has computed the wave function ;(z)
for (1) the case of constant N and U' and (2) the case
where N and U' are confined to a narrow transition
layer. The results are shown in figures 9.12 and 9.13.
The profiles are noticeably distorted relative to the case
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of zero shear, with the largest amplitudes displaced
toward the level at which the mean speed (in the di-
rection of wave propagation) is the greatest. Finite-am-
plitude waves have been examined for the case 2.
Where there is a forward5 flow in the upper level (in-
cluding the limiting case of zero flow), the waves have
narrow crests and flat troughs, like surface waves; with
backward flow in the upper layer, the waves have flat
crests and narrow troughs. Wave breaking is discussed
later.

9.5.1 Critical Layer Processes 6

The pioneering work is by Bretherton (1966c), and by
Booker and Bretherton (1967). Critical layers have been
associated with the occurrence of clear-air turbulence;
their possible role with regard to internal waves in the
oceans has not been given adequate attention.

Following Phillips (1977a), let

ohF =kU + w,
co k

= (k2 + m 2 )1 2 = cos 

designate the frequency in a fixed reference frame. U(z)
is the mean current relative to this fixed frame, and
toF - kU = o is the intrinsic frequency [as in (9.5)], as
it would be measured from a reference frame drifting
with the mean current U(z).

Bretherton (1966c) has given the WKB solutions for
waves in an ocean of constant N and slowly varying
U. [It is important to note the simplification to (9.8)
when U" = 0 at the critical layer.] Near the criticial
layer depth z,, the magnitudes of w, u, and of the ver-
tical displacement vary as

w - IZ - zCl'"', u -IZ - ZC{-1/2,

The quantities OF and k are constant in this problem,
but m and ot are not. The vertical wavenumber in-
creases, whereas the intrinsic frequency decreases as a
wave packet approaches its critical layer:

m - Iz - zc,-', ° - Iz - Z.

A sketch of the trajectory is given in figure 9.10. Waves
are refracted by the shear and develop large vertical
displacements (even though w -- 0), large horizontal
velocities u, and very large induced vertical shears u'.
This has implications for the dissipation and breaking
of internal waves.

For Ri > , Booker and Bretherton (1967) derived an
energy transmission coefficient

p = exp(-27rRi - ¼). (9.11)

In the usual case, U' << 2N so that Ri >> and p is
small. This is interpreted as wave energy and momen-
tum being absorbed by the mean flow at z,. As Ri -+
o, p -- 0, consistent with the WKB prediction of Breth-

erton (1966c) that a wave packet approaches but never
reaches the critical layer.

The small coefficient of transmission for Richardson
numbers commonly found in the ocean implies that
the critical layer inhibits the vertical transfer of wave
energy. This effect has been verified in the laboratory
experiments of Bretherton, Hazel, Thorpe, and Wood
(1967). When rotation is introduced, the energy and
momentum delivered to the mean flow may altema-
tively be transferred from high-frequency to low-fre-
quency waves (if the time scales are appropriate). Thus
it is possible that some sort of pumping mechanism
may exist for getting energy into, for example, the high-
mode, quasi-inertial internal waves. This mechanism
can be compared with McComas and Bretherton's
(1977) parametric instability, a weakly nonlinear inter-
action (section 9.6).

The work of Bretherton and of Booker and Bretherton
has prompted a great number of critical-layer studies.
One of the most interesting extensions was done by
Jones (1968). Whereas Booker and Bretherton found the
critical layer to be an absorber, not a reflector, when
Ri > , Jones found that reflection from the critical
layer is possible when Ri < ; in fact, the reflected
wave amplitude can exceed that of the incident wave.
Jones called these waves "overreflected," their energy
being enhanced at the expense of the mean flow. This
is illustrated in figure 9.14, based on a solution for a
hyperbolic-tangent profile intended to display the re-
sults of linear theory. Transmission and reflection ra-
tios at z = + were derived using definitions of wave
energy density appropriate to moving media. "Over-
transmission" as well as overreflection occurs at very
small Richardson numbers, with the internal waves
gaining energy from the mean flow on both counts.

We shall now consider the condition for critical-layer
absorption. Let co, designate the intrinsic frequency of
a wave packet at some depth z, with a mean flow U,
in the direction of wave propagation. According to
(9.10),

)F = k U + 1.

Let U increase to some value U2 at z2. Then since F

and k are conserved along the trajectory of the wave
packet,

cOF = k U 2 + 02

For the special case that z 2 is to be a critical depth, we
have J)F = kU 2, hence o2 = 0, and so

o/lk = U 2 - U.

The vertical wavenumber of internal waves is given
by the dispersion relation

(N2 - c2) 1/2

m =k ( 2 f2

" kNo for f << c << N. (9.12)
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for critical layer processes as rms u from the internal
waves themselves. The internal wave spectrum is then
divided into two parts: (1) the intrinsic part m < mc,
which contains most of the energy, and (2) the com-
pliant part m > m,, which is greatly modified by in-
teraction with the intrinsic flow field. The phase speed
for critical reflection is

(9.14)CC = rmsu,

and the critical wavenumber is

mc = N/rmsu. (9.15)

Ri

Figure 9.I4 Fractional internal wave energy reflected and
transmitted through a mean shear flow U = Utanh(z/d) at
constant N, as a function of the minimum Richardson number
Ri = Nd2/U2o. Internal wave energy is lost to the mean flow
for RI2 + TI 2 < 1, orRi > O.:L8; internal wave energy is gained
from the mean flow for R < 0.18. The plot is drawn for
Ri = 2a2, where a = kd is the dimensionless horizontal wave-
number. This corresponds to a wave packet traveling at an
inclination of 45° at z = o-. (Ri = a2 corresponds to the
limiting case of vertical group velocity to +x.) (I am indebted
to D. Broutman for this figure.)

There is the separate question whether the internal
waves at the critical layer will be underreflected, just
reflected, or overreflected, and this depends on the am-
bient Richardson number. In the underreflected case
there is a flux of energy from the compliant to the
intrinsic waves. In the overreflected case the flow is
the other way. For an equilibrium configuration, one
may want to look for a transmission coefficient p near
unity, and the exponential behavior of p(Ri) will then
set narrow bounds to the ambient spectrum. But this
gets us into deep speculation, and had better be left to
the end of this chapter.

9.6 Resonant Interactions

For critical absorption within the interval Az over
which the mean flow varies by A U, we replace co/k by
A U, and obtain the critical vertical wavenumber

mc = N/A U. (9.13)

R. Weller (personal communication) has analyzed a
month of current measurements off California for the
expected difference A U =- U2 - U,1 in a velocity com-
ponent (either of the two components) at two levels
separated by Az = z2 - z,. The observations are, of
course, widely scattered, but the following values give
representative magnitudes:

Az in m
AU in cm s-1

0 10 25 50
0 4 7' 10
0 7 10 12

100
15 (upper 100 m)
15 (100-300 m depth)

For AU = 10 cms - 1 and N = 0.01 s- (6 cph), (9.13)
gives mc = 10-3 cm-l (16 cpkm). Internal waves with
vertical wavelengths of less than 60 m are subject to
critical-layer interactions;.

A large fraction of the measured velocity difference
A U can be ascribed to the flow field u (z) of the internal
waves themselves, and deduced from the model spec-
tra. The expected velocity difference increases to /2
times the rms value as the separation increases to the
vertical coherence scale, which is of order 100 m. Here
most of the contribution comes from low frequencies
and low wavenumbers. I am tempted to interpret A U

Up to this point the only interactions considered are
those associated with critical layers. In the literature
the focus has been on the resonant interaction of wave
triads, using linearized perturbation theory. There are
two ways in which critical layer interactions differ
from resonant interactions: (1) compliant waves of any
wavenumber and any frequency are modified, as long
as c equals u somewhere in the water column; and (2)
the modification is apt to be large (the ratio u/c being
a very measure of nonlinearity). For the wave triads,
the interaction is (1) limited to specific wavenumbers
and frequencies, and (2) assumed to be small in the
perturbation treatment. 7 To borrow some words of
O. M. Phillips (1966b), the contrast is between the
"strong, promiscuous interactions" in the critical layer
and the "weak, selective interactions" of the triads.

The conditions for resonance are

k l + k2 = k, 01 + (02 = (03,

where ki = (k,li, mi), and all frequencies satisfy the
dispersion relation wco(k,). Resonant interactions are
well demonstrated in laboratory experiments. For a
transition layer (as in figure 9.4), Davis and Acrivos
(1967) have found that a first-order propagating mode,
which alternately raises and lowers the transition
layer, was unstable to resonant interactions, leading to
a rapid growth of a second-order mode, which alter-
nately thickens and thins the transition layer like a
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propagating link sausage. Martin, Simmons, and
Wunsch (1972) have demonstrated a variety of resonant
triads for a constant-N stratification.

Among the infinity of possible resonant interactions,
McComas and Bretherton (1977) have been able to
identify three distinct classes that dominate the com-
puted energy transfer under typical ocean conditions.
Figure 9.15 shows the interacting propagation vectors
in (k, m )-space. The associated frequencies o are
uniquely determined by the tilt of the vectors, in ac-
cordance with (9.4). Inertial frequencies (between f and
2f, say) correspond to very steep vectors, buoyancy fre-
quencies (between 2N and N) to flat vectors, as shown.

Elastic scattering tends to equalize upward and
downward energy fluxes for all but inertial frequencies.
Suppose that k3 is associated with waves generated
near the sea surface propagating energy downward (at
right angles to k3, as in figure 9.7). These are scattered
into k,, with the property m, = -m3, until the upward
energy flux associated with k, balances the downward
flux by k3. The interaction involves a near-intertial
wave k2 with the property m2 2m3. (The reader will
be reminded of Bragg scattering from waves having half
the wavelength of the incident and back-scattered ra-
diation.) Similarly, for bottom-generated k, waves with
upward energy fluxes, elastic scattering will transfer
energy into k3 waves.

Induced diffusion tends to fill in any sharp cutoffs
at high wavenumber. The interaction is between two
neighboring wave vectors of high wavenumber and fre-
quency, k, and k3, and a low-frequency low-wavenum-
ber vector k2 . Suppose the k2 waves are highly ener-
getic, and that the wave spectrum drops sharply for
wavenumbers just exceeding Ik3 l, such as Ikll. This in-
teraction leads to a diffusion of action (energy/w) into
the low region beyond k31, thus causing k, to grow at
the expense of k2.

Parametric subharmonic instability transfers energy
from low wavenumbers k2 to high wavenumbers k, of
half the frequency, co = 2-, ultimately pushing energy
into the inertial band at high vertical wavenumber.
The interaction involves two waves k, and k3 of nearly
opposite wavenumbers and nearly equal frequencies.
The periodic tilting of the isopycnals by k2 varies the
buoyancy frequency at twice the frequency of ki and
k3 . (The reader will be reminded of the response of a
pendulum whose support is vertically oscillated at
twice the natural frequency.)

The relaxation (or interaction) time is the ratio of
the energy density at a particular wavenumber to the
net energy flux to (or from) this wavenumber. The
result depends, therefore, on the assumed spectrum.
For representative ocean conditions, McComas (in
preparation) finds the relaxation time for elastic scat-
tering to be extremely short, of the order of a period,
and so up- and downgoing energy flux should be in

balance. This result does not apply to inertial frequen-
cies, consistent with observations by Leaman and San-
ford (1975) of a downward flux at these frequencies.
The relaxation time for induced diffusion is typically
a fraction of a period! (This is beyond the assumption
of the perturbation treatment.) Any spectral bump is
quickly wiped out. The conclusion is that the resonant
interactions impose strong restraints on the possible
shapes of stable spectra.

In a challenging paper, Cox and Johnson (1979)
have drawn a distinction between radiative and dif-
fusive transports of internal wave energy. In the ex-
amples cited so far, energy in wave packets is radiated
at group velocity in the direction of the group velocity.
But suppose that wave-wave interactions randomize
the direction of the group velocity. Then eventually
the wave energy is spread by diffusion rather than ra-
diation. The relevant diffusivity is K = (c), where r
is the relaxation time of the nonlinear interactions.
Cox and Johnson have estimated energy diffusivities
and momentum diffusivities (viscosities); they find
that beyond 100 km from a source, diffusive spreading
is apt to dominate over radiative spreading. There is an
interesting analogy to crystals, where it is known that
energy associated with thermal agitation is spread by
diffusion rather than by radiation. The explanation lies
in the anharmonic restoring forces between molecules,
which bring about wave-wave scattering at room tem-
peratures with relaxation times in the nanoseconds.

9.7 Breaking

This is the most important and least understood aspect
of our survey. Longuet-Higgins has mounted a broadly
based fundamental attack on the dynamics of breaking
surface waves, starting with Longuet-Higgins and Fox
(1977), and this will yield some insight into the inter-
nal-wave problems. At the present time we depend on
laboratory experiments with the interpretation of the
results sometimes aided by theoretical considerations.

Figure 9.16 is a cartoon of the various stages in an
experiment performed by Thorpe (1978b). A density
transition layer is established in a long rectangular
tube. An internal wave maker generates waves of the
first vertical mode. Before the waves have reached the
far end of the tube, the tube is tilted through a small
angle to induce a slowly accelerating shear flow. The
underlying profiles of density, shear, and vertical dis-
placement correspond roughly to the situation in figure
9.13.

For relatively steep waves in a weak positive8 shear,
the waves have sharpened crests. At the position of the
crest, the density profile has been translated upward
and steepened (B1). There is significant wave energy
loss in this development (Thorpe, 1978c, figure 10).
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