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The Amplitude
of Convection

Willem V. R. Malkus

13.1 Introduction

As a ubiquitous source of motion, both astrophysical
and geophysical, convection has attracted theoretical
attention since the last century. In the ocean, many
different scales are called convection; from the deep
circulation due to the seasonal production of Arctic
bottom water (see chapter 1) to micromixing of salt
fingers (see chapter 8). In the atmosphere, convection
dominates the flow from subcloud layers to Hadley
"cells." It is proposed that convection in the earth's
core powers the geomagnetic field. The nonperiodic
reversals of that field, captured in the rock, define the
evolution of the ocean basin. Recent recognition that
this latter process is caused by convection in the man-
tle has produced a new geophysics.

In the past, understanding the central features of
convection has come from the isolation of "simplest"
mechanistic examples. Although large-scale geophysi-
cal convection never coincides with the idealized sim-
plest problem, these examples (e.g., Lord Rayleigh's
study of the Btnard cells) have generated much of the
formal language of inquiry used in the field. Students
of dynamic oceanography have favored this formal lan-
guage mixed in equal parts with more pragmatic en-
gineering tongues when interpreting oceanic convec-
tive processes.

Speculations beyond these mathematically access-
ible problems take the form of hypotheses, experiments,
and numerical experiments in which one seeks to iso-
late the central processes responsible for the qualitative
and quantitative features of fully evolved flow fields.
The many facets of turbulent convection represent the
frontier. This chapter reviews only a narrow path to-
ward that frontier. This path is aimed at an understand-
ing of the elementary processes responsible for the am-
plitude of convection, in the belief that quantitative
theories permit the theorist the least self-deception.

Of course the heat flux due to a prescribed thermal
contrast, like the flow due to a given stress, has been
observed for a century. The relation between force and
flux has been rationalized with models emerging
largely from linear theory and kinetic theory-in par-
ticular, with the use of observationally determined
"eddy conductivities" (estimated for the oceans in
Sverdrup, Johnson, and Fleming, 1942). Early theoreti-
cal interpretations of oceanic transport processes that
go beyond these simple beginnings were explored by
Stommel (1949), while current usage and extensions of
"mixing" theories are discussed in chapter 8.

Central to the most recent of such proposals is the
idea that some large scale of the motion or density field
is steady or statistically stable, while turbulent trans-
port due to smaller scales can be parameterized. Chang-
ing the amplitude of the small-scale transports is pre-
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sumed to lead to a new equilibrium for the large scale,
so that the statistical equilibrium is marginally stable.
This view lurks behind most traditional oceanic model
building and its quasi-linear form is used on small-
scale phenomena as well-from inviscid marginal sta-
bility for the purpose of quantifying aspects of the wind
mixed layer (Pollard, Rhines, and Thompson 1973) to
viscous marginal stability for the purpose of quantify-
ing double diffusion (Linden and Shirtcliffe, 1978).

It has not yet been possible to establish either the
limits of validity or generalizability of this quasi-linear
use of marginal stability in the geophysical setting.
There can be little doubt that it is "incorrect"-that
fluids typically are destabilized by the extreme fluc-
tuations-yet it appears to be the only quantifying con-
cept of sufficient generality to have been used in
oceanic phenomena from the largest to the smallest
scales. Of course, our idealizations in the realm of
geophysics are all "incorrect." We turn to observation
to establish in what sense and in what degree these
idealizations are good "first-order" descriptions of real-
ity.

This chapter explores the hierarchy of quantifying
idealizations in convection theory. The quasi-linear
marginal-stability problem is drawn from the full for-
mal statement for stability of the flow. A theory of
turbulent convection based on marginal stability is pre-
sented, incorporating both the qualitative features de-
termined by inviscid processes and the quantitative
aspects determined by dissipative processes.

Observations provide better support for both the
quantitative and qualitative results from quasi-linear
marginal-stability theory than might have been antic-
ipated, encouraging its continued application in the
oceanic setting.

13.2 Basic Boussinesq Description

The primary simplification that permitted mathemat-
ical progress in the study of motion driven by buoyancy
was the Boussinesq statement of the equations of mo-
tion. In retrospect, the central problem was to translate
the correct energetic statement

(u.VP) = ,

into the approximate form

(yWT)= 0,

where u is the vector velocity of the fluid, P the pres-
sure, y the coefficient of thermal expansion times the
acceleration of gravity, W the vertical component of
velocity, T the temperature field, the total dissipa-
tion by viscous processes in the fluid, and the brackets
a spatial average over the entire fluid. This has been
achieved (e.g., Spiegel and Veronis, 1960; Malkus 1964)
by recognizing that the Boussinesq equations are the

leading terms in an asonic asymptotic expansion away
from a basic adiabatic hydrostatic temperature distri-
bution. This expansion is usually made in two small
parameters; one is the ratio of the height of the con-
vecting region to the total "adiabatic depth" of the
fluid, while the second is the ratio of the superadiabatic
temperature contrast across the convecting region to
the mean temperature.

In suitably scaled variables, the leading equations of
the expansion are

V'u = O,

1 Du
Dr- = -VP + V2u + RaTk,

DT = V2T,
Dt

(13.1)

(13.2)

(13.3)

where

D a
Dt at

v yATd3v- Ra =
K KV

k is the unit vector in the antidirection of gravitational
acceleration, d the depth of the convecting region, AT
the superadiabatic temperature contrast, K the ther-
mometric conductivity of the fluid and v is its kine-
matic viscosity, Ra the Rayleigh number, and a the
Prandtl number. Other symbols are defined above. The
Boussinesq equations retain the principal advective
nonlinearity, but have no sonic solutions. Higher-order
equations are linear and inhomogeneous, forced by the
lower-order solutions.

The most accessible problem in free convection has
been the study of motion in a horizontal layer of fluid
bounded by good thermal conductors at prescribed
temperatures. Such a layer is the thermal equivalent of
the constant-stress layer in shear flow. This is seen by
taking an average over the horizontal plane of each
term in the heat equation. One writes from 13.3

aT ( aT
at az az + (13.4)

where the overbar indicates the horizontal average. For
steady or statistically steady convection, T/at van-
ishes, and one may integrate (13.4) twice to obtain

Nu =- + WT = + (WT),at (13.5)

where the constant of integration Nu is called the Nus-
selt number and is the ratio of the total heat flux to
that due to conduction alone.

Two other integrals of considerable interest can be
constructed from the Boussinesq equations. The first
of these is the power integral found by taking the scalar
product of (13.2) with u and integrating over the entire
fluid. One obtains

385
The Amplitude of Convection



(-U.V2U) = (IVul2) = Ra(WT), (13.6)

due to the vanishing of the conservative advective
terms. Multiplying (13.6) by the fluctuation tempera-
ture,

T = T - T, (13.7)

one obtains an integral similar to (13.6), which may be
written by means of (13.5) as

(-TV2T) = (IvT12) = (-WT aT.)

= (WT) + (WTr)2 - (WT2). (13.8)

The integrals (13.5), (13.6), and (13.8) are the principal
constraints used in the "upper bound" theories of con-
vection (see section 13.3).

This section would not be complete without a state-
ment of those equations that determine the stability of
any solution, say u, P0, T, of the basic equations
(13.1)-(13.3). Consider a general disturbance v, p, 0 to
the solution Uo, Po, To. Then

u = uo + v, P = P +p, T = To + . (13.9)

One concludes from (13.1)-(13.3) that, the time evolu-
tion of v, p, 0 is determined by

V-v = 0, (13.10)

1 Dt + V-VuO + vVv)
I t

form of (13.10)-(13.12) can determine a maximum
Ra = Ra(a) beyond which u0, Po, To is assuredly un-
stable. In principal these linear problems can be solved
when Uo, Po, To is time independent, and solved at least
approximately when u0, P0, To is periodic in time. How-
ever, analytic techniques for determining the condi-
tions leading to eventual decay of v, p, 0 on a nonper-
iodic solution no, Po, To have not been developed.

In concluding this description of the "simple" Bous-
sinesq fluid one should note how many interesting
problems lie outside the formalism. Just outside the
framework, but capable of incorporation, are porous
boundaries, variable viscosity, and nonlinear equations
of state. Much farther outside the framework are con-
vection through several scale heights and velocities
comparable to the sound speed.

13.3 Initial Motions

The state of pure conduction without motion, u0 = 0,
To = -z, where z is the vertical coordinate measured
from the lower surface, is a solution to the Boussinesq
equations at all Ra. The determination of that critical
value of Ra at which this conduction solution is un-
stable is the classical Rayleigh convection problem
(e.g., Chandrasekhar, 1961). This problem is the lin-
earized form of (13.10)-(13.12) for Uo = 0, To = -z, and
is written

V'u = 0, (13.15)

(13.11) i1 c2 = -Vp + V2v + RaOk,
0 &

t_ + vVT + u.VO) = V20 (13.12)

where, as before, DIDt = alat + uV.
For a solution Uo, Po, To to be stable (hence realize-

able), arbitrary infinitesimal disturbances, v, p,0 must
eventually decay. For a solution, Uo, Po, To to be abso-
lutely stable, arbitrary disturbances of any amplitude
must eventually decay. This latter problem is tractable
in some instances and has been addressed using the
"power" integrals for v and 0. These are written

I (V2) + (V-V.VUo)

= - (IVvl2) + Ra(vekO), (13.13)

D ( 02) + (v. VTo) = -(IVO2). (13.14)Dt

Equations (13.10), (13.13), and (13.14) constitute a lin-
ear problem for v and 0 whose solution can determine
a minimum Ra = Ra(ar) for which u0, P0, To is abso-
lutely stable. In contrast, the solutions to the linear

00 = w + V20,
at

(13.16)

w = vk. (13.17)

If one takes the k component of the curl of the curl of
(13.16) and, using (13.17), eliminates , one may write
the Rayleigh problem as a constant coefficient, sixth-
order partial differential equation in the single variable
w:

(I a V 2) ( V 2Vw = -Ra V2w,/o \& /) (13.18)

where V2, is the horizontal Laplacian. The problem is
separable so that

V2w = -a 2w (13.19)

defines the horizontal wavenumber a2. Also, it is not
difficult to establish that the disturbance w first starts
to grow without temporal oscillations; the instability
is "marginal." Hence, subject to appropriate boundary
conditions one is to find the eigenstructure of the or-
dinary differential operator

[( 2 - 2Raw = 0.
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The richness of solutions to this simple problem and
its "adjacent" modifications have been explored for
more than two generations and now enters a third. In
the present generation, formal techniques that had
been developed to find the initial postcritical ampli-
tude of convection are used to clarify the finite-ampli-
tude stability problems. These finite-amplitude studies
include the resolution of the infinite plan form degen-
eracy of the classical linear problem and the determi-
nation of conditions causing subcritical instabilities (or
"snap-through" instabilities). The formal finite-ampli-
tude technique, often called modified perturbation the-
ory, is the subject of a recent lengthy review (Busse,
1978). In brief, one expands v, p, 0 in terms of an
amplitude E (typically the amplitude of w), and in ad-
dition employs a parametric expansion of the control-
ling parameters, also in terms of E, to permit solvability
of the sequence of equations generated by the nonlinear
terms. One writes

v= A v,, Ra = Raef, (13.21)
n=1 n=O

with similar expansions for p and , and where Ra is
the critical Rayleigh number determined from the lin-
ear problem (13.20). Here, each of the Ran is determined
to permit a steady solution to the en set of equations
generated by inserting (13.20) into (13.10)-(13.12). Par-
alleling (13.10)-(13.12) and (13.20), an expansion can be
constructed for potential disturbances v', p', ' in order
to determine their stability at each order E.

Among the many interesting conclusions reached in
these studies is that the amplitude of the stable con-
vection forms are determined principally by a modifi-
cation of T due to the convective flux w0. The finite-
amplitude distortions of w and from their infinites-
imal form also affects their equilibrium amplitude, and
although a smaller effect than the modification of the
mean, it is always present. Conditions for subcritical
instability, from (13.21), are seen to be that either
Ra, < 0, Ra2 > 0 (as is the case when hexagonal cellular
convection is observed), or Ra2 < 0, Ra4 > 0 (as occurs
in penetrative convection in water cooled below 4°C),
or some mixture of these two conditions. It is found to
order e2 in each case that the preferred (stable) convec-
tion is that which transports the most heat. However,
there is now an example of a convective process in
which the maximum heat-flux solution at large am-
plitude is not the most stable form. No simple integral
criterion has been found that assures the stability of a
Boussinesq solution at large Ra.

Many papers have been written using modified per-
turbation theory, and more appear each year. Unusual
current studies include nonperiodic behavior of initial
convection in rotating systems and the onset of mag-
netic instabilities due to finite-amplitude convection
in electrically conducting fluids. Busse's review ex-

hibits the significant enrichment of our knowledge and
language of inquiry of fluid dynamics by these finite-
amplitude studies. This same review, however, clari-
fies the intractable character of convection mathemat-
ics beyond e2.

This section on initial motions will be concluded by
noting E. Lorenz's (1963b) minimal nonlinear convec-
tion model, first explored by Saltzman (1962), is an
abruptly truncated E2 Rayleigh convection process.
This third-order autonomous system exhibits a tran-
sition to "convection," then at higher "Rayleigh" num-
ber a transition to exact solutions with nonperiodic
behavior. A group of mathematicians and physicists
has emerged to explore these "strange attractors" and
similar models, hoping among other things to find new
access to the turbulent process in fluids. One can be
confident that the study of these autonomous models
will lead eventually to elementary insights of value to
the geophysical dynamicist, yet such study is only one
facet of the third generation beyond linear convective
instability mentioned earlier. The path to be followed
here through the ever-growing convection literature
must include the theory of upper bounds on turbulent
heat flux, for this theory deductively addresses convec-
tion amplitude. The blaze mark along this path, how-
ever, continues to be stability theory, and the final
section explores its relation to the observed fully
evolved flow.

13.4 Quantitative Theories for High Rayleigh
Number

Beyond modified perturbation theory one finds hy-
potheses, speculation, and assorted ad hoc models re-
lated to aspects of turbulent convection or designed to
rationalize a body of data. In this section three unique
theories that predict an amplitude for convection are
discussed. The first of these is the mean-field theory of
Herring (1963). The second is the theory of the upper
bound on heat flux, first formulated by Howard (1963),
and its "multi-a" extension by Busse (1969). The third
theory, by Chan (1971), is also a heat-flux upper-bound
theory, but for the idealized case of infinite Prandtl
number. The link between the first and last theories
proves to be most informative.

The mean-field theory is equivalent to the first ap-
proximation of many formal statistical closure propos-
als, and is the only contact this study will make with
such proposals. As implemented by Herring (1963), the
equation describing the motion and temperature field
are obtained by retaining only those nonlinear terms
in the basic equations that contain a nonzero horizon-
tally averaged part. From (13.1)-(13.4) and (13.7) one
writes the mean-field equations thusly:

(13.22)V-u = 0,
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10u
- = -VP + V2u + RaTk, (13.23)

aOt

= V2T + W(Nu - WT). (13.24)

The only nonlinearity retained is W-WT in (13.24).
Hence the full problem is separable in the horizontal
(e.g., VW = -a2 W as in the linear problem), and
(13.22)-(13.24) reduce to an ordinary nonlinear equa-
tion. Herring solved this nonlinear problem by numer-
ical computations for several increasingly large Ray-
leigh numbers and for both one and two separation
wavenumbers a. He found that the solutions settled to
time-independent cellular forms with sharp boundary
layers. The predicted heat flux is several times larger
than the observed flux in laboratory experiments and
the predicted mean-temperature gradient exhibits re-
versals not seen in high Rayleigh-number data. This
relation between theory and experiment will be dis-
cussed again in connection with the study by Chan. It
was anticipated that neglect of the fluctuating thermal
nonlinear terms [u-VT - (O/Oz)W'T] would increase the
predicted heat flux by some significant, but plausibly
constant, fraction. But the effect of neglecting the mo-
mentum advection terms or-1 [uVu] could have both a
stabilizing and destabilizing effect on convection am-
plitude. If the disturbances in the velocity field are
sufficiently large scale compared to the thickness of
the thermal boundary region, then one could anticipate
from the finite-amplitude studies that ca-(u*Vu) would
decrease the amplitude of the convection. But if the
local momentum-transporting disturbances are small
scale compared to the thermal boundary region, they
could strongly enhance the heat transfer. The latter
process is typical of geophysical-scale shear flow plus
convection, and is not addressed by this mean-field
theory. A joint mean-field theory including a mean
horizontal velocity U(z) might capture some of this
important process of a mean shear flow, enhancing its
convective energy source. The upper-bound theory au-
tomatically includes this possibility.

The theory of upper bounds on the convective heat
flux is based on optimizing a vector field u and scalar
field T that are less constrained than the actual velocity
and temperature fields. The only constraints placed on
u and T are that they satisfy the boundary conditions,
the continuity condition (13.1), and the three integral
conditions (13.5), (13.6), and (13.8). Howard was the
first to perform this optimization, and has written a
review (1972) of the most certain results of the theory.
Busse was the first to discover that the optimal solu-
tions for u and T contain many (nested) scales of steady
convecting motions. Although these results are the
only formally correct deductions in the literature ap-
plicable to turbulent flows, they are rather far off the

mark. The heat flux is much higher than any observed
for pure convection, and the optimal solutions seem
more elegant than predictive. Their quantitative pre-
diction is that Nu will vary as Ra '12. The highest Ra
laboratory data reaches Ra = 101° and appears at most
to approach Nu - Ra113 . However, careful use of mix-
ing-length theory by Kraichnan (1962) suggests that
heat transport in a boundary region caused by momen-
tum advection can occur for Ra > 1024, leading to
Nu - Ra12/llnRa)3 12 . Howard's formal bound includes
this possibility.

Hopes to reduce these extreme heat transports by
the addition of further integral constraints have not
been realized. All other integrals of the basic equations
appear either to be trivial in content or to introduce
inseparable cubic nonlinear terms into the analysis.
The one exception is the work of Chan, which now
will be discussed in some detail.

Chan (1971) sought an upper bound on convective
heat flux with the power integral constraint (13.6) re-
placed by the linear Stokes relation,

0 = -VP + V2u + RaTk. (13.25)

This is not only significantly more restrictive on the
class of possible fields u and T, but is an exact state-
ment, from (13.2), in the limit as r approaches infinity.
As in the mean-field theory, no formal expansion is
proposed that could reincorporate the nonlinear mo-
mentum advection. Yet one might anticipate that the
upper bounds on the amplitude of convection will be
much closer to the laboratory observations, or to
oceanic observations where shear instabilities play a
small role.

In addition to (13.25), Chan used the continuity con-
dition (13.2), the thermal integral (13.8), and appropri-
ate boundary conditions. The Euler-Lagrange equa-
tions for the optimal relation between W and T have
the form

V6T + (Nu - 1)

x[v(lWrN2xh )w+(WTv'w] =0,x !V4 1- T - 21, W + (- WT)VW] = (13.26)

(13.26)

V 4W = Ra V2T, (13.27)

where is a constant Lagrange multiplier. These equa-
tions can be compared with the equivalent mean-field
equations, from (13.22)-(13.24), which are

V6T + V4[(Nu - WT)W] = 0,

V4W = Ra V2T,

(13.28)

(13.29)

indicating both the similarity and difference of the two
problems.
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In constrast to Herring's numerical solutions at mod-
erately high Ra, Chan used Busse's multi-a asymptotic
technique to determine an optimal solution and a
mean-field solution approached at very high Ra. Per-
haps the most significant conclusion was that, in this
asymptotic limit, the upper-bound problem and the
mean-field problem lead to identical results. This re-
sult confirms the expectation that the fluctuating ther-
mal terms reduce the convective heat flux by a fraction
of about one-half from currently available high Ra data.
This certainly represents a remarkable achievement for
a theory of turbulence free of empirical parameters.
Such quantitative agreement lends support to the idea
that the statistical stability condition for turbulent
convection in the absence of strong shearing flow is
close to the condition of maximum heat transport. Yet,
when the possibility of momentum transport due to
shear flow is again included in the problem, what ex-
treme should be sought? Here is the arbitrary element
in the formal upper-bound theory-what upper bound
best reflects the real statistical stability problem? This
question is addressed in the following section.

13.5 The Amplitude of Turbulent Convection from
Stability Criteria

The idealization of turbulent convection to be explored
in this section is similar in spirit to the optimal-trans-
port theories previously discussed. Optimal properties
of vector and scalar fields u and T compatible with the
boundary conditions and several other constraints are
to be compared with the observed averages of the ve-
locity and temperature fields. Here, however, it will be
the stability of the flow that will be optimized. At high
Ra both theoretical considerations and observations
suggest that large-scale flows in the interior of the
region are essentially inviscid in character. In keeping
with this classical view, the interior fields of this the-
ory are permitted to approach, but not exceed, the in-
viscid-stability conditions. These conditions alone can
determine many of the qualitative eatures of the in-
terior flows, but the amplitude of these flows remains
undetermined. The goal of this theory is to find those
amplitudes that lead to maximum stability for the
small-scale, dissipative motions near the boundary. In
this view the tail wags the dog, for only the tail is in
contact with the dissipative reality that modulates am-
plitudes. Comparison of the predictions of this quan-
titative theory with observations can determine the
extent to which the real flow approaches the freedom
of amplitude selection granted the trial fields of the
theory.

The linearized forms of (13.10)-(13.12) constitute a
complete statement of the necessary stability condi-
tions that must be met by a realizable Boussinesq so-
lution u, To. In this theoretical proposal one pictures

u0 , To at a particular Ra and or as composed of the
finite-amplitude forms of all fields that were unstable
at smaller values of Ra. Subject to the inviscid-stability
conditions, the amplitudes of these previous instabili-
ties are to be chosen to make the disturbances v, as
stable as possible. When that Ra is reached at which
the stability of v, is no longer possible by amplitude
adjustment of u, T, then the unstable v, 0 join the
ranks of the previously unstable motions that make up
u0, To, and a new stability problem for a new v, 0 is
posed.

Unfortunately, the linear-stability problem posed
above involves fluctuating coefficients that would defy
analysis even if they were known. Hence, as promised
in the introduction, the proposal is weakened to con-
sider only the stability problem on the mean fields U0o,
To. Indeed, the fluctuations are observed to be only a
fraction of the mean values; yet it is during the de-
stabilizing period of the fluctuations that the signifi-
cant instabilities occur. If the effects of stabilization
and destabilization due to the fluctuations around the
mean roughly cancel, then the stability of the mean
field is a good measure of the overall stability of the
flow. This idealization is explored in the following
paragraphs, primarily for the "pure convection" case of
infinite Prandtl number. The finite Prandtl-number
problem is posed and the extreme case of shear-flow-
dominated transport discussed.

The mean-field-stability problem, when u = 0, in-
volves only the term aTo/z. Hence the partial differ-
ential equations (13.10)-(13.12) are separable and re-
duce to a form similar to (13.20):

[ a 2 aT w= O]
z - a-)'+ Ra aw 0. (13.30)

The principal constraint to be imposed on the aver-
aged interior flow is that it approach from the viscously
stable side, but not exceed, the inviscid stability con-
dition. For convection without a mean shear flow, this
condition is that

-aT 
-0.
Oz

(13.31)

It is observed that high-Rayleigh-number convection is
very close to this stability boundary. Before establish-
ing the quantitative features of the convection ampli-
tude from (13.30), the qualitative consequences of
(13.31) will be explored. One may write (13.31) as

0To - - = I*I
8z

(13.32)

where I is any complex function of z and I* is its
complex conjugate. It was shown by Fejer (1916), and
we shall see shortly, that a complete representation of
an everywhere positive function can be written
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I(+) = E Ikeik",
k=O

(13.33)

where 0 = 2 z, 0 0 - 27r.
The relation between the representation for I in

(13.33) and a normal Fourier representation can be es-
tablished straightforwardly. Let

Im = Am + iBm (13.34)

where the Am and Bm are all real. Then

(I*I)(+) = E (2 - k,.) E (AA,+k + BmBm+k) cosk 0
k=O m=O

+ E 2 E (Am+kBm-AmBm+k)sink 0. (13.35)
k=1 m=O

For symmetric (I*I)() one may write

(I*I)(() = Ckcosk 0,
k=O

(13.36)

Ck = (2 - 8k,O) ImIm+k, Im real.
m=0

The Ck are uniquely determined by a given set Ik, but
a given set Ck determines unique Ik only under special
circumstances.

The qualitative behavior of -To/az emerges from
the weak assumption that, at high Ra, Ik is some
"smooth" function of k, an assumption to be borne out
in the quantifying second step of this theory. Of course,
at some very small scale, say k,, one expects viscosity
and thermal diffusion to reduce Ikv to a vanishingly
small value. Then when Ik 0 for k > k,, one writes

k,

I(4) = Ike 'k - 1 Ike'ik . (13.37)
k=O k=O

To explore the consequence of "smoothness" it is con-
venient to sum (13.37) by parts. First one defines

(AI)k = Ik+l - Ik, (A2I)k = (AI)k+l - (AI)k,
Fk = (eik - )/ei" - 1.

Hence (AF)k = eik and

k, Io eio k
Ie' k = + +4 - (AI), ke".

k=o 1 - ei" 1 -e k=O
(13.39)

(AI)k = OIok), (A21) = O(Io/k),

then from (13.40)

I(¢) -= I - e' + O(Iolk,)
1 - eiO

(13.41)

(13.42)

for all angles 0 >> k- 1. Hence a unique and simple form
for I(0 >> k-') exists if the weak condition (13.40) is
met. From (13.32) and (13.42), the interior mean tem-
perature field is

(13.43)

This is the only law whose qualitative behavior is in-
sensitive to the features of the underlying spectrum,
yet reflects the stability conditions presumed respon-
sible for maintaining the negative gradient.

The field equation (13.43) is also independent of the
cutoff wavenumber k,; yet the assumption of spectral
smoothness may seem less plausible at those wave-
numbers where viscous effects first become as impor-
tant as the nonlinear advection. A requirement placed
on this "tail" region of the transport spectrum is that
it drop off faster than any power of k in order that all
moments of the flow be finite. A second requirement
is that the "tail" region be continuous with and match
the smoothness condition at the wavenumber where
the viscous tail joins the inertially controlled lower-
wavenumber spectrum. The simplest tail to meet these
requirements is a modified exponential. Hence, one
explores the consequence of the tail

Ik,,, = Ik0[1 + a(k - ko) + f(k - ko)2]e - (k
-

ko, (13.44)

where the wavenumber k0 (<k,) marks the low-wave-
number end of the "tail," y characterizes the degree of
abruptness of the spectral cutoff, and a, 8f are chosen
to match smoothness conditions at k = ko. For y << 1,
a y and f - y

2. The tail can be summed and leads to
the general spectrum

ko

I(4) = Ikeik' + Ik,ei (ko+"l)e-
k=O

11 +(1 e +1 e- 1
[ 1 -e - 1 1 e-")2 + (1 - e-T)3J 

(13.45)Repeating this summation by parts on the final sum in
(13.39), one may write

k,

+ e"i4 (A2I)ke ik· (13.40)
k=O I

One now observes that if Ik is "smooth" in the sense
that

where a = y - i. As it stands, with k0, y, and all the
Ik unspecified, (13.45) can describe any plausible tur-
bulent mean-temperature profile of negative slope at
any Ra. At this point one seeks the asymptotic con-
sequences of the smoothness hypothesis

(AI)k = O(Iolko),

(A2I)k = O(I 0/kl), 0 - k k,
(13.46)

and from (13.40) concludes that for 0 >> k-', to O(Io/ko),
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1 l [1-e-
IlW) O _ Ikoei(ko+l) [- e-~'ei- -e - a'

e-a - e-Y (e-a - e-Y)(1 + e-a)
(1 - e-) 2 (1 - e-a)3

(13.47)

If, then, y = O(k-l), (13.47) reduces to (13.42) and the
interior temperature field (13.43). The novel aspect of
the temperature profiles determined by (13.47) is the
emergence of the double-tangent structure. This is
most easily seen from the leading term of the inner
bracketed expression in (13.47) for , y << 1. One
writes

[ \+y( )i +2 y ] (13.48)[T - if ( - ) (y - io)3

Then for y >> >> k-' the bracket expression ap-
proaches the value 1 and the resulting profile has the
amplitude )Io12 + IkJ2. In contrast, when >> y, the
bracket approaches 0 and the temperature profile has
the "outer" amplitude IIo12. Hence when the transport
spectrum has a cutoff sufficiently more abrupt than
k-1, an "inner" inertial boundary region is predicted.

A y large compared to k-' is deduced in the quanti-
tative work of the following paragraphs. However, it is
likely that the predicted transport tail will be quite
sensitive to the neglect of the fluctuation term in the
stability problem. Unfortunately, it will be seen that
present convection data is not sufficiently precise to
test this speculation.

In the analogous shear-flow problem two logarithmic
regions of different slopes are found (Virk, 1975). Drag-
reducing additives, which appear to sharply increase y,
also cause the "inner" logarithmic region to extend
much further into the flow. Theoretical studies
(Malkus, 1979) predict this behavior, but indicate that
for shear turbulence the mean-field-stability theory
gives a y that is larger than observed. In both the case
of pure shear flow and the case of pure convection, the
quantity Io that determines the outer-flow amplitude
seems to be the most imperturbable feature of the
mean-field-stability computations.

Turning now to these stability computations for con-
vection without mean shear, one is blessed with a
problem that, for free boundary conditions, can be cast
in variational form. Hence the extensive numerical
computations needed to implement this theory for
shear flow can be replaced by a sequence of analytic
approximations. The variational form of (13.30) is writ-
ten

Ra* f [ ( w - a2)wdz
a2 [ ( wZ2 

d ( 0 ) ]zrRa (13.49)
O d]

Trial forms for w lead to an Ra* bounding the critical
(experimentally given) Ra from above, and insensitive
to first-order error in the trial form. Simultaneously,
the amplitudes of all previously unstable modes are to
be adjusted to change -Tolaz so that the marginal
stability of any particular w occurs at minimum Ra * =
Ra. The free or "slippery" boundary conditions are

= 0 at 0,w = z =0=0 at z = 0, 1. (13.50)

As these are also the boundary conditions for the full
field u0, T, it follows that

(13.51)WoT0 = - = 0 at z = 0, 1.0z

Hence, for symmetric -To/Oz, from (13.5), (13.32),
(13.33), and (13.51) Ik is real and

(13.52)Nu = ( Ik),
k=while

while

1 = E I.
k=O

l(13.53)

Now starting the sequence of computations from the
conductive state of no motion (I = 1, Ik,O = 0), one
recovers from (13.49) the classical Rayleigh solution

w, = A, sin b/2, 01 = B, sin /2,
(13.54)

a1 = r2/2, Ra = (27/4)7r4,

where A, and B1 are infinitesimal amplitudes and =
27rz. The next step is to determine that amplitude of
(wOi) C as a function of Ra that will maintain
marginal stability against any disturbance, including
w,. C1 can be increased until -To/z reaches 0 at some
point, but no further. There is evidence (Chu and Gold-
stein, 1973) that the fluid does not quite respect this
limitation from inviscid theory in the initial postcrit-
ical range of Ra, but at higher Ra no positive mean
gradients are observed. From (13.5) and (13.54)

= 1 + (W101) - w1 01 = 1 + C cos4.az (13.55)

Therefore, from (13.49), marginal stability for w, re-
quires that

C12(Ra)I (13.56)

with the limiting value C1 = 1 att Ra = 2Ra,. In the
observed initial stage of convection, amplitude in-
creases with Ra as in (13.56), but without stopping at
C1 = 1. Instead, the form of the disturbances is altered
by finite-amplitude effects (e.g., Malkus and Veronis,
1958). However, at very high Ra, observations suggest
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that the energetic "overtones" of finite disturbances
are not of smaller scale than the marginal disturbances
in the boundary region.

By accident perhaps, the higher-wavenumber eigen-
functions of the conductive problem

w, = An sinn /2,

Ra, = (27/4)r 4n4

a2 = n272/2,an
2 ~2

(13.57)

are optimal forms for the stability problem (13.49),
even when the distorted -To/l1z of (13.55) is included.
That is,

0f (1 + C cos ) sin2n/2 do

= sin 2n4/2d, (13.58)o~~~~~~~~~~~~1.8
for n > 1. Hence the next instability occurs at Ra2 =

24Ra, and has the form w2 = sin4. If this were to
continue, the gross dependence of the Nusselt number
on Ra would be

Nu = (Ra/Ra})14, (13.59)

which is the law observed in the early stages of con-
vection.

In this free boundary condition case, however, a new
kind of disturbance leads to a lower critical Ra [greater
stability, from (13.49)] beyond the second transition. If
one calls the first disturbances above body disturb-
ances (that is, w, = sinn4/2 is large throughout the
whole fluid and "senses" both boundaries), then the
new disturbance is a boundary disturbance, and is large
only near one boundary. One may presume a statistical
symmetry for these disturbances to maintain the ob-
served symmetry of the mean.

Consider a trial form for such a disturbance of

ko
I() = E Ike ik

k=O

subject to the definitional constraint (13.53),

ko

I = 1,
k=O

then, from (13.52) the maximum possible

-To (0) = Nu = Iko
is k=O

is

1
I (k0 + 1)/2' and Nu = k + 1.

(k + 1 "22
(13.61)

This exactly smooth Ik with its sharp truncation as-
sures the general internal temperature field found from
(13.42) and (13.47):

°() =k +- tan k, +2 __ ( 2 (13.62)

A complete description of this T0(4) valid right to the
boundary can be written in terms of sine integrals.
Near the boundary this description is

To() = l - S(2e) - sin]}' (13.63)

where = (k + 1)4/2, which merges into (13.62) for
f >> 1. If this choice (13.61) is made for the first trial
I, used to determine a minimum Ra for the disturbance
wk0+1 of (13.60), then one finds from (13.49) that

Ra = (k, + l -3 r4/ [2si(2rT) - Si{(4)]
or4 T

or

Ra = (kcl o + 1)3Rac, Ra = 1,533.
Wko+ = sin(k 0 + 1)4/2,

(13.64)

+ '
-- k0 + 1'

2i'27T - 4 - 27r.ko + 1
Hence this first trial form for boundary functions pre-
dicts

Then the trial -Tol 0 z is to consist of (the previous) k0
modes, and each with arbitrary amplitude. The full
problem posed is to choose those k0 amplitudes, subject
to the constraint -aTO/az - 0, in order to minimize Ra
in (13.49). A first and second approximation will be
reported here.

To anticipate an appropriate trial form for the tem-
perature gradient, it is of value to note the links this
problem has with the search for a maximum heat flux.
One sees in (13.49) that if w2+,, is large only near the
boundary, then minimum Ra requires that -aTo/z be
large near the boundary also. If the temperature gra-
dient resulting from the k0 previously unstable modes
can be adequately represented by the truncated spec-
trum

Nu = (Ra/Ra) '13 (13.65)

and a field T,,(4) determined from boundary to bound-
ary. This result parallels, but is roughly 15% above,
the experimental data (Townsend, 1959). The theory is
for free boundary conditions, however, and the data for
rigid boundaries. An estimate of the theoretical reduc-
tion in Nu for rigid boundaries (Malkus, 1963) is 13%.
Precise theoretical results for that case will require
tedious numerical computations. It might be easier to
obtain good data for turbulent convection over a slip-
pery boundary (e.g., silicon oil over mercury).

A second approximation to the most stabilizing spec-
trum (which, of course, will reduce the heat flux) is
also based on a spectrum for I(4) truncated at ko. The
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optimal stability problem so posed, from (13.49) and
(13.60), is to find the Ik that minimizes Ra in

27 / ko ko
Ra = r4 (o + 1)/ . y IkI.Ckm, (13.66)

4 / k=O m=O

where

Ckm = Clk-ml

-(ko + 1) 2k+lcoslk - mal sin2 k 1Od,

and, from (13.53),

ko

E I2k= 1.
k=O

One may write, for vl = Ik - mll(ko + 1),

C, = + 7 sin2irq,

and note that

Co = 1, C1/2 = 0,

more experimental effort is required to test critically
the limits of validity of the hypothesis advanced in this
section. On the positive side this study rationalizes the
observed change of the Nu = Nu(Ra) law from Ra14 to
Ra 3 ; it predicts a double-z - law for the mean field,
the "inner" part observed; its first approximate con-
vection amplitudes provide solid support for the use-
fulness of the concept of marginal stability of the
mean; last, a theoretical program incorporating mar-
ginal stability on both a shear flow and thermal gra-
dient is computationally practical, offering the hope of
discovering unanticipated relations between observa-
bles in the geophysical setting.

(13.67)

Ckol(ko+l) = -.

The maximum eigenvalue of the matrix C,, say Amax,
determines the minimum value of Ra in (13.66). Since

ko
kmax - trace C, = _ C = ko + 1,

k=O

then from (13.66)

(k + 1)3 4 7T4 Ramin- (ko + 1)3(1,533),4

(13.68)

(13.69)

where the latter bound is for the trial Ik [(13.61)]. Since
the heat flux varies as Rai3, the maximum possible
reduction permitted by (13.67) is 30%.

Last, a first estimate of y can be made from the
second approximation to the boundary eigenfunction
(which can increase the heat flux!). If, for Ik = constant,
the trial form

w = sine + A sin2e

is chosen, containing an asymmetric part of arbitrary
amplitude to reflect the asymmetry of -OTo/Oz in the
boundary region, then one finds from (13.49) the op-
tima

A = 0.0226, (k + 1) = 0.5069, Ra, = 1513.

The small harmonic distortion (2.26%) suggests that
the "inner" tangent law may persist to more than ten
times the boundary layer thickness. Present data offer
no hope of detecting a change in slope at such distance
from the boundary. Better data may permit a determi-
nation of y from the "inner" to "outer" law transition
region found from (13.48). In any event, considerably
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