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5.1 Introduction and Summary

The past 30 years have witnessed a rapid evolution of
circulation theory. Much of the progress can be attrib-
uted to the intuition and physical balance that have
emerged from the use of simple models that isolate
important processes. Major contributions along these
lines were made by Stommel, Welander, and others.
An excellent presentation of the ideas together with a
number of significant advances appears in Stem's
(1975a) book. More recently numerical simulations
have provided a different attack on the problem. Proc-
esses that are difficult to study with analytical models
become accessible through the latter approach. Early,
climatological-type studies by Bryan have now been
supplemented by numerical models oriented toward
the isolation of the effects of individual mechanisms.
The papers of Rhines and Holland cited below have
been especially instructive.

The development of the theory for the dynamics of
large-scale oceanic flows is very recent. One has only
to look at the chapter on dynamics in Sverdrup, John-
son, and Fleming (1942) to realize how primitive the
theory was in the mid-1940s. Sverdrup's (1947) impor-
tant demonstration of the generation of planetary vor-
ticity by wind stress was the first step in obtaining
explicit information about oceanic flow from a simple
external observable. Until that time the dynamic
method (i.e., geostrophic-hydrostatic balance) was
used to obtain flow information, but this hardly con-
stitutes a theory since one internal property must be
used to determine another.

Ekman's (1905) theory for what we now call the
Ekman layer was a significant early contribution, but
its application to large-scale theory was not understood
until Charney and Eliassen (1949) showed the coupling
to large-scale flows via the spin-up mechanism. Ac-
tually, the generation of large-scale flow by Ekman
suction in the laboratory was observed and described
by Pettersson (1931), who repeated some of Ekman's
(1906) early experiments with a stratified fluid to de-
termine the inhibition of vertical momentum transport
by stratification. Pettersson found the large-scale cir-
culation to be an annoying interference, however, in
his primary objective, determining vertical transfer of
momentum by turbulence, and he discarded the ap-
proach as unpromising.

Shortly after Sverdrup's paper Stommel (1948) pro-
duced the first significant, closed-basin circulation
model showing that westward intensification of
oceanic flow is due to the variation of the Coriolis
parameter with latitude. Hidaka (1949) proposed a
closed set of equations for the circulation including the
effects of lateral (eddy) dissipation of momentum.
Munk (1950) continued the development by obtaining
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a solution that resembled Stommel's except for details
in the boundary layers near the eastern and western
sides of the basin. He applied his solution to an ideal-
ized ocean basin with observed wind stresses and re-
lated a number of observed oceanic gyres to the driving
wind patterns. The first nonlinear correction to these
linearized models (Munk, Groves and Carrier, 1950)
showed that inertia shifts positive vortices to the south
and negative vortices to the north. Nonlinear effects
thus introduce the observed north-south asymmetry
into a circulation pattern that is predicted by steady
linear theory to be symmetric about mid-latitude when
the wind driving is symmetric.

Fofonoff (1954) approached the problem from the op-
posite extreme, treating a completely inertial, non-
driven model. His solution exhibits the pure effect of
inertia for steady westward flows. The circulation pat-
tern is symmetric in the east-west direction and closes
with the center of a cyclonic (anticyclonic) vortex at
the south (north) edge of the basin. When linear, fric-
tional effects perturb the nonlinear pattern (Niiler,
1966), the center of the vortex shifts westward. Niiler's
model had been proposed independently by Veronis
(1966b) after a numerical study of nonlinear effects in
a barotropic ocean, and Niiler's solution had been sug-
gested heuristically by Stommel (1965).

The theoretical models leading to these results for
wind-driven circulation are discussed below in sections
5.5 and 5.6. More general considerations in section 5.2,
based on conservation integrals for the nondissipative
equations (Welander, 1971a), prepare the way for the
ordered system of quasi-geostrophic equations that are
presented in section 5.3. The latter are derived for a
fluid with arbitrary stable stratification and for a two-
layer approximation to the stratification.' A large por-
tion of the remainder of the paper reports results ob-
tained with the simpler two-layer system.2

Section 5.7 concludes the discussion of simple
models of steady, wind-driven circulation with a sug-
gested simple explanation of why the Gulf Stream and
other western boundary currents leave the coast and
flow out to sea (Parsons, 1969; Veronis, 1973a). Sepa-
ration of the Gulf Stream from the coast occurs within
an anticyclonic gyre at a latitude where the Ekman
drift due to an eastward wind stress in the interior
must be returned geostrophically in the western
boundary layer. If the mean'thermocline depth is suf-
ficiently small, i.e., if the amount of upper-layer water
is sufficiently limited, the thermocline surfaces on the
onshore side of the Gulf Stream and separation occurs.
The surfacing of the thermocline is enhanced by the
poleward transport by the Gulf Stream of upper-layer
water that eventually reaches polar latitudes and sinks.

A review of models of thermohaline circulation is
given in section 5.8. The open models introduced by
Welander (1959) and Robinson and Stommel (1959) and

the subsequent developments by them as well as other
authors are described. The section concludes with a
description of a closed, two-layer model in which the
heating and cooling processes are parameterized by an
assumed upwelling of lower-layer water across the
thermocline (Veronis, 1978). The closure of the model
leads to an evaluation of the magnitude of upwelling
of 1.5 x 10- 7 m s- , in agreement with values obtained
from chemical tracers and the estimated age of deep
water.

The normal modes for a two-layer system are derived
in section 5.9 and the free-wave solutions are obtained
for an ocean of constant depth. The derivation is a
generalization of the treatment by Veronis and Stom-
mel (1956) but the method is basically the same. The
results include barotropic and baroclinic modes of iner-
tiogravity and quasi-geostrophic Rossby waves. Brief
mention is made of observations of these waves and
the roles they play in developed flows.

Topography introduces a new class of long-period
wave motions. Quasi-geostrophic analysis leads to the
three types of waves described by Rhines (1970, 1977)
as topographic-barotropic Rossby waves, fast baro-
clinic (bottom-trapped) waves, and slow baroclinic (sur-
face-trapped) waves. The properties of slow baroclinic
waves are independent of topography, yet the creation
of these waves may be facilitated by steep topography
that inhibits deep motions. For purposes of comparison
the analysis is carried out with stratification approxi-
mated by two layers and by a vertically uniform density
gradient.

Baroclinic instability in a two-layer system is de-
scribed in section 5.11. The model (Phillips, 1951;
Bretherton, 1966a) has convenient symmetries (equal
layer depths and equal and opposite mean flows in the
two layers) that simplify the analysis and show the
nature of the instability more clearly. The stabilizing
effect of p is evident after the simpler model has been
analyzed. After a discussion of the energetics and of
the relative phase of the upper- and lower-layer mo-
tions required for instability, the study of linear proc-
esses ends with a brief review of the stability study
made by Gill, Green, and Simmons (1974) for a variety
of mean oceanic conditions.

The last section extends the discussion to include
the effects of turbulence and strong nonlinear interac-
tions. Batchelor's (1953a) argument that two-dimen-
sional turbulence leads to a red cascade in wavenumber
space is followed by a description of several of Rhines's
(1977) numerical experiments exhibiting the red cas-
cade for barotropic quasi-geostrophic flow and the in-
hibition of the red cascade by lateral boundaries and
topography. An initially turbulent flow in a two-layer
fluid will evolve toward a barotropic state followed by
the red cascade when nonlinear interactions or baro-
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clinic instability generate motions on the scale of the
internal radius of deformation. The latter scale is the
window leading to barotropic behavior. Rough topog-
raphy can inhibit the tendency toward barotropy by
scattering the energy of the flow away from the defor-
mation scale.

The generation of deep motions in wind-driven flows
by upper-layer eddies that evolve from barotropic and
baroclinic instabilities leads to a mean flow that is very
different from the one predicted by the linear theories
of the earlier sections. The closed-basin circulation ob-
tained in a two-layer quasi-geostrophic numerical ex-
periment by Holland (1978) and analyzed by Holland
and Rhines (1980) shows how many of the processes
described earlier come together to generate the mean
flow. Simple balances for some of the results are sug-
gested. A significant result of this experiment (and oth-
ers mentioned) is the enhancement of the mean trans-
port by the circulation resulting from the eddy
interactions. A similar enhancement is made possible
when topography and baroclinic effects are present
(Holland, 1973). A brief discussion of several other nu-
merical studies concludes the review.

Most of the emphasis in this paper is on linear proc-
esses and on the remaining features of the dynamics
that can be used as building blocks to synthesize the
involved, interactive flows observed in the ocean. Only
a selected few of the many numerical studies that have
emerged in the past few years are discussed, and even
for those only some of the generalizable results are
mentioned. Some important topics, such as the use of
diagnostic models (Sarkisyan, 1977) and the generation
of mean circulation by fluctuating winds (Pedlosky,
1964a; Veronis, 1970; Rhines, 1977), are omitted only
because time limits forced me to draw the line some-
where. Most of the references are to the literature in
the English language because that is the literature with
which I am most familiar.

5.2 The Equations for Large-Scale Dynamics

The complete equations for conservation of momen-
tum, heat, and salt are never used for studies of large-
scale oceanic dynamics because they are much too
complicated, not only for analytical studies but even for
numerical analyses. Justification for use of an appro-
priate set of simplified equations requires a much more
extensive argument than is feasible here so we shall
confine ourselves to a short discussion with references
to publications that discuss the different issues. It is
appropriate, however, to mention a general result for
a fluid with a simple equation of state.

If dissipative processes are ignored, the conservation
of momentum for a fluid in a rotating system can be
written as

Ov 1
-v + vVv + 211 x v = -- Vp - VC,
Wt P

or equivalently as

ft + (2f1 + V x v) x v

1P ( )
P - 2 ) 

(5.1)

(5.2)

where v is the three-dimensional velocity vector, is
the angular rotation vector of the system, p the density,
p the pressure, and VF the total gravity term (Newton-
ian plus rotational acceleration).

Conservation of mass is described by

dp + pV.v = 0,dt
d 0
dt ~_-+ vtV.dt at (5.3)

Furthermore, if a state variable s(p,p) is conserved
along a trajectory, it satisfies the equation

dst0.dt (5.4)

These equations can be combined to yield the con-
servation of potential vorticity (Ertel, 1942):

d [ (2 + V x v) Vs] =0.
I ~ p (5.5)

This general result for a dissipation-free fluid does not
apply precisely to sea water where the density is a
function not only of temperature and pressure but also
of the dissolved salts. The effect of salinity on density
is very important in the distribution of water proper-
ties. However, for most dynamic studies the effect of
the extra state variable is not significant and (5.5) is
valid.

Circulation of waters in the world ocean involves
trajectories from the surface to the deep sea and from
one ocean basin to another. The relative densities of
two parcels of water formed at the surface in different
locations can be inverted when the parcels sink to great
depths. Thus, surface water in the Greenland Sea is
denser than surface water in the Weddell Sea; yet when
these water masses sink and flow to the same geo-
graphic location, the latter (Antarctic Bottom Water) is
denser and lies below the former (North Atlantic Deep
Water). This inversion is due in large part to the dif-
ferent amounts of thermal expansion of waters of dif-
ferent temperatures and salinities. 3

Neither compressibility nor individual effects of
temperature and salinity on the density are included in
the treatment that follows. Use of potential density
(not only in the equations but in boundary conditions
as well) together with the Boussinesq approximation
(Spiegel and Veronis, 1960) makes it possible to treat
the dynamic effects of buoyancy forces in a dynami-
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cally consistent fashion. Comparison of observed mo-
tions (especially long- and short-period waves) with
those deduced when potential density is used yields
good qualitative, and often quantitative, agreement.
But it is clear that some phenomena, such as the rel-
ative layering of water masses and small-scale mixing
related to double-diffusive processes, cannot be ana-
lyzed without the use of a more extended thermody-
namic analysis. Therefore, although the present dis-
cussion allows a treatment of inertially controlled
flows, it does not admit the interesting array of phe-
nomena associated with tracer distributions, except in
the crudest sense. By implication, motions related to
the largest time and space scales are not accessible
either.

In those cases where a homogeneous fluid model is
invoked the effects of stratification are implicitly pres-
ent since the basic equations would be different for a
truly homogeneous fluid (where the direction of the
rotation axis could be more important than the local
vertical). The fluid is sometimes assumed to be ho-
mogeneous only because the feature that is being em-
phasized is independent of stratification or because the
simplified analytical treatment is a helpful preliminary
for the more complicated stratified system.

The effects of rotation and Newtonian gravitation
lead to an equilibrium shape for the earth that is nearly
a planetary ellipsoid. For earth parameters the elliptic-
ity is small (1/298) and an expansion in the ellipticity
yields a spherical system with a mean (rather than
variable) radius to lowest order (Veronis, 1973b). An
additional simplification is to neglect the horizontal
component of the earth's rotation. This assumption is
not entirely separate from the use of a mean radius
(N. A. Phillips, 1966a). It is normally valid for the types
of motion treated here, though the effect of the ne-
glected term is discussed for certain physical situations
by Needler and LeBlond (1973) and by Stem (1975a).
Grimshaw (1975) has reexamined the -plane approx-
imation and gives a procedure in which the horizontal
rotation is retained.

With all these simplifications the foregoing equa-
tions simplify to

-+dv f x v = -- V - P XVP, (5.6)
dt Pm Pm

d = 0(5.7)

V-v = 0, (5.8)

dq -
dt [(f + V x v)JVp] 0,d (5.9)

where f = 21lsinqbk is twice the locally vertical (di-
rection k) component of the earth's rotation, is the
latitude, g is gravity, Pm is a mean (constant) density,

and p is the deviation of density from the mean. The
hydrostatic pressure associated with the mean density
has been subtracted from the system. Equations (5.7)
and (5.8) describe the incompressible nature of this
Boussinesq fluid. The quantity s in (5.4) can then be
replaced by p, and the potential vorticity q in (5.9) is
simplified accordingly [note the change of dimensions
of potential vorticity as defined in (5.5) and (5.9)].

For steady or statistically steady flows we can mul-
tiply (5.6) by v to obtain a kinetic energy equation
which can be written as

v*V .V + p + gp) VVB = 0, (5.10)

where B is the Bernoulli function. In this case, since q,
p, and B are each conserved along flow paths, any one
of them can be expressed in terms of the other two and
we obtain

p = p(B,q), B = B(p,q), q = q(B,p). (5.11)

Even though the distributions of the surfaces cannot
be determined without knowledge of the flow field, the
relationship between p, B and q is conceptually useful.

The quantities B, q, and p are specified by their
values in certain source regions where dissipation,
mixing, and other physical processes are important.
(Obvious source regions are Ekman layers, areas of con-
vective overturning, and boundary layers near coasts.)
Having acquired values of B, q, and p at the sources,
fluid particles will retain these values along their flow
paths. If particles from different sources and with dif-
ferent values of B, q, and p converge to the same geo-
graphical location, regions of discontinuity will de-
velop, and mixing, dissipation or some other non-ideal
fluid process will be required. The locations of these
discontinuous regions can be determined only from a
solution to the general problem, and, in general, we
may anticipate new sources of B, q, and p to develop
there. Hence, the system becomes a strongly implicit
one and the closure of the problem is very complicated.

Even though a solution to the general problem may
be impossible, these general considerations are impor-
tant. We should be prepared for the likelihood that the
solution at a particular location will not be simply
determined by values at solid boundaries that are easily
specified. The ocean is more likely a collection of dy-
namically self-contained pools (some subsurface) that
interact along open-ocean boundaries where they join.
Perhaps only the most persistent of these are statisti-
cally steady features. It is possible that locally the flow
is relatively laminar. In that case the solution would
be accessible once the source regions were identified
and the values of B, q, and p in these regions could be
specified.
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5.3 The Quasi-Geostrophic Equations and the ti-
Plane

Even with the simplifications made in the previous
section the equations are more general than required
for a study of large-scale dynamics. We shall therefore
simplify them further by invoking geostrophic and hy-
drostatic balances at lowest order and by restricting
attention to spatial scales of interest. In so doing we
shall derive an appropriate p-plane approximation for
the study of oceanic waves and mesoscale motions. A
similar procedure is followed by N. A. Phillips (1963).4

- tan0 (I + sino) f0 + cot a )

-ax + a tan 0),
dv y av vwd+ tan u + a-t a a 

+atn 1 sin2o a)

OP

(5.20)

+ fou (1 + coto)
a

(5.21)

5.3.1 Continuous Stratification
The spherical components of (5.6) take the form

du uv tan +uw+-- -2Q1sinbvdt a a

1 dP

a coseb dx'

dv u2 tan + vw 1 OP
+ ~ + _ + 2 sin eu

dt+ a a a 0'

dw U2 + v2 OP p
dt a g z Pm 

1 Ou d 1 C w 2w

dp 
0,dt

d 0 u a vO a
t a cos +- +a 

dt at a os 0 x a wo O,

dw y Ow u + v2 OP gp+ tan b =udta r a Oz pm

au Ov w / y 
Ox by + Oz y ta nbo

Yr ow 2w
tan O0-z + - = 0,

(5.12) a Oz a

5.131 d + tanu 9oUP =0,(5.13) dt a ax

d 0 a a a
(5.14) dt -t + u x + v Y + W a

(5.15)

(5.16)

(5.22)

(5.23)

(5.24)

(5.25)

Flows with a primary geostrophic balance will satisfy

P OP
fov satp - fob u a - y. (5.26)

Hydrostatic balance yields

(5.17) OP _
az Pm

(5.27)

where (X, , z) are longitude, latitude, and upward and
have respective velocities (u, v, w); P is P/Pm, a is the
mean radius of the earth, and p is the total density
minus Pm.

Center attention on a latitude eo, write e = 00 + e',
and consider flows with north-south scale L substan-
tially smaller than a. Then with a e' = y, we can expand
the trigonometric functions in y, keeping only terms
of OIL/a), to obtain

Variations over the depth H of the ocean are described
by

0 1

az H' (5.28)

so the "pressure" scale derived from (5.27) is

p gHAp
Pm

(5.29)

sine = sink o(1 + cot(boy/a),

cosb = cosbo 11 - tanboyla1),

fo = 2Q sin o,

a 1 a
Ox a cos 40 aOX'

1 a
Oy a a0

To first order in y/a the equations become

du y au uwdt tanu +- adt a '~ a

Geostrophic balance then suggests the velocity scale

(5.18) V gH Ap
foL Pm

(5.30)

If these scales are used as orders of magnitudes for
(5.19) the respective variables and if we also take

a 1 a 1 a
Ox L ' Oy L ' Ot o

y L H
a a' L' w- V8,

we note the following.
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Relative to the lowest order (in yla) Coriolis terms,
the nonlinear terms in ddt in (5.19) and (5.20) are
O(Ro) where Ro = VfoL. The remaining nonlinear
terms are

0 (Ro or o L Ro).

In the vertical equation of motion the acceleration
terms are

0(82), 0(82Roj, or o (8Ro)

when compared to the terms on the right. Observations
of the flows of interest support the inequalities

Ro << 1, L/a << 1, 8 << 1. (5.31)

Rather than expand the equations in powers of the
small parameters we shall simply make use of (5.31)
and drop all terms which involve products of Ro, 8 and
L/a. Also, rather than give a relative ordering of these
three parameters we keep all terms up to first order in
Ro, 8, and L/a, a procedure that yields the following
general system of equations

du - fov 1 + cot 0)

O1 + a

a 

dv + fu 1+ cot 
l+- t)

OP

Oy'
(5.33)

(5.34)
OP
- = gPIPm,

ou Ov Ow O w
d + d + d - a - v tanr ) - tan 0 W
Oxr Oy Ox- 

= 0,

dtp + tano0u p= 0,
t a axo

keeping in mind that the nonlinear terms in (5.32) and
(5.33) are O(Ro) compared to the lowest-order Coriolis
terms.

Now write

v = v0 + v1, P = P0 + P, p = Po + Pi, (5.37)

where (v,, P, PI) are O(Ro) or O(L/a). We shall also
assume that time variations appear at first order, i.e.,
l0/t = O(Ro) or O(L/a). Then at lowest order we obtain

the expected geostrophic hydrostatic system:

Po (5.38)
fo vo =-Ox (5.38)

By'0P0

OPo

du o V o0
ax ay

(5.39)

(5.40)

(5.41)
Owo = 0,Oz

If w0 vanishes at any level or if it is required to satisfy
inconsistent (with Owo/z = 0) boundary conditions at
top and bottom, it will vanish everywhere. One or the
other of these two conditions is satisfied for all of the
flows that we shall consider, so we obtain the result

w = 0. (5.42)

This means that the scaling w - V8 suggested by the
geometry is inappropriate and that a factor Lia or Ro
should be included on the right-hand side. In other
words, quasi-geostrophic flows are quasi-horizontal
and the convective derivative in 5.32) reduces to

d a a a
+ =t +Uo +Vo .I at ax ay'' (5.43)

The restriction to flows with less than global scales
precludes a treatment leading to the basic stratifica-
tion. Since vertical density changes Ap are generally
much larger than the horizontal changes, say Ap', gen-
erated by the motion field, we must account for the
difference in (5.36). In particular, we write p = (z) +
p'(x, y, z, t) so that

Op' Op' p' Op'ot +v + + w- 
t Ox Oy +=

+w + tan ouPF =0.
ax a ax

The considerations leading to (5.43) apply here as well
j5.35) for the terms involving p'. Accordingly, at lowest order

we can drop the terms w Op' lz and (yla) tan 0u u(Oip' lx)

6) to end up with
{5.361

dp' + O 0,
dt +=

(5.45)

where Ap' is assumed to be O(Ro) or O(L/a) relative to
Ap. Since w is correspondingly smaller than u or v, the
two terms balance. In terms of our ordering, therefore,
we can write

dpo Op
dr + w 1 = 0,dt az

(5.46)

where we have used the fact that the density used in
the hydrostatic equation is really p' (since the balance
OP/Oz = -gp is valid when there is no motion and
hence can be subtracted from the system).

At next order we have

(5.44)
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dut -f oVl fo cot0 oVo
-f a

aP y aPo- d , -y tan 0 -°'
ax a ax -d- -+ foul foCOt -

dt a ay 

0u, .v Ow, 0 / oyax + + -by tala tan00v l= 0. (5.49)Ox -y Oz Oy a

These equations, in addition to providing the balances
for first-order quantities, serve the important function
of closing the zero-order system when first-order terms
are eliminated. Thus, cross differentiating (5.47) and
(5.48) and making use of (5.38) to (5.41) and (5.49), we
obtain

d-t + BVo = fo wl
dt Oz

fo cot o01=a
0 Vo auo"o- --

ax ay

From (5.46) we observe

Oawl 1 dpo] d / . 5.51)
=z z[ Ol/Oz dt J dt Oz 8P OdZ (5.51)

Also,

vo df (5.52)

where f = fo(l + cot o (y/a)). Then using (5.38) to (5.41)
to express u0, vo, po in terms of Po we obtain the lowest-
order closure

d [Po + ff + (f NP z)] 0,

where N2 = -g(Opl/z)/pm is the square of the buo
frequency. Equation (5.53) describes the conser,
of quasi-geostrophic potential vorticity. It is some
written in terms of the stream functions ¢q = Po/

dt [V2 + f + d folaz)] = 0.

The derivation given here has been carried out in
dimensional form. It is as rigorous, though not as for-
mal, as derivations with nondimensional variables
(e.g., Pedlosky, 1964a) and has the advantage of includ-
ing the intermediate equations in dimensional form.
Obviously, the equations are valid only for those mo-
tions (smaller than global scale, low frequency, etc.)
that satisfy the assumptions.

5.3.2 Equations More Commonly Encountered
Instead of the set (5.47)-(5.49) one more often encoun-
ters the equations with rectangular cartesian coordi-
nates, no subscripts, and with f = fo + y, i.e.,

du OP
fv = Ox'

dt

(5.47) a+ f =- '

au v w(5.48) T + + d = .ax ay Oz

(5.55)

(5.56)

(5.57)

This system is often used even when the flow is not
quasi-geostrophic. For quasi-geostrophic flows, partic-
ularly if one makes use principally of the vorticity
equation and the fact that w is really a higher order
quantity, one can avoid serious errors.

For flows at low latitudes (small o0) the neglected
terms (-tan 0 ) are small and (5.55) to (5.57) may be
adequate. But errors notwithstanding, a large part of
the literature deals with this more approximate sys-
tem, and we shall have to refer to it frequently.

5.3.3 Layered Stratification
Continuous density stratification is frequently approx-
imated by a series of discrete layeis each of uniform
density. The derivation parallels the one just given but
it is easier to make use of what we have done and to
note the following.

Number the layers sequentially downward from the
top so that the ith layer has thickness h"', density p",
and mean thickness (for linearized cases) H"'i'. Further-
more, write h") = 77(i) + H" - ri+l) so that "i) and
"Vi+) are the deviations of the top and bottom surfaces

of the layer from the mean. Integrate the hydrostatic
relation downward from the top surface to layer i to
derive the horizontal pressure gradient in terms of gra-
dients of thicknesses

(5.53) i-I
) Vp() =g p(n) Vh(' + gpi) V71 ).

,1=

(5.54)

(5.58)

Conservation of mass for each homogeneous layer is
V3*vi) = 0, where V3 is the three-dimensional operator.
The horizontal velocities are independent of z because
the flow is hydrostatic. Therefore, integrating over the
depth of the layer yields

dhi=)
hU)V'v( +d = 0,dt (5.591

where we have used the free surface conditions

w )i'(x, , y , r, t) = t 'dt '
(5.60)

w"(x, Y, y, i+), t) =d7dt
dt

Also, since H'i' is constant

d (, _ + dh"'
dt dt '
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We can thus integrate (5.5.0) over the depth of each
layer to obtain the conservation of potential vorticity
for the layered system

dt (hi + = 0. (5.61)

The velocity in the convective derivative is (uo, vi).
In subsequent treatments of the two-layer, ,8-plane,

inviscid, momentum equations, we shall use the ap-
proximate form (5.55) and (5.56) together with the ver-
tically integrated form of (5.57). The equations are

du, = 0t-fv =-g ax'

dvt
dT + ful = -g 

adt a]dhi +h, (u + vi =

dU2 fV2 = -g ( { ) -71 (5.65)

frictional processes acting near the bottom. 6 Assuming
that horizontal variations of the stress are small com-
pared to vertical variations (easily verified a posteriori),
we can write

-fv = -fvg + vu,,,

fu = fug + vvW,

(5.68)

(5.69)

where subscript z corresponds to 0/az and the pressure
gradient is written in terms of the geostrophic velocity.
The velocity vanishes at the (flat) bottom

v=0 at z=0. (5.70)

(5.62)
The method of solution is well-known (Lamb, 1932,

p. 593). Combining u and v as u + iv, i = V-1, the
(5.63) equations (5.68) and (5.69) take the form

iu + iv) = f if
(5.64) (u + iv),, = __ (u + iv) - ( + v.)(5.64) ~ ~ ~~~P 1,

dt + fu, = -[g 1- + d,] 5.66)
ly a+ ay

d-T +h, (5.67)

where, EP2 = P2 - Pi, h2 = /2 + H2 - r3, and 71, is the
height of the bottom above an equilibrium level. The
subscripts in (5.62) to (5.67) identify the layer rather
than the order of L/a or Ro.

For linear steady flows the above system is some-
times used with spherical coordinates.

5.4 Ekman Layers

The equations derived above do not contain friction
explicitly. However, when the variables are written in
terms of a mean (ensemble, time average, etc.) plus a
fluctuation and the equations are averaged, Reynolds
stresses emerge and these are often parameterized in
frictional form through the use of Austausch or eddy
coefficients. Though this procedure is often question-
able, it may not be a bad approximation near the top
surface where wind stresses impart momentum to the
ocean and near the bottom where frictional retardation
brakes the flow. This was the view taken by Ekman
(1905), who introduced the model for what is now
called the Ekman layer.5

5.4.1 Pure Ekman Layers
Ekman first applied the theory to the wind-driven layer
near the surface of the ocean. It is preferable to intro-
duce the subject by investigating how a horizontally
uniform geostrophic flow given by f k x v, = -VP in a
fluid occupying the region z > 0 is brought to rest by

(5.71)

and the solution satisfying (5.70) with v -, 0 as z -- oo
is

u + iv = (ug + ivg)(1 - e-r), (5.72)

where 8 = Vfi. Accordingly, the flow vanishes at z =
0, tends to v, for large z and is predominantly to the
left of v. in between.

The vertically integrated transport of the exponen-
tially decaying part of (5.71) is (-1 + i)(u, + iv)(v/2f)112,
which suggests he = (vl2f)1/

2 as the scale of the Ekman
layer. If we integrate the geostrophic part over the
depth, he, we obtain the transport u, + ivJ)he. Hence,
the net transport is i(u, + ivg)he, which is to the left of
the geostrophic current, i.e., down the pressure gra-
dient required to support v., as we would expect. In
vector form the net transport is (-vg, ug lh5 .

Next consider Ekman's problem, with fluid occupy-
ing the region z < 0 and with the flow driven by the
spatially uniform wind stress (divided by the density)
given by (, TY) acting atz = 0. With vg = 0, the solution
is

e8z
u + iv = {Trsin(z + r/4) - T sin(&z - Tr/4)

+ i[rTsin(z - 7r/4 ) + Tr'sin(z + r/4)]}. (5.73)

In the hodograph (u, v)-plane the solution has the form
of a spiral (called the Ekman spiral). Just as rotation
generates a velocity component to the right (for f > 0)
of the (pressure) force for geostrophically balanced flow,
a flow to the right of the tangential-stress force is gen-
erated in the Ekman spiral solution. In contrast to
geostrophic flow, however, the present system is dis-
sipative, and a velocity component parallel to the force
is also present. At the surface the magnitudes of the
components are equal so the flow is directed 450 to the
right of the wind stress. The velocity component par-
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allel to T decreases with depth but near the surface the
normal component does not (it cannot since has the
same direction as aT/Oz). But below that the stress veers
to the right as does the velocity vector.

Though Ekman's solution provided a satisfactory ex-
planation of Nansen's observation of surface velocity,
the spiral is not normally observed in the field. Ekman
failed to observe it in spite of repeated attempts. Hun-
kins (1966) reported measuring a well-defined Ekman
spiral (ironically, in the Arctic Ocean, where Nansen's
first observations were made). The spiral structure de-
pends on the form of the stress term, and since the
stresses near the surface are turbulent (due to thermal
convection, surface waves, and other small-scale proc-
esses) and therefore not necessarily of Navier-Stokes
form, it is not surprising that the observed current
structure differs from the theoretical one. Also, the
mixed layer at the surface sits on a stably stratified
fluid and the depth h of the former often does not
exceed he when a turbulent eddy viscosity is used.
Gonella (1971) showed that when a stress-free condi-
tion is applied at the base of the mixed-layer the so-
lution is a function of he/h. For shallow (h << he) mixed
layers there is essentially no spiral. Csanady (1972)
reported that field measurements in the mixed layer in
Lake Huron support Gonella's findings. He also refor-
mulated the problem in terms of external parameters
of the system instead of using an eddy viscosity.

In contrast to the detailed velocity structure, the
vertically integrated transport of the wind-driven Ek-
man layer is independent of the form of vertical vari-
ation of the stress. If the stress terms in (5.68) and
(5.69) are written as T7/Oz and if we integrate the equa-
tions vertically, the transports are given by (, -")/f.

Thus, the total transport is to the right of the wind
stress irrespective of the form of x and subject only to
these conditions: = (x, T) at the surface and T = 0 at
the bottom. In vector form, with Ve = f°hvdz (where
h is a depth-finite or infinite-at which X vanishes),
the result called the Ekman drift) is

Ve = ( x k)/f. (5.74)

where r is now the wind stress vector and k is the
vertical unit vector.

5.4.2 Effect of Ekman Layers on Interior Flows
Although the pure Ekman layer theory given above
requires horizontally uniform conditions, the theory is
valid with horizontal variations as long as the horizon-
tal scale is substantially larger than he. The neglected
horizontal variations of the stress terms are smaller
than r/laz by the ratio of the squares of vertical to
horizontal scales. Furthermore, for the mixed layer
near the surface the vertical pressure gradient in the
vertical equation of motion vanishes (as long as we
consider scales larger than the small-scale turbulence

which generates the mixed layer). Hence, the horizon-
tal pressure gradients associated with Ekman layer
processes are negligible at lowest order, and the original
equations, and therefore the results given by (5.73), are
still applicable.

Accordingly, suppose that T in (5.74) varies horizon-
tally. When the continuity equation Vov = 0 is inte-
grated in the vertical over the depth of the Ekman layer
and the boundary condition (w = 0 at the top) is ap-
plied, we find (Charney, 1955a)

We = V'Ve, (5.75)

where we is the vertical velocity at the base of the
Ekman layer. With (5.74) this becomes

We X f y f ) f) (5.76)

Thus, horizontal variations in x generate vertical mo-
tions which penetrate into the fluid below. Since the
Ekman layer is thin relative to the depth of the ocean,
this forced vertical velocity (called Ekman pumping)
can be applied as a boundary condition (approximately
at the surface) for the underlying inviscid fluid.

The same analysis can be applied to the bottom (sub-
script b) Ekman layer, where the vertically integrated
transport was found to be Vb = (--Vg,ug)hb. If the bottom
is flat, so that w = 0 there, the vertically integrated
continuity equation yields

Wb = -V'Vb,

where Wb is the vertical velocity induced at the top of
the Ekman layer. Substituting for Vb we obtain

a a
Wb =- (Vghb) - (U ghb)

or taking hb constant,

Wb = hbkV x vg. (5.77)

This value for w serves as a boundary condition (ap-
proximately at the bottom of the ocean) for the over-
lying inviscid fluid.

5.4.3 Additional Considerations
Only the simplest results of Ekman layer theory have
been given here. A number of important extensions are
discussed by Stem (1975a, chapters 7 and 8). Horizontal
momentum is imparted to the ocean by the wind stress
acting at the surface; yet the momentum vanishes at
the base of the Ekman layer. Stern answers the ques-
tion where the momentum goes by analyzing the an-
gular momentum balance about the axis of rotation for
a cylindrical system. The analysis is carried out in an
inertial frame of reference where the torque of the wind
stress is balanced by the absolute angular momentum
of the fluid. The latter is proportional to the absolute
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vorticity of the undisturbed (no wind stress) vortex
flow in our case, solid-body rotation). The correspon-
dence between the cylindrical problem and the recti-
linear system [with (5.74) as the result] is that for large
radii the angular momentum argument is equivalent
to saying that the rate of momentum imparted by the
wind stress is balanced by the divergence of the radial
flux of absolute azimuthal momentum.

Though the Ekman layer depth he is clearly defined
for laminar boundary layers, the value for turbulent
boundary layers is not. Caldwell, van Atta, and Holland
(1972) formed the boundary layer scale r112 /f from the
(only) external parameters and f. Assuming that the
molecular scale (v/f)11 2 is not likely to affect the tur-
bulent scale, they suggest that 12 /f is the turbulent
Ekman boundary layer thickness. Stem (1975a, §8.1)
carried out a crude stability analysis to conclude that
a layer thicker than he - rl1 2f will radiate energy to
the deep water. He surmised that nonlinear modifica-
tions will show that the turbulent energy is thereby
reduced as the thickness shrinks to 1 12/f, where the
system will stabilize. For typical values of r, the value
of he (so defined) is 0(100 m) at mid-latitudes. These
considerations are based on the assumption of a ho-
mogeneous fluid. For a stratified fluid like the ocean
the stratification may be decisive in determining the
boundary layer thickness as Csanady's (1972) report of
observed velocities in Lake Huron indicates.

As we saw from the simple analysis presented above,
the effect of the top Ekman layer on the underlying
water is determined completely by the wind stresses,
whereas in the bottom Ekman layer the condition is
expressed in terms of the velocity of the overlying
water. More generally there will be a nonlinear cou-
pling between the Ekman layer and the interior which
can alter the results significantly. Fettis (1955) carried
out the analysis for a laboratory model of a nonlinear
Ekman layer to show that the results can be approxi-
mated by (5.74) but with the absolute vertical vorticity
replacing f. Stem (1966; 1975a, §8.3) and Niiler (1969)
have investigated the effect of coupling of Ekman layer
flow with geostrophic vorticity (eddies) and have
shown that the latter can have a dominant influence
since coupling with the interior can occur even for a
uniform wind stress.

5.5 Steady Linear Models of the Wind-Driven
Circulation

When integrated vertically from z = -h to z = 0 this
yields

0

-h V= fvod

or

tV = Kev x X - fo0wx, y, -h), (5.79)

where the variation of f in ieV x (lf) is (consistently)
neglected at lowest order.

5.5.1 Sverdrup Transport
If the stratification is strong enough so that distortion
of the density surfaces is negligible at some depth
above the bottom, the last term in (5.79) vanishes and
we obtain the Sverdrup transport

f3V = keV x T. (5.80)

Thus, the vertically integrated north-south transport
is determined by the curl of the wind stress. Sverdrup
(1947) introduced this relation to estimate transports
in the eastern equatorial Pacific (see chapter 6). Phys-
ically, the interpretation of (5.80) is straightforward.
With 3V written as h dfldt we see that a column of
fluid moves to a new latitude (new value of planetary
vorticity f) with a speed that compensates for the rate
at which the wind stress imparts vorticity to the ocean.

The continuity equation (5.41) can be integrated in
the vertical and in x to yield

U = -f dx + PFy)

or

U = -f - (iv x ) dx + Fly),t= or (5.81)

where Fly) is arbitrary. The most common procedure
for theoretical analyses is to assume that the foregoing
is valid eastward to a meridional boundary x = L, where
U must vanish. Then

u = f 1 a0 (k.v x T)dx, (5.82)

and the transport is determined in the entire region in
which the assumptions are valid. In general, the theory
does not determine the flow in a basin bounded on the
west as well since it is not possible to satisfy the zero
normal flow condition there.

For steady, linear flow of moderate scale we have
Ro << La so the term do,/dt in (5.50) can be neglected.
The resulting equation is

v = o dz (5.78)

5.5.2 Stommel's Frictional Model
If the fluid motion penetrates to the (flat) bottom, the
last term in (5.79) is given by (5.75) with v, = Volz=-h
and (5.79) becomes

pV = V X - f0hb a o \Ox oy/z=_
(5.83)
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Thus, one must supplement this equation with addi-
tional ones that determine the vertical structure of the
velocity field. However, if the fluid is assumed to be
homogeneous so that v0 is independent of z and if one
then writes

(U, V) = (Uo, vo)h,

the system closes with

fPV = kV' x - Thb V _ U) (5.84)

Introducing the transport stream function V = k x
Vq, yields

fi,3r = k.V X T - KV2 ,, (5.85)

where K = fohb/h. Stommel (1948) obtained (5.85) by
assuming a bottom drag law for the friction term. The
derivation using Ekman layer theory makes the as-
sumptions more evident.

The solution with Tr = -Tcos(syM), , = 0 and
with = 0 atx = 0, L andy = 0, M is

MT { (1 - eD2L)eDx - {1 - eDIL)eD2X}
7rK |\ 1 eDIL - eD2L

x sin-, (5.86)

where

D = - 2K + 2K M
D2 P (1)(/(n()

Values of versus x are shown in figure 5.1 for the
case with L = 6000km, M = 3000km, f8 = 2 x
10-11 m-1 s - 1, and K = 2 x 10-6 s-. Stommel's model
was the first to exhibit the westward intensification of
the oceanic response to a symmetric wind-stress curl.

With K/IJL << 1, 5.85) is a boundary-layer problem,
where the highest derivative term (the bottom fric-
tional effect) is important only in a narrow region near
the western boundary where the flow is northward. In
the remainder of the basin the Sverdrup balance (5.80)
is approximately valid (but see below), the flow is slow
and southward, and friction is unimportant. The neg-
ative vorticity injected into the ocean by the wind is
eventually dissipated in the western boundary layer,
where the induced northward flow deposits columns
of fluid at their original latitudes with the original
planetary vorticity restored. Detailed balances and a
fairly comprehensive discussion are given by Veronis
(1966a).

The westward intensification is normally explained
in terms of the vorticity balance, but a qualitative dis-
cussion in terms of momentum balance is also possi-

ble. Thus, we note that the Ekman wind drift in the
northern half-basin is southward whereas that of the
southern half-basin is northward. Water piles up at
mid-latitude, raising the free surface level and creating
a high pressure ridge at mid-latitude (H in figure 5.2).
The induced eastward geostrophic flow in the northern
half-basin requires a low pressure along the northern
boundary. In the southern half-basin a westward flow
of the same magnitude requires less of a north-south
pressure difference because the Coriolis parameter is
smaller) so the low pressure (HL in figure 5.2) at the
south is higher than the low pressure (LL in figure 5.2)
at the north. The solid boundaries at the east and west
will divert the flow. A narrow frictional boundary layer
at the east would require flow from the low low pres-
sure at the north to the high low pressure at the south,
i.e., flow up the (gross) pressure gradient. On the west-
em side, on the other hand, a narrow frictional bound-
ary layer supports flow from high to low pressure.
Hence, if a thin frictional boundary layer exists, it must
be on the western side. This "explanation" ignores a
lot of important details, but the reasoning is consistent
with the roles that rotation and friction play in bal-
ancing the pressure gradient.

If a system without meridional boundaries (a zonal
channel) were subjected to a zonal stress, a zonal flow
would be generated (apart from the Ekman drift).
Hence, the Sverdrup transport of Stommel's model
must depend on the presence of meridional boundaries.
Yet it seems likely that if the meridional boundaries
are far enough apart, the system should resemble a
zonal channel more than an enclosed ocean except in
relatively narrow regions near the east and west where
meridional flow takes place. Welander (1976) showed
that that is the case. With the zonal wind stress given
above one can substitute = '(x) sin(iry/M) to derive

K~" - K~ M + ' = - M' rM2 M- (5.87)

Figure 5.I The transport streamfunction, normalized with re-
spect to the Sverdrup transport and divided by siniry/M, is
shown for Munk's solution with lateral diffusion (top curve)
and Stommel's solution with bottom friction. The nominal
boundary layer thickness is L160. Stommel's solution shows
the decreased transport because of the effect of friction in a
basin with 7rL/M >> 1. Munk's solution oscillates near the
western boundary, giving rise to a weak countercurrent to the
east of the main northward flow.
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of wind stress and bottom friction, the vertical diver-
gence term in (5.78) will also contribute the term
fdhldt to the right-hand side of (5.84). If the latter is
combined with the / term, the result is

(5.88)

Figure 5.z A cosine wind stress T7 causes an Ekman drift
(double arrows) toward mid-latitude where the free surface is
elevated and a high pressure region (H) is created. A geostroph-
ically balanced current flows eastward in the north half-basin
and westward in the south. Because of the larger Coriolis
parameter a lower low pressure (LL) is required along the
north boundary than along the south (HL) to support the same
transport geostrophically. If the zonal transport is deflected
southward in a frictional boundary layer near the eastern side
(dashed curve), the flow must go against the gross pressure
difference (from LL to HL). If the flow is in a western boundary
layer (solid curve), the gross pressure difference drives the
flow against frictional retardation. The latter is a consistent
picture.

As we have seen, the second-derivative term is impor-
tant only in the western boundary layer where the scale
of variation is K/,3 = 100 km. North-south diffusion
(the undifferentiated '1 term) is unimportant when the
geometry is square. But when the zonal separation is
large (rL/M >> 1), the balance is between wind-stress
curl and north-south diffusion, D = MT/rK), and the
flow is zonal. The Sverdrup transport relation holds in
an eastern boundary layer with the east-west scale
/3M2 Tr2/K. Bye and Veronis (1979) pointed out that the
northward transport in the western boundary layer is
much smaller than the transport calculated by the
Sverdrup balance if the aspect ratio rL/M is large, as is
the case for nearly all wind-driven oceanic gyres. Of
course, these results are contained in the complete
solution of the simple model discussed here. But when
relatively modest refinements are introduced (e.g.,
spherical geometry), a complete solution is no longer
possible and boundary layer methods must be used. It
is then necessary to recognize the correct approximate
balance in the different regions of the basin.

5.5.3 Topography and Lateral Friction
The principal result of the foregoing analysis, viz., the
westward intensification of an oceanic gyre, is verified
both by observations and by much more sophisticated
analyses. Hence, it is a feature that appears to be in-
sensitive to the drastic simplifications that were made.
But it is a simple matter to change the result by relax-
ing one of the simplifications and then restoring the
result with a second, seemingly unrelated, assumption.
In other words, the simple model is not as crude as it
appears to be.

For example, introduce realistic topography (Hol-
land, 1967; Welander, 1968). Then on vertical integra-
tion, we see from (5.60) that, in addition to the effects

Hence, the driving and dissipative forces on the right
will cause a fluid column to respond by moving to
points determined by the value of f/h rather than f as
before. Since the contours of flh are sometimes strongly
inclined to latitude circles (Gill and Parker, 1970), the
transport pattern is very different from (in fact, less
realistic than) Stommel's. Thus, the effect of topogra-
phy is exaggerated in a homogeneous model.

Stratification can reduce the topographic effect. In
fact, if the density surfaces adjust so that the pressure
gradient in (5.55) vanishes at and below a given level,
there will be no driving force to support a flow. If
topography does not project above this level of density
compensation, it has no effect on the flow. In an in-
termediate situation, the density distribution can com-
pensate for part of the pressure gradient so that at the
level where it interacts with the bottom the velocity
is considerably weaker than the surface velocity. A
treatment of the latter case would necessarily incor-
porate convective processes in some form.

When complete compensation takes place in a steady
model, the topographic influence is eliminated, but our
derivation of bottom friction is no longer valid because
it is no longer possible to parameterize the frictional
processes at the bottom in terms of the mean velocity.
The essential results of the model can be preserved,
however, by parameterizing frictional effects in terms
of an assumed lateral eddy diffusion. The last term in
(5.83) is then replaced by a lateral frictional term so
that the vorticity equation, in terms of the transport
stream function becomes

8 = ikV x + A V4, (5.89)

where A is the magnitude of eddy viscosity based on
the intensity of eddy processes at scales smaller than
those being analyzed. Hidaka (1949) introduced this
equation together with the vertically integrated con-
tinuity equation

OU av
+ a= . (5.90)

Ox ay

A convenient set of boundary conditions where the
wind stress curl is proportion to sin(ry/M) is

U=0=V at x =0, L,
5.91)

V=0 = at y=O,M.
y
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The solution is easily obtained (Munk, 1950) and is
included in figure 5.1. It contains a Sverdrup transport
in the interior; a narrow eastern boundary layer in
which V decreases to zero at the eastern wall; and a
western boundary layer with no tangential velocity at
the western wall, a northward flow near the wall and
a weak, narrow countercurrent just east of the north-
ward flow. Because frictional processes are now asso-
ciated with higher derivatives, the effect of friction in
the interior is considerably weaker than in Stommel's
model, and the Sverdrup balance is valid throughout
the interior. Accordingly, in this case the aspect ratio
of the basin has little influence on the magnitude of
the transport. Because the zonal velocity increases lin-
early with distance from the eastern boundary, for
broad ocean basins the flow has a strongly zonal ap-
pearance. In Stommel's model the north-south flow
essentially vanishes in the western portions of the
basin and the flow is truly zonal there.

Although these formal models are steady, the appli-
cation is to flows that are transient but statistically
steady. Transient motions can have a strong barotropic
component even when the statistically steady flow is
largely baroclinic. With that in mind we may still use
a bottom frictional drag for the stratified steady model,
though the connection to the mean flow will then be
not through the coupling to a steady Ekman layer but
through a time averaging of interacting transient mo-
tions. Rooth (1972) has made such an estimate for K
and obtains a value considerably smaller than the one
normally used.

5.5.4 Laboratory Models
Though these steady, linear models can provide only
the crudest approximation to real oceanic flows, they
have served an important function in the development
of oceanic theory. Stommel (1957b) put together the
important components (Ekman suction and p-effect) to
construct a comprehensive picture of ocean current
theory as determined by these simple processes. The
ideas were tested in a laboratory model of ocean cir-
culation (Stommel, Arons, and Faller, 1958) in which
the P-effect was simulated by the paraboloidal depth of
a homogeneous layer of water in a pie-shaped basin
rotating about the apex (see chapter 16). The equiva-
lence of pl and variable depth is suggested by the lin-
earized form of potential vorticity,

(4 +f)/h ( + f/h + Ho-
where -7 is the deviation of the free surface from its
mean value H, so that a change in forl/H2 is equivalent
to a change in f, i.e., to p. When water is being added
at the apex, the free surface in the interior rises not by
a direct vertical motion but by a radially uniform in-
ward movement of columns of fluid (figure 5.3). The

circulation generated in this way simulates the Sver-
drup transport, the inward radial direction correspond-
ing to north (increasing f or decreasing depth).

In the experiment, boundary layers near the "west-
ern" boundary and the rim and apex are required to
complete the circulation pattern (figure 5.3). The azi-
muthal flow and the rising free surface needed to feed
the interior radial flow are generated in the rim bound-
ary layer. Near the apex the flow is diverted to the
western boundary layer to join the fluid being injected.
It is interesting to note that the radially inward flow
that causes the free surface to rise is toward the source
of fluid. Thus, the transport in the western boundary
layer is twice that of the source. Half of the former
goes to raise the free surface; the other half serves as
the vehicle for the indirect circulation. (Also see Fig-
ures 16.1 and 16.2 and the accompanying discussion.)

Additional experiments and a rigorous analysis using
rotating-fluid theory to treat the various boundary lay-
ers were subsequently provided by Kuo and Veronis
(1971), who showed that for different parametric ranges
the experiment could be used to simulate Stommel's
model with a bottom frictional boundary layer or the
Hidaka-Munk model with a lateral frictional boundary
layer. Veronis and Yang (1972) provided a perturbation
treatment of the nonlinear effects and verified the re-
sults with a series of experiments. Pedlosky and Green-
span (1967) proposed an alternative laboratory model
with the depth variation provided by an inclined
boundary at the top and/or bottom of a rotating cylin-
der. The flow was driven by the differential rotation of
the top plate. For this model Beardsley (1969, 1972)
carried out a comprehensive set of experiments and

Qc9 Br

Figure s.3A A weak source of fluid at the apex of a rotating
pie-shaped basin will cause flow toward the rim in a "west-
ern" boundary layer. Fluid flows from the rim boundary layer
radially inward toward the apex as shown.

1

Figure . A vertical cross section through the apex. The

Figure 5.3B A vertical cross section through the apex. The
basin is filled in the interior by the inward movement of
columns of fluid as shown.
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extended the theory analytically and numerically to
include inertial effects.

The foregoing experiments and theories are more
appropriate areas of application than the real ocean is
for the ideas introduced by Sverdrup, Stommel, and
Munk. At the time that they were introduced, how-
ever, these ideas were remarkable advances into un-
known territory. They have provided a framework for
further development and some of them persist as im-
portant elements in more extensive theories.

5.6 Preliminary Nonlinear Considerations

The first perturbation analysis of nonlinear effects in
a wind-driven gyre was by Munk, Groves, and Carrier
(1950), but it is easier to see the qualitative changes by
looking at Stommel's model (Veronis, 1966a). From the
linear problem we saw that the vorticity and its zonal
variation are largest in the western boundary layer, so
we expect the largest nonlinearities there. The wind
stress is not important in that region, and we start with
the vorticity equation, including inertial terms but not
the wind-stress curl:

d
d (4 + f) = v.V4 + fv = -4.It (5.92)

For more nonlinear flows the dissipation takes place
largely in the northern half of the boundary layer. Fur-
thermore, the excess inertia of the particles causes
them to overshoot their original (interior) latitudes so
there must be an additional region where inertial proc-
esses and friction restore the particles (southward) to
their starting points. The effect is to spread the region
of inertial and frictional control first to the north and
eventually eastward from the northwest corner of the
basin. A discussion of the successively stronger effects
of nonlinear processes and a division of the basin into
regions where different physical balances obtain is
given by Veronis (1966b).

This argument strongly suggests that it may be pos-
sible to analyze the region of formation of western
boundary currents in terms of a frictionless inertial
model. Stommel (1954) proposed such an analysis
which he subsequently included in his book (Stommel,
1965).

Fofonoff (1954) focused his attention on nonlinear
processes by treating the steady circulation in a fric-
tionless, homogeneous ocean. The starting point is the
conservation of potential vorticity in a basin of con-
stant depth, viz.,

d
d I[ + f) = o,It (5.93)

In the southern half of the basin the flow is westward
(u < 0) into the boundary layer where it is diverted
northward. Thus, a fluid particle is carried from the
interior, where vanishes, into the boundary layer,
where is large and negative, so d,/dt < O0. Northward
flow implies dfldt > 0. Hence, the convective term bal-
ances part of the fi-effect and -E; must consequently
decrease in size. Since the vorticity is essentially v/ax,
it will decrease if v decreases or if the horizontal scale
increases. But from v = dl/ax we see that a decrease
in v also corresponds to an increase in the horizontal
scale. Therefore, we conclude that inertial effects
weaken the flow by broadening the scale. This effect
will also decrease the dissipation in the inflow region.
The same considerations apply to the case with lateral
friction.

In the northern half of the basin where the flow
emerges (u > 0) from the western boundary layer, fluid
is carried from a region of negative vorticity to the
interior where a vanishes, so dCldt > 0. Since the flow
is northward in the boundary layer, df/dt is also posi-
tive. Therefore, the amplitude of the vorticity must be
larger since the dissipation --E must be larger than in
the linear case. Hence, the horizontal scale of variation
must decrease.

The net effect of inertial processes is thus to broaden
the boundary layer thickness and to reduce the dissi-
pation in the region of inflow, and to sharpen the
boundary layer thickness and increase the dissipation
in the region of outflow.

together with the two-dimensional continuity equa-
tion. These equations are satisfied by u = -M/0y =
constant or

' = -uy, (5.94)

but boundary conditions are not, so it is necessary to
add boundary layers at the eastern and western sides
of the basin.

A first integral of (5.93) is

V2* + f = F(q,) (5.95)

and in the interior where the relative vorticity vanishes

F() = f = fo + y. (5.96)

But (5.94) yields y = -u there, so that F(J) =
fo - ptu and (5.95) becomes

V2 / + -e = -y. (5.97)

This equation is satisfied nearly everywhere by =
O(x)y so that

O" + - = -f.u (5.98)

The north-south flow near the meridional boun-
daries is thus geostrophic. A boundary layer solution
with 4 = 0 at x = OL is possible for u < 0 if =
(-fi/u) 1 12 >> L. It is
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= Uhe [sinhEx - sinhEL + sinhE(L - x)]
sinh EL

x [y - Me-'M-]. (5.99)

This yields a uniform, westward flow in the interior,
and boundary layers of thickness E-1 with northward
flow at the west, southward flow at the east, and a jet
across the northern edge (figure 5.4).

It is possible to have the eastward jet at any latitude
by adding an appropriate constant to Ji in (5.94). With
u > 0 the system does not have a boundary layer so-
lution but oscillates across the basin (Fofonoff, 1962a).

Although Fofonoff's solution appears to be very ar-
tificial, it is one of the survivors of the earlier theories.
The strongly nonlinear version of Stommel's model
leads to a solution that looks remarkably like Fofon-
off's (Veronis, 1966b; Niiler, 1966). The recirculation
region just south of the Gulf Stream after the latter has
separated from the coast has the appearance of a local
inertial circulation. Thus, it is likely that some version
of the latter will be part of any successful model of
large-scale ocean circulation.

Shortly after Fofonoff's analysis and following Stom-
mel's (1954) suggestions, Charney (1955b[ and Morgan
(1956) produced models of the Gulf Stream as an in-
ertial boundary layer. By using observed or simulated
conditions at the inflow edge of the Gulf Stream to fix
the form of F(l), and working with a two-layer model
with potential vorticity (f + )/h and geostrophic bal-
ance for the northward flow, they were able to calculate
the streamfunction pattern and the thermocline depth
distribution in the formation region of the Gulf Stream.
Charney showed that in a two-layer ocean inertial
forces can cause the thermocline to rise to the surface
at a latitude corresponding to Cape Hatteras. His so-
lution could not extend beyond that point.

Morgan began his analysis by dividing the ocean into
an interior with a Sverdrup balance, a formation region

Figure 5.4 Fofonoff's (11954) inertial flow pattern for steady
westward flows in the interior. An inertial boundary layer at
the west diverts the flow northward and an eastward jet is
formed. The latter feeds into an inertial boundary layer on the
east that supplies the steady westward flow of the interior.

for the western boundary current, which he analyzed
using the same model that Charney did, and a northern
region. He speculated that friction and inertial and
transient processes would interact in the north, but he
did not attempt to analyze that region. He was one of
the first to point out that pressure torques at the bot-
tom and sides of the ocean can help to balance the
torque exerted by the wind stress about a mid-ocean
axis.

In contrast to the demonstration following 5.92) that
inertial effects are consistent with the formation of a
western boundary layer by the interior flow, a similar
argument for the formation of an eastern boundary
layer is not possible. For example, consider an anticy-
clonic gyre when an eastward interior flow generates
an eastern boundary layer with southward flow. The
vorticity in the boundary layer is negative, so -E is
positive. For southward flow dfldt is negative and
therefore d(/dt must be positive. But that is not pos-
sible since ; must change from a nearly zero value in
the interior to a large negative value in the boundary
layer. An analysis of the various possibilities for both
cyclonic and anticyclonic gyres shows that it is gen-
erally not possible to form eastern boundary layers
from eastward interior flows (Veronis, 1963). The ac-
tual existence of eastern boundary layers means that
the necessary physical processes (in my opinion hori-
zontal advection of density must be included) are miss-
ing from these simple models.

In an important model of a steady wind-driven gyre
in a homogeneous ocean of constant depth, Derek
Moore (1963) produced a complete circulation pattern
with contributions from frictional and inertial proc-
esses in both inflow and outflow regions of the western
boundary layer. Moore combined boundary-layer ar-
guments from classical fluid mechanics with most of
the features given above. Using a Navier-Stokes form
for friction, he proved that frictional and inertial proc-
esses cannot be combined consistently to produce a
boundary layer confined to the eastern side. In the
vorticity equation of his model inertia is included as
an east-west convection of the vorticity with a zonal
velocity, U(y) = U cos(ry/M), consistent with the form
of the wind stress. In the southern half-basin (figure
5.5) the incoming (westward) flow forms an inertially
controlled western boundary current. In the northern
half-basin the emerging flow oscillates eastward and
has the appearance of standing, damped Rossby waves
imbedded in an eastward current. The center of the
gyre is north of mid-latitude, consistent with the ef-
fects of inertia mentioned earlier. His results depend
on the magnitude of a Reynolds number defined by
Re = U2/vl2, which can be looked upon as the ratio
of the inertial boundary layer scale (UO/,)112 to the vis-
cous scale v/U. The result is shown for Re = 5. As Re
is decreased, the flow tends toward the Munk pat-
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Figure 5.5 Contours of the streamfunction in a homogeneous
ocean driven by a wind stress of the form -cosry/M as de-
rived by Moore (1963). An Oseen approximation for the non-

tern. With larger Re the oscillations extend farther to
the east and eventually fill the northern half of the
basin. In the latter case there is a rapid transition across
mid-latitude in the interior and the oscillatory flow
becomes unstable. Qualitatively this homogeneous
model contains a remarkably realistic array of features
of oceanic flow, though the observed recirculation in
the northwest comer is missing.

We turn to a discussion of stronger nonlinear effects
in Stommel's model. As Ro is increased (Veronis,
1966b), the western boundary layer in the southern
half-basin broadens and dissipative effects are more
confined to the north. Inertial effects also intensify in
the north so that a particle overshoots the northern-
most latitude that it had in the interior. Hence, a new
boundary layer region must be generated (offshore of
the original one) where friction and inertia force the
particle southward to its original latitude. In this latter
region the relative vorticity is actually positive because
the return flow to the south is stronger close to the
boundary layer than it is farther to the east. The
overshoot can be seen in figure 5.6A.

With even stronger driving the overshoot is larger
and eventually the particle is driven close to the north-
em boundary and then eastward before it starts its
southward return to its original latitude (figure 5.6B).
Thus, the frictional-inertial region is broadened. In an
extreme case (figure 5.6C) fluid particles move east-
ward in a jet at the north and reach the eastern bound-
ary before turning south. In the latter case, there is
essentially no Sverdrup interior, and the flow pattern
resembles Fofonoff's free inertial flow with a mild
east-west asymmetry as the only evidence that the
flow is wind driven. An interesting fact here is that the

linear terms with a mean current U(y) - cosrTy/M was used.
The wavy contours in the north half-basin are standing Rossby
waves imbedded in the mean velocity field.

northward transport in the western boundary layer
does not increase beyond the Sverdrup transport until
the eastward moving inertial jet reaches the eastern
boundary. In the calculations cited, that happens when
the inertial scale (U/,11 2 (-Ro' 12L) exceeds the viscous
scale KI/, by a factor of 2 or so. Here, U0 is a measure
of the Sverdrup velocity. Qualitatively, at least, the
observed recirculation to the south and east of the Gulf
Stream after it has separated from the coast is simu-
lated by this model. The separation from the coast is
not. An analytic model of the highly nonlinear case
was suggested by Veronis (1966b) and independently
carried out by Niiler (1966). The resulting pattern is
consistent with the one shown in figure 5.6C. Stommel
(1965) guessed a similar pattern.

Bryan (1963) carried out an extensive set of numeri-
cal calculations in a rectangular basin for the nonlinear
Hidaka-Munk model with k-V x x - sin ry/M, zero
velocity boundary conditions at east and west, and
zero-shear conditions at north and south. He presented
his results in terms of a Reynolds number Re essen-
tially the same as Moore's, and the Rossby number,
Ro. The results differ greatly from those with bottom
friction because for Re > 60 a barotropic (Rayleigh-
type) instability can occur near the western boundary
where the tangential velocity must vanish. Figure 5.7
illustrates his results for three values of Re, with Ro =
1.28 x 10 -

3 for figures 5.7A and 5.7B and Ro = 3.2 x
10 -4 for figure 5.7C. The first two cases, with Re =
20 and Re = 60, show the development of the flow
with increasing nonlinearity. Only a mild, steady, os-
cillatory pattern is present with Re = 20, whereas with
Re = 60 the oscillations are more intense and a closed
eddy (recirculation) is present near the northwest cor-
ner. For Re = 100 the flow is transient with a barotropic
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gure 5.6 Three streamfunction patterns by Veronis (1966b)
r an ocean basin with varying degrees of intensity of wind
ress. (A) shows the perturbation effect of nonlinearity with
id particles in the western boundary layer overshooting
Leir equilibrium latitudes. (B) shows a much stronger inertial
fect. In (C) inertia dominates the system, creating an east-
ard jet along the north reminiscent of Fofonoff's solution.

RE= 60 RE= 5

gure 5.7 Bryan's (1963) streamfunction contours for a ho-
geneous ocean with lateral friction. The circulation in (A)

nearly linear; that of (B) is near the limit of forcing that still
Lds to a steady circulation. With even more intense driving
barotropic instability occurs as in (C), where a time-average
ld is shown after the system approaches a statistically
eady state. See also Figure 3.13 and discussion there. Re is
:or (A), 60 for (B), and 100 for (C).
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instability induced in the northern half of the intense
northward jet. Figure 5.7C shows the time-averaged
flow after the transients have settled down. In this case
also there is an offshore region in the north with pos-
itive vorticity where particles return southward to
their starting latitudes. It is not possible to obtain an
intense recirculation with this model because of the
barotropic instability.

Bryan also calculated the flow for a basin with a
western boundary directed north, then due east, and
then north again. The break was north of mid-latitude.
The object was to see whether the break in the bound-
ary would force the western boundary current out to
sea. The flow pattern was modified mildly, but the
stream turned the comer and hugged the coast.

5.7 Why Does the Gulf Stream Leave the Coast?

The Gulf Stream flows along the coast from Florida to
Cape Hatteras, where it parts from the coast and flows
slightly north of eastward out to sea see chapter 4).
The Kuroshio and all other western boundary currents
also separate. The phenomenon is explained here by a
very simple argument. Although processes more com-
plicated than the ones discussed below are also present,
I believe that the argument given here contains the
essential features even though the local dynamical de-
tails are not included.

Consider a two-layer system with the lower layer at
rest. Then from equations (5.65) and (5.66) it follows
that

Vn2 =- I Vi, V = AP Vh 1 .
P2

If the motion is geostrophic (Ro << 1) except for the
vertical stress term near the surface, equation (5.62)
upon vertical integration over the depth h of the top
layer becomes, with g' = g AP/P2,

-fVw = g'h coa + T, (5.101)
a cos OX

where spherical coordinates have been retained so
there is no geometrical distortion. Here the stress at
the interface is assumed negligible and corresponds
to the zonal wind stress. Multiply (5.101) by a cos 
and apply the operator f.e( )dA, where e is the meridian
of the eastern boundary, to obtain

2f 2f
hi = h, fTl-, T, f5.102)

g g

where subscript e denotes a value at Xe, T =
.a cos t V dX is the meridional transport, and TE =

fa cos T dXlf is the Ekman drift.
In all of the calculations reported in the previous

section, the downstream velocity in the western
boundary layer is geostrophic to a very good approxi-

mation. Hence, (5.102) is valid not only for interior
flow but for the entire basin from west to east. There-
fore, if we evaluate (5.102) at the western edge kw, T1
represents the total meridional transport. If the ocean
basin is enclosed to the north of the latitude in ques-
tion, T must vanish in the steady state and (5.102)
becomes

(5.103)h2w = h2 e -- TE-.

Now, for > 0 the Ekman drift, TE is toward the south
(positive as defined above) and the depth of the upper
layer at the western boundary hiw will be less than hle.
For sufficiently large TE, h1 w will vanish, i.e., the ther-
mocline (interface) rises to the surface. With observed
values for AP/P2, r, and hie for the North Atlantic, h1w
vanishes at about the latitude of Cape Hatteras.

North of that latitude r is even larger and (5.103)
cannot be satisfied because TE is too large. However,
the solution can be extended northward by setting h1 w
equal to zero at a new longitude (>Ahw which is chosen
to reduce TE so that the terms on the right of (5.103)
balance. This new longitude marks the westernmost
edge of the warm-water mass and is the longitude of
the Gulf Stream. But > kw means that the Gulf
Stream must separate from the coast and extend out to
sea. This argument alone does not suffice for higher
latitudes where r eventually becomes negative. We
shall return to that issue presently.

Before doing so, however, we discuss the simple
physical balances given above. The meridional flow in
the interior is a combination of geostrophically bal-
anced motion and Ekman drift. If the flow were com-
pletely geostrophic, vanishing T1 would require equal
values of h1 at the eastern and western edges. But the
Ekman wind drift, which does not involve a pressure
gradient, accounts for part of the southward transport
when > 0. Therefore, since the total transport van-
ishes, there is a net northward geostrophic transport,
of magnitude TE, which requires hw < he. Thus,
the Ekman drift causes the thermocline to rise to the
surface. Separation of the Gulf Stream from the coast
simply moves the western edge of the warm-water
mass (upper layer) eastward so that the smaller Ekman
drift acting on that water mass of more limited east-
west width can just balance the geostrophic flow de-
termined by hfle (since h4w vanishes).

It is also interesting to note that the Coriolis param-
eter does not appear in (5.103). In fact, the result is
exactly the one obtained for a nonrotating lake where
the wind blows the warm water to the leeward edge
and causes the thermocline to rise on the windward
side. The principal difference between the two phe-
nomena is that the induced pressure gradient drives a
vertical circulation in the lake, whereas it is geostroph-
ically balanced in the rotating ocean, thereby generat-
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ing a horizontal cell. But the leeward piling up of water
is the same in the two cases.

Returning to the problem at high latitudes, we note
first that the analysis given above must be supple-
mented by the remaining dynamic balances. The reader
is referred to Veronis (1973a) for the details for the
wind-driven model. The qualitative discussion given
here is simpler and clearer than in the original paper.

The first problem is that the Sverdrup transport for
the interior vanishes with kV x , and without adding
to the simple argument there is no way of supplying
warm water to the north of the latitude (40°N in the
North Atlantic) where the curl vanishes. Second, even
supposing that warm water has somehow been sup-
plied to the north, the Sverdrup transport there is
northward (kiV x > 0), so the southward return of
the flow by a western boundary current would require
that the thermocline be deeper on the western side of
the boundary layer. That is not possible with the
boundary current in mid-ocean.

Both of these issues can be resolved by considering
what happens even farther to the north where warm
water flows northward and impinges on the northern
boundary. In the real ocean and in a model including
thermal driving (Veronis, 1978), this water will sink
and give rise to a deep circulation and an overturning
cell. In a wind-driven model the water travels counter-
clockwise as an isolated warm boundary current and
rejoins the stream at the point of separation. In the
analysis given above, this recirculating current repre-
sents an excess transport in the separated boundary
current. Because its transport does not depend on local
winds, it can transport water past the latitude of van-
ishing wind-stress curl and supply warm water to the
interior at high latitudes. When it is included in the
analysis, a revised longitude for the separated boundary
current is obtained. The calculation, which can be
made consistent and quanitative for both the wind-
driven model and the one including thermal driving, is
contained in the two papers cited above. The path of
the separated Gulf Stream is reproduced in figure 5.8.
It is especially interesting to note that the vestigial
current in the northeastern corner of the basin corre-
sponds to the Norwegian Current (the Alaskan Current
in the Pacific) and that its transport is important for
the separation of the Gulf Stream and also for the
determination of the longitude of the current after it
has separated.

The analysis leading to the separation of the Gulf
Stream from the coast is contained in a quasi-geo-
strophic model by Parsons (1969). It was derived inde-
pendently by Veronis (1973a) as part of a study of the
circulation of the World Ocean. The extension pole-
ward of the latitude where the wind-stress curl van-
ishes is contained in the latter paper. Kamenkovich
and Reznik (1972) included a (bottom friction) analy-
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Figure 5.8 The path (solid curve) of the Gulf Stream after it
has separated from the coast [from a reduced gravity model
by Veronis (1973a)]. The zonal wind stress that drives the
system is taken from observations and has zero curl at 40'N.
The Norwegian Current is the narrow jet in the northeast.
The dashed curve is the prediction for an isolated anticyclonic
wind gyre (Parsons, 1969). The latter solution cannot be ex-
tended north of the latitude of zero wind-stress curl. Axes are
latitude and longitude.

sis of the deep circulation induced by the separated
current.

All of the above make use of a steady, linear, quasi-
geostrophic model, and it is certain that the details
(e.g., the longitude of the separated current) will be
altered when a more complete dynamic model is used.
The key elements of the argument, however, are the
geostrophic balance of downstream velocity in the
western boundary current, the Ekman wind drift, and
a limited amount of upper-layer water. As long as a
different dynamic model does not drastically change
those three features (they are pretty rugged and can
withstand a lot of battering) the moje complicated dy-
namics can be incorporated to change the details of the
results, leaving the main argument unchanged.

By the same token, the present analysis suggests that
an explanation of the separation of western boundary
currents from the coast must necessarily include the
surfacing of the thermocline (with a possible mixed
layer at the surface). Western boundary currents can be
forced out to sea between wind-driven gyres of opposite
sign, but that occurs at low latitudes as well where the
phenomenon is qualitatively different because the
thermocline does not surface.

In addition, the argument given here depends on
properties of global scale. A more precise dynamic
treatment based on local properties can lead to a better
understanding of the detailed mechanistic balances of
the separated current, but the cause of separation
seems to be based on global properties.

5.8 Thermohaline Circulation

The physical processes that are involved in the for-
mation of the thermocline have been studied as a sep-
arate part of the general circulation. The models in-
corporate geostrophic dynamics and steady convection
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of density, the latter often including vertical dif
Though the analyses sometimes make use of
plane, the scales are really global and spherica
dinates are more appropriate. The real difficult3
nonlinearity in the convection of density, an,
turns out, the limited successes of the analyse
been achieved as often in the spherical systen
the P-plane. None of the nonlinear investigation
a closed basin, though a single eastern boun,
sometimes included. A closed two-layer basin i.
able (see section 5.8.2).

5.8.1 Continuous Models for an Open Basin
The starting point for these studies is the sir
set of equations in spherical coordinates

1 OP

a cos4 O a

1 0P
fu = a

a 04

aP _
Pm

au a aw
- + (v cos) + a cosz = 0,

U ap+ V Op + ap 0K2P

a cos ax a a az aZ2

where the last term in (5.108) contains the onl,
pative process, vertical diffusion of density.
equations cannot be used to analyze the balan
a closed basin because there is not enough fle:
to satisfy even the condition of no normal flow t
the boundaries. Essentially all past efforts haN
restricted to this open system.

In principle, there is enough flexibility to sati,
boundary conditions in the vertical (three if di
is omitted). These must be chosen to be con
with the form of the solution that is obtained;
fore, much of the flexibility is lost. Still, it is p
to obtain interesting, if limited, information ab,
thermal structure.

Results based on linearized models by L
(1955) and Stommel and Veronis (1957)
superseded by the nonlinear models of Welander
who treated the ideal fluid system (K = 0), and
son and Stommel (1959), who obtained a sin
solution with K included. Stommel and Webstel
made use of the latter model to determine the c
ence of the vertical structure of w and T on th
of K and on surface boundary values of w and 7
solutions were obtained by Fofonoff (1962a), B1k
(1965), Kozlov (1966), Needler (1967, 1972) and
der (1959, 1971a). More recently the problem h;
reformulated by Hodnett (1978) with density ins
vertical distance as an independent coordinate

view of the earlier papers is given by Veronis (1969).
The variables u, v, and p are given in terms of P by

(5.104) to (5.106). These can be substituted in (5.108)
to give w in terms of P and the continuity equation
then yields Needler's pressure equation

K sin 4 cos 4 (PzzPzzzz - Pzz)

, (P,P) (P Pzz)=,, ( ,) + cot4PP,
... a(x* + PZ a(x,) (5.109)

where K = 2fKa 2 .
Welander (1959, 1971b) defined the variable

M = P dz + a2f sin f w(X,,0) dA (5.110)

(5.104) (so that P = Mz), to obtain the simpler equation

(5.105) +K sin cos M,,,z + (,)(5.105) a(xo)

- coto MxMzzz = 0. (5.111)

By integrating (5.104) from to 0 and settingP(0, , z) =
(5.107) 0, it is easy to see that Mif is the geostrophic, wind-

driven, meridional transport between and 0 and be-
(5108) low level z. P(0,4,z) 0 means that the reference

pressure is not passive (there must be density anom-
y dissi- alies at X = 0) and it gives rise to an added transport.
These In -interpreting the system, however, it is best to think

Ices for in terms of P(0, 4,z) = 0.
Kcibility Needler (1967) derived a solution that had been ob-
hrough tained previously by Blandford (1965) under more re-
ve been strictive conditions and by Welander (1959), who ig-

nored K. In his analysis Needler proposed the following
4f.. f-c- form with three arbitrary functions of X and :

P(X,4,z) = A(X,4) + B(X,4)ezc'('). (5.112)

This is a solution to (5.109) provided that A, B, and C
are independent of X or that C is given by

C(X,4) = c/sin4, (5.113)

where c is a constant. Only the latter case seems to
have received much attention, even though the case
with A = B = C = 0 could be a zero-order solution
to which necessary corrections could be made (away
from the coasts the oceans exhibit a quasi-zonal dis-
tribution of properties).

With (5.113) the remaining variables are given by

p _ cB ezc/sin 
Pm g sin 4

=-fa + [B, - siC B] ezctsin }

1= [ I sin 2FsI ]V = fa cos4 A +Xez/sn]

(5.114)

(5.115)

(5.116)
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1 B eZ/si + tanO a(A,B) A,, zA,]
fa2 Lc + cB (A,) c sin ¢

Kc

sin (b '

1000

(5.117)

The general functions A and B and the constant c are
available to satisfy boundary conditions.

Before proceeding further, it is worth noting that the
diffusivity K appears only in the last term of w. In fact,
with wd - Kc/sin4 it is evident that

Op 0 2p
Wd 1zP = K z 2 . (5.118)

If we write the vertical velocity as w = wa + wd (the
subscripts a and d correspond to advective and diffu-
sive, respectively) we see that wd absorbs the diffusive
effect and wa satisfies the ideal fluid system with
K = 0. Hence, with this solution diffusion plays a
minor role in the dynamic balances, and the essential
balances coincide with those in Welander's (1959) so-
lution.

It would appear at first sight that the general func-
tions A and B and the constant c are available to satisfy
boundary conditions. We note, however, that only B
multiplies the exponential and that the properties de-
scribed by A penetrate undiminished to the bottom.
Since we expect neither the surface density nor the
Ekman pumping to generate effects that penetrate un-
diminished to the bottom, we can discard A for the
time being and concentrate on B(X, q). Evaluating
(5.114) at z = 0 yields

p(X,4,O) cB
-gAsin0} cB (5.119)

Pm g sin '

so that the product cB is determined by the surface
density distribution. The constant c can be evaluated
by matching the e-' decay depth with the middle of
the thermocline at one latitude. This is not really a
boundary condition, but it is forced on us if we want
the solution to generate a realistic vertical density pro-
file. With c-' = 1500 m, a surface temperature (a linear
measure of density by the Boussinesq approximation)
proportional to cos(o + 10°) and a reference temperature
of 2.45°C at 5000 m depth at = 10°, Needler con-
structed the isotherm pattern in a vertical ( versus z)
section shown in figure 5.9. The choice of c corre-
sponds to a thermocline depth of 750 m at 0 = 30° .

It is not possible to satisfy any more conditions.
Hence, the Ekman pumping velocity is determined by
the surface density. One could specify wE instead and
then the surface density would be determined. We shall
return to this point at the end of this section.

The pattern shown in figure 5.9 reproduces the ob-
served density minimum at mid-latitude for levels near
the thermocline. The same feature appears in the so-
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Figure 5.9 Isotherms, or isopycnals, from Needler's (1967)
thermocline model with vertical dependence exp(cz/sinOb).
The observed maximum vertical penetration of warm water
at mid-latitude is a feature of almost all of the thermocline
models.

lutions of Welander (1959) [from the M equation
(5.111)] and of Robinson and Stommel (1959). The pat-
tern lacks the abrupt variations with latitude of the
observed system, though that could be remedied by
choosing the surface conditions more realistically, a
procedure that is equivalent to introducing higher-or-
der dynamic effects through the boundary conditions.
But we should remember that this is an open system
and that introducing more realistic surface conditions
to obtain a more pleasing pattern requires that fluid
leave the region governed by the simple, assumed bal-
ances and reenter it after substantial changes in the
properties have taken place. This would amount to
rationalizing the data without really learning anything
about the processes that bring about the desired
change.

The vertical velocity w, decays exponentially with
depth so this advective solution is a surface boundary
layer solution. The analysis described is valid as long
as the boundary layer thickness (determined by c) is
small compared to the depth of the ocean. Below the
boundary layer the vertical velocity is given by w, and
is induced by vertical diffusion. Once c is chosen wd

is determined by K. However, the value (and even the
form!) of K is as unknown and as unmeasurable as Wd.
In fact, the balance given by (5.118) is often used to
obtain an estimate of the scale depth K/wd, and when
it is used in conjunction with measured vertical pro-
files of tracers with a known decay rate, individual
estimates of Wd and K can be made. But the whole
procedure makes use of purely vertical balances and is
itself questionable. In the present context we can only
conclude that the model is not sufficiently constrained
by K to enable us to determine its effects. Typical
values used for K and Wd in deep water (Munk, 1966)
are K = 10-4 m2 s-1 and Wd = 10-7 ms-.

The finite depth of the ocean requires that the ver-
tical velocity wd at the base of the thermocline region
match the vertical velocity at the top of the layer be-
low. Within the framework of the present approach
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that means that a barotropic mode must be included
to satisfy the boundary condition of zero normal ve-
locity at the bottom. Needler (1967, 1972) gives a thor-
ough discussion of the issue. In his second paper he
seeks the conditions under which P,(X, 4), z) = P(X, 4), z) +
D(X, 4) is a solution where P itself is a solution, i.e.,
what are the restrictions on P for an arbitrary baro-
tropic mode D(X, 4) to be added as part of the solution?
It is easy to see from (5.1.09) that, since Dz vanishes
and P must satisfy the equation, one is left with

D (P, P,) D [ (P,Pz) + cot 4P ] = 0. (5.120)
d(X,z) a(4,z) =

Furthermore, with P independent of D, and D an ar-
bitrary function, each of the P expressions must vanish.
A straightfoward argument then shows that P must be
of the form

P = sin 4) ((1) + E(X,4)),

cz= - in + F(,),sin )

(5.121)

(5.122)

where E, F, and c( are arbitrary functions of their ar-
guments. Hence E(X,4) can be absorbed into D(Xh,).
With K # 0 the solution reduces essentially to the
exponential one given earlier. For K = 0 it can be
shown that the conditions given by (5.120) are equiv-
alent to the statement that the density and potential
vorticity (fpz in this case) are functions of each other.
N. A. Phillips (1963) had already shown that Welan-
der's (1959) (hence, Needler's) exponential solution
satisfied fp, = 2fcp, a special case of the above. We
shall return to this point shortly when we discuss We-
lander's more general solutions for an ideal fluid ther-
mocline.

Needler (1972) satisfies the bottom boundary condi-
tion of zero normal flow by using the arbitrary baro-
tropic mode introduced above with K = 0. In addition,
he shows that the consistency conditions required in
order to add an arbitrary barotropic mode make it pos-
sible to satisfy only two of the three independent con-
ditions: w(X, 4, ), T(X, 0, 0), and zero normal flow at
the bottom. Once two of them are satisfied, the third
is determined.

Needler's two papers are highly recommended read-
ing. He discusses both the possibilities and the inade-
quacies of this approach to the thermocline circulation
and he gives a sound analysis of some very difficult
problems.

Welander has spearheaded perhaps the most signifi-
cant advances in the theory of the thermohaline cir-
culation. His first paper on the problem contained the
exponential solution given above with an arbitrary
function available to satisfy a general surface boundary
condition. The next paper (Robinson and Welander,
1963) merged his approac]h with that of Robinson and

Stommel (1959). In his third paper for steady ideal flows
(Welander, 1971a) he first derived, and then applied,
the general relationship (5.11) between potential vor-
ticity q, density p, and the Bernoulli function B to the
geostrophic, hydrostatic system of equations (5.104) to
(5.108). The latter yields the simplified forms q = fpz
and B = p + gpz so that equation (5.11) reduces to

(5.123)sin4)p, = F(p,p + gpz),

where F is an arbitrary function.
Linearization of F yields

sin4pz = ap + b(p + gpz) + c,

where a, b, and c are arbitrary constants. Upon differ-
entiation with respect to z and use of the continuity
equation, we obtain

sin 4) p = (a + bgz)pz, (5.125)

and two integrations yield

p(,4),z) = p(,4),0) - C(X,4))j ebg(+z'l'(2sin )d, (5.126)

where z0 = a /bg and C is an arbitrary function of X and
4. It is evident that b must be negative; otherwise the
integral grows indefinitely with z. Furthermore, z is
negative, so a > 0 implies a monotonic profile. With
a < 0 an inflection point occurs at z = -ab/g. Thus,
the constants a and b can be chosen to give an inflec-
tion point at a desired depth and a desired thickness to
the thermocline. The latter varies inversely as sin'/24).
Welander fitted the constants to match the observed
density profile along 160°W in the South Pacific (Reid,
1965) shown in figure 5.10A. His theoretical solution
(figure 5.10B) captures the general structure of the
observed profile, though it is smoother, as one would
expect. In the construction Welander used the observed
surface density for p(, 4), 0), and C(h, 4) was chosen to
give a deep constant density. He gives no other details
for the construction.

This solution is a remarkable step forward. It takes
advantage of only the simplest of the possibilities that
the general conservation integrals contain and it jus-
tifies Welander's faith in the use of ideal-fluid theory
to obtain realistic results. Welander also presented
more general solutions to the system, but the latter are
quite formal and no detailed results from them have
been reported. Making use of this first integral to the
general system is very promising and it is surprising
that this path has not been pursued more actively.

In a subsequent paper on this topic Welander (1971b)
explored the possible balances in the M equation
(5.111) by means of a scale analysis. His conclusions
can be summarized without detailed analysis by mak-
ing use of the results already found. In regions of Ek-
man suction (w > 0) diffusive processes adjust the
density to surface values, a simple possible balance
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Figure 5.o (A) Contours of thermosteric anomaly (units of
10- cm3 g-1) in the upper kilometer of the South Pacific along

being given by (5.118) with a scale depth H Kw.
With K fixed this diffusive depth decreases with in-
creasing w. Ekman pumping (w < 0), on the other
hand, forces lighter water into the oceanic interior so
that the surface value of p extends to some depth. With
p constant, (5.118) is satisfied trivially and advection
must be important so that the order-of-magnitude bal-
ance is Via W/Ha, where we use the global scale a
in the horizontal and Ha is the vertical (advective)
scale. W and V are velocity scales. Geostrophic balance
yields fV/Ha - gplapm and eliminating V then yields
Ha - (fWa2pm/gp)l1 2, which increases with W. There-
fore, more intense surface forcing gives rise to a deep
advective layer where w < 0 and an advective layer
under a thin diffusive layer where w > 0. The geos-
trophic transport is carried by the advective layer, the
diffusive process serving simply to adjust the density
to surface values. Welander gives a more detailed anal-
ysis of the possibilities to show that an advective layer
must be present. He also points out that a deep diffu-
sive layer with a balance like (5.118) but with Wd dif-
ferent from WE is also likely.

5.8.2 Layered Models
Stommel (1957b), noting that upwelling suggested by
(5.118) would produce a vertical divergence from the
(level) bottom to the base of the thermocline, assumed
that the deep ocean is homogeneous and used the pla-
netary divergence relation v = a tan b Ow/z to deter-
mine the meridional velocity. With a uniform upwell-
ing at the base of the thermocline v is poleward
everywhere in the interior. Then with u = 0 at all
eastern boundaries (taken along meridians) he calcu-
lated the zonal velocities by integrating the continuity
equation with respect to longitude to obtain a trajec-
tory pattern for the interior of the world ocean.

Interior upwelling of deep water requires that sources
of deep water be present somewhere. Stommel chose
sources of equal strength in the North Atlantic and in

160°W from Reid (1965). (B) Isopycnal contours from Welan-
der's (1971a) ideal-fluid thermocline model.

the Weddell Sea (South Atlantic). He assumed that
these source waters flowed along western boundary
layers and then eastward to supply the upwelling flow
in the interior. The transports in the western boundary
layers were obtained by requiring mass conservation
for a basin bounded by two meridians, a northern
boundary and the latitude in question. The pattern of
flow that results from these considerations is shown in
figure 5.11.

Veronis (1978) has combined this reasoning with an
analysis similar to that of section 5.7 to construct a
two-layer model of the thermohaline circulation in the
world ocean with wind stress acting on the surface.
The intensity of the upwelling and the locations and
intensities of the sources of deep water can be deduced
from the model. The reasoning is as follows.

On the basis of an expected balance like that of
(5.118) in deep water, assume a vertical flux of water
through the interface from the lower to the upper layer.
The amplitude of upwelling is taken to be horizontally
uniform but of unknown magnitude. The height h2 of
the interface above the level bottom is determined by
the wind stress acting on the surface and the upwelling
through the interface. The two-layer, steady, linear sys-
tem of equations (5.62) to (5.67) on a sphere can be
manipulated to yield a first-order partial differential
equation for h2 with coefficients depending on h2. This
quasi-linear equation can be integrated along charac-
teristics from (assumed) known values on the eastern
boundary to give h2 throughout the interior.

Here, too, the assumed upwelling will require
sources of deep water that will flow along the western
boundaries to supply the oceanic interior. The down-
stream flow in the western boundary layers is assumed
to be geostrophic. Mass conservation of water in both
layers is required in the region bounded by boundaries
at the sides and along the north and by the latitude in
question. As in section 5.7 this will lead to an expres-
sion for the depth of the thermocline (or the height h2)
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at the western boundary. This expression will depend
not only on the value of h, at Xe, however, but will be
a function also of the unknown amplitude of upwelling
and the unknown sources of deep water. If the latter
quantities were known, it would be possible to deter-
mine h2 and, in particular, the latitude at which the
thermocline rises to the surface. North of this latitude
the western boundary current will flow eastward and
poleward across the open ocean. Since it represents the
boundary between upper- and lower-layer water, it will
also determine the area covered by upper-layer water,
and therefore, the total amount of upwelling (w times
the area) that occurs north of any latitude. So we have
an implicit problem with h2, w, and the strengths and
locations of the sources interrelated.

As stated earlier, obtaining an estimate for the up-
welling is not straightforward, depending as it does on
complex, turbulent, convective processes. Therefore,
the problem is inverted. Instead of assuming values for
w and for the strengths and locations of the sources to
determine the surfacing latitude, the latter, a simple
observable, is taken from observation and the former
quantities are determined by the model. It turns out
that to evaluate w and the sources requires more than
one piece of information. For example, in the Pacific
the surfacing latitudes of the Kuroshio (35°N) and the
East Australian Current (31°S) are specified and these

yield an upwelling velocity w of magnitude 1.5 x
10-7 ms - and a distribution of sources of deep water
at the northern boundary (along the Alaskan-Aleutian
current system), at the latitude of separation of the
Kuroshio, and along the Australian coast from 31 to
35°S. The circulation patterns and the details of the
calculations are given in the paper cited.

Some major features (e.g., deepest penetration of
light water at mid-latitude) are consistent with those
obtained by the continuous thermocline models dis-
cussed earlier. However, the present model also allows
one to close the circulation with boundary layers, and
in particular, to determine the open-ocean path of the
separated boundary current. For the continuous model
that possibility would enable one to adjust surface
boundary conditions as part of the analysis in order to
obtain a more realistic vertical density distribution
with latitude.

Most noteworthy of the results obtained with this
two-layer model is the deduced magnitude of the as-
sumed upwelling. Most estimates for w are made from
observed tracer distributions by assuming that vertical
advective and diffusive processes balance locally. They
yield values between 10 - 7 and 2 x 10 - 7 m s -1 (see chap-
ter 15). The present value lies midway in the range
cited and is based on global circulation processes with
no reference to the vertical diffusive process.

Figure 5.II The abyssal circulation obtained by Stommel
(1958) and generated by equal sources in the North Atlantic
and in the Weddell Sea with uniform upwelling elsewhere.
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5.9 Free Waves for a Constant-Depth Two-Layer
Ocean on the f-Plane

The linear equations for a two-layer ocean on the t3-
plane with constant depth are (5.62) to (5.67) (with
Ro << 1):

Since this must be valid for arbitrary -7q and %r2, the
coefficients of -rq and ?12 must be the same, i.e.,

1 + a(1 - ) = H-

Eliminating h yields

ha h
H2 H'

(5.140)

(5.132)

where = AP/P 2 and H, H2 are the constant mean
depths of the two layers. Elimination of all but one
variable leads to a sixth-order equation. However, it is
possible to simplify the mathematics to a third-order
system by introducing normal modes (Veronis and
Stommel, 1956). We do so by multiplying (5.130) to
(5.132) by a constant a and adding to (5.127)-(5.129),
respectively, to derive

(U1 + aU 2)t - f(V + aV 2 )

= -g{[1 + a(1 - )]1i + aE712},

(v, + aV2)t + f(u, + au2)

=- -g{[1 + all - e)]11 + aE772},,

(5.133)

(5.134)

n + a /
[H (H2 H1) ] t

+ (u, + au 2)b + (VI + av2)u = 0. (5.135)

The velocities appear in the same combination v +
av2, everywhere, but the surface deviations appear in
two different forms. If the latter are the same except
for a multiplicative constant, the three equations will
involve only three variables (plus parameters). So let
us define

V, = vl + av 2, (5.136)

= [1 + a(l - )]Th + aElr2, (5.137)

hH, / 1
where h is a constant to be determined.

Equating D in (5.137) and (5.138) yields

H- 1 -)a 2+(H - 1) a-1 =0.
H 2

(5.141)

For small e the two values for a are

H 2

Hi'
a2 -1. (5.142)

(5.131) Corresponding values of h and the variables are

hi = H1 + H2,

Vl = V +- V2H,

h2 = eHIH 21(H + H2),

V 2 = VI - V21

=H + H2 H2

-H2
~2 = 7)1 - E7)2.H, + H2

(5.143)

(5.144)

(5.145)

Then the six equations can be reduced to the following
two independent sets (i = 1,2)

Uit - f Vi = -gIix,

Vi, + fUi = -gQiY,

rbit + hi(Ui, + Viy) = 0,

(5.146)

(5.147)

(5.148)

which describe the linear, time-dependent motions on
a -plane for a barotropic ocean of depth H = Hi + H2

when i = 1 and for a baroclinic ocean of depth eHH 2/H
when i = 2. When (D2 is replaced by (D2/e and g by g' =
eg, the internal (baroclinic) case is then called the re-
duced-gravity system with depth HH 2/H. If Ui and (Di
are eliminated from (5.146) to (5.148) the resulting
equation in Vi is

(2tt,, + f2 at - ghia t

+ ghi, ox - ghi O3,t)Vi = 0. (5.149)

If f is now replaced by its reference value, fo (this is
lowest order in L/a), all coefficients are constant. By
substituting Vi - ei'- 't+kx+l), we obtain the frequency
equation for free waves,

(M - (f2t+ ghiK2)w - gh,3k = 0,

K2 = k 2 + 12.
(5.150)

[1 + al(1 - E)mll + ae7j2

I [Hi (H H) 712 ] -

This yields the (approximate) dispersion relations

-ii = f,/'l + X2K2, oi2 = -io,,
(5.139) 1 + 2

oia = 1 + X)K2 '
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(5.127)

(5.128)

Uit - fv1 = -grlx,

Vlt + fu, =-g l ,

- (1 - 712)t + ulx + V1y = 0,

U2t - fV2 = -g[(1 - e)rll + E12]X,

V2t + fu 2 = -g[(1 - E)11 + E)72],,,

72 + U2X + V2, = 0,
H2

(5.129)

(5.130)

15.151)



A plot of o versus K is shown in figure 5.12 for k =
1 at mid-latitude (fo = 10 4 s-l, = 2 x 10-11 m -1 s- 1)
and for the X values given below.

The first two of these waves for each mode reduce
to long gravity waves for XiK >> 1 (small wavelength)
and to inertial waves for XiK << 1 (large wavelength).
The dividing scale is Xi, which is about 2000 km for
the barotropic mode and about 36 km for the baro-
clinic. The third wave for each case is a westward-
traveling Rossby wave that arises because of conser-
vation of potential vorticity ( + f)lh on the -plane.
As a fluid column changes latitude or moves into a
region with different depth, a relative vorticity is gen-
erated to keep ( + fl/h constant. The distortion of the
free surface or of the density interface has an effect for
scales larger than Xi and the waves become nondisper-
sive (i, 3 - 3k). For the baroclinic mode the period of
this wave at mid-latitude is of the order of years for
scales of the size of an ocean basin, making the linear
baroclinic response of the ocean very slow (Veronis and
Stommel, 1956; see chapters 10 and 11).

Lighthill (1967, 1969) applied wave theory in the
limit of vanishing frequency to study the development
of forced, steady flows. In his analysis of the responses
of the equatorial Indian Ocean he used the fact that Xi
becomes very large near the equator to conclude that
the baroclinic response there is much faster-of the
order of weeks-than it is at mid-latitudes.

A comprehensive account of barotropic Rossby
waves is given by Longuet-Higgins (1964, 1966). Here
we shall make use only of a simple property that relates
directly to large-scale circulation. The dispersion rela-
tion (5.151) in the (oi,,k)-plane in figure 5.12 shows
that the phase velocity o 3k is westward and that a
given value of Oi3 corresponds to two wavelengths, a
short wave with small velocity and a long wave with
a fast velocity. The zonal group velocity &o,3a/k, which
transports energy zonally, is westward for the fast
waves and eastward for the slow ones. Thus, at a mer-
idional boundary, where the energy flux must vanish,
the energy of an incoming wave will be reflected
quickly at an eastern boundary and will accumulate at
a western boundary.

Pedlosky (1965b) offered this as an alternative expla-
nation of westward intensification, and N. A. Phillips
(1966a) used these reflected properties to account for
the more frequent observation of intense eddy motions
near the western versus the eastern regions of the
North Atlantic. Ibbetson and Phillips (1967) report a
laboratory confirmation of this east-west distribution
of energetic eddy motions. Observed long barotropic
Rossby waves in the ocean are suggested in the bottom
pressure records in the MODE area by Brown et al.
(1975). Freeland, Rhines, and Rossby (1975) show lon-
gitude versus time plots of the streamfunction inferred
from objective maps of currents at 1500 m depth in the

1og w
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Figure 5.12 Frequency-wavenumber diagram for waves in a
two-layer, constant-depth ocean in the 3-plane. The upper
two curves are inertiogravity waves, the two lower are Rossby
waves. Transitions in the dispersion curves occur at the de-
formation scales shown on abscissa.

MODE area (figure 10.6). There is a definite tendency
for constant phase lines to move westward, with phase
speeds ranging from 0.02 to 0.12 ms - (average
0.05 m s-1). With I = k this suggests wavelengths clus-
tering around 400 km. A time versus latitude plot
shows no definite north-south propagation.

The slow phase velocities deduced for baroclinic
Rossby waves make the linear theory less reliable
because particle motions equal to and exceeding the
wave speeds occur in all parts of the ocean. Rhines
(1977) identifies thermocline eddies (intense baroclinic
modes, principally confined to the waters above the
thermocline) with these baroclinic Rossby waves and
offers evidence of their existence in observed records
from open ocean regions. These noisy, nearly station-
ary modes make the determination of the slow mean
flow in the open ocean a difficult task.

5.10 Effect of Bottom Topography on Quasi-
Geostrophic Waves

The results of the previous section were extended by
Rhines (1970) to include simple bottom topography.
Though the general normal-mode procedure does not
work in this case, Rhines modified it for quasi-geo-
strophic wave motions when topography varies linearly
in y. The multiplicative constant a is a function of
wavelength in that case and the method is difficult to
interpret when topography varies with x as well. Be-
cause the equations in terms of the surface height lead
to a quadratic dispersion relation in a straightforward
manner even in the latter case, we shall not use normal
modes.

5.10.1 Two-Layer Model
The linearized, potential vorticity equation for each
layer becomes
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fh, fv.Vh
at + t -- fh +f h=0. (5.152)+ AV H H

For quasi-geostrophic motions we can substitute the
geostrophic velocity in ; = v, - u, and in v. Further-
more, we have h2t = 712t hit = (l - 12)t, v,1 Vhl 0 (for
linear flows), v2oVh2 -v2 'V13 where bottom topogra-
phy 13 is defined by a linear function of x and y and
73 << H 2 so that the constant depth H2 can be used in
the coefficients. Then we obtain

H ll - 772)1 - V27t - p#1 = 0, (5.53)gH,

and

f2 f 0{13,P2)
gH 2 - V2P2t - 1P2X + H= , (5.154)

where P2 = (1 - )71 E + e* 2. The substitution
ei(-+kx+lt ) for 771 and 772 then leads to the quadratic
frequency equation

(1 + X2K2 + X22xK4)&o2 + {(X2 + 2X2AK 2 )ka

+ (1 + XK 2) Xkb}o + xXk 2 /3(b + ) = 0, (5.155)

where A2 = gHf 2, ha = gH 2/f2, X) = egHf 2, b =
f(k%3. - 1 3 )l/H2k. The three X's correspond, respec-
tively, to the radii of deformation for a barotropic fluid
with the total depth, a barotropic fluid of depth H2, and
a reduced gravity fluid with depth H,. The quantity b
is a "topographic -effect" that simply reenforces 3
when the depth shallows northward and .13 = 0. More
generally, it combines with 8 [through (d/dt)(f/h)] to
determine a new, pseudonorth direction.

For the ocean is large (2000 km), 2 is nearly as
large (-1600 km) and X is small (-40 km). Hence, for
large wavelengths (small K) (5.155) yields the baro-
tropic solution

_ k + (kbH2,H)
K2 + (1/t 2) 

where kbH2 /H is independent of H2. This dispersion
relation reduces to the one for ordinary barotropic
Rossby waves when b vanishes. With b 0, it repre-
sents barotropic Rossby waves with both direction and
frequency modified by topography. Where the topog-
raphy is strong, it yields topographic Rossby waves
with the direction of propagation to the left of upslope.
For negative b (depth decreasing southward) it is pos-
sible for the two restoring mechanisms to cancel each
other almost completely.

The second solution for large wavelengths is the bar-
oclinic mode

kpBAA2 Pi + (bHIH2)oJ2 = 2 +b

kpg'H,H2 /3 + (bHH2)
f2H p+b b (5.157)

When topography is weak (b << ) this reduces to the
nondispersive wave

k8g'HH 2
f°H

(5.158)

[limit of (5.151) for small K]. In this case, both layers
are in motion. With strong topography (b >> ) the
bottom depth drops out of the dispersion relation and
(5.157) becomes

o= k=g H (5.159)
The point here is that the bottom slope is so large that

The point here is that the bottom slope is so large that
only a small excursion by a column of fluid in the
bottom layer is required to bring about vortex stretch-
ing so that most of the motion is confined to the upper
layer where the only restoring force is (the relatively
weak) 8. Thus, strong topography acts to decouple the
layers and to increase the frequency, hence the phase
speed, in the upper layer by a factor of HIH2 over that
with weak topography. Rhines (1977) emphasized this
detuning effect of topography and showed that it ap-
plies for flows of much larger amplitudes.

For small wavelengths, XAK2 >> 1, (5.155) reduces to

k k2
0,2 + (2 + b + (p + b) = ,

K2 T2
(5.160)

which yields a nondivergent baroclinic Rossby wave
confined to the upper layer with (low) frequency cw =
-kp/K2. The second solution has the frequency

ko= - ( +b)K 2 (5.161)

and is a barotropic mode that feels both P and the
topography. In the limit of strong topography it reduces
to w = -kb/K2, and the motion is confined to the lower
layer alone. This is a new type of motion, bottom
trapped by topography, and does not occur in the flat-
bottom case. Rhines calls it a fast baroclinic mode
since it appears as an evanescent mode of relatively
high frequency in the continuously stratified case,
which is presented below.

5.10.2 Uniform Stratification
We noted earlier that effects from upper and lower
boundaries are transmitted throughout the respective
layers in the two-layer model. The vertical structure of
the modes in the real ocean is represented somewhat
more realistically in a model with uniform stratifica-
tion, which represents the opposite extreme in mod-
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eling the stratification; the density gradient is smeared
uniformly over the depth instead of being squeezed
into a layer of infinitesimal thickness.

Dropping the subscript zero we can write the linear-
ized potential vorticity equation (5.53) as

1
V2pt + pz,,t + ,p = 0, (5.162)

where S = N/fo.
At the upper boundary we assume

w=0 or p,=0 at z =0. (5.163)

This is a "rigid-lid" condition that makes the baro-
tropic radius of deformation infinite. The lower bound-
ary is taken with a uniform slope a in the y direction
only, and we write w = av there, or in terms of p,

pZt = -HbS 2px at z = -H, (5.164)

where b = foa/H is the topographic p-effect.
Substitution of p - e - 't+k+ tl' in (5.162) leads to

opz - S2(ojK2 + kf8)p = 0, (5.165)

where K2 = k2 + 12, and (5.164) becomes

opz = HbS2 kp at z=-H.

Solutions with sinusoidal and with exponential verti-
cal variation are both possible and are discussed below.

(1) p - cos mz/H: This is the form for pure Rossby
waves (p 4: 0, b = 0) but is not a solution for pure
topographic waves Ip, = 0, b 0). It satisfies (5.163)
and then (5.165) and (5.166) yield

kp kpx'o = (5.167}
K2 + (m2/H2S2) XK 2 + m2

and

m tanm = hXkbl/o (5.168)

where 8

S2H2 = gO/Oz H' = gapH (5.169)
Pmf20 Pmf (.

and Ap is the density difference from bottom to top.
Eliminating co from (5.167) and (5.168) leads to

-ym tanm = m2 + XhK2, (5.170)

where y = P/b measures the relative roles of fi and
topography as restoring mechanisms when fluid moves
to different latitudes or depths.

If the depth is constant (y = o), the solution to (5.170)
is m = nir (n = 0,1,2,...). This yields pure Rossby waves
with the lowest mode (m = 0) describing the barotropic
wave with infinite deformation radius and o = -kPI/K2 .
Higher modes correspond to baroclinic Rossby waves,
which have low frequencies and are nondispersive for

XK << 1 weak stratification or wavelengths much
larger than AX). As in the two-layer case, with XAK << 1,
the f-effect can be taken up by vertical divergence (fyv -
fwz) and only a small change in the relative vorticity
is required; hence o is small. In the opposite extreme,
with XK >> 1, vertical motions are inhibited and the
frequency is approximately the barotropic value
-kp/K 2 for the lower range of m.

For finite positive slopes (y > 0), when topography
enhances 13, the lowest mode solutions to (5.170) are
modified forms of the first baroclinic Rossby wave,
which in its pure form has m = r and a node at mid-
depth for the horizontal velocity. When a sloping bot-
tom is present, fluid flowing north or south will have
to move vertically against the constraint of stratifica-
tion. If the slope is small (large y), the induced vertical
motion is small and the solution is a modified baro-
clinic Rossby wave. If the slope is large, the required
vertical motion may be larger than the stratification
will allow.

How does the system enable the fluid to negotiate a
large slope? It does so by moving the node in the hor-
izontal velocity from mid-depth to the bottom
(m - 1r/2). Thus with vanishing v at the bottom no
vertical velocity is required. The mode is then simply
the upper half of the first baroclinic mode for a con-
stant-depth. ocean with twice the depth H and a cor-
responding higher frequency. For moderate slopes the
node is between mid-depth and the bottom, so that the
required vertical velocity at the bottom is reduced to
a value that can be sustained. The values of m and o
together with sketches of the vertical structure of the
horizontal velocity are shown in figure 5.13 for the
lowest-order mode with 1 = k and for a range of values
of y. For y > O, o is normalized with respect to the
frequency of the first baroclinic mode (to which it
tends as y-- o ). Strong stratification (large X) or small
wavelength (large K) have the same effect as a large
slope.

It should be noted that when topography reenforces
p, there is no vertically oscillatory solution that yields
a barotropic Rossby wave in the limit y - oo. The reason
is that the slope has its strongest effect on water near
the bottom. These cosine solutions have a maximum
amplitude at the surface and can do no better than
extend that maximum to the bottom (if m = 0), which
gives no enhancement. On the other hand, in the bar-
oclinic mode the flow at the bottom is reversed (neg-
ative maximum) and the bottom slope can help by
making the flow there less negative, i.e., somewhat
more barotropic, though as we have seen, only to the
point where the node is at the bottom. For y > 0 the
barotropic limit is described by evanescent modes [see
(2) below].

When the depth decreases to the south (b < 0, hence
y < 0), the solution for large I3y is a barotropic Rossby
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Figure 5.13A Values of the vertical wavenumber m for the
gravest quasi-geostrophic mode in a uniformly stratified ocean
as functions of horizontal wavenumber. Each curve is marked
with value of y. Topographic effects dominate at small ; 
dominates at large y. The vertical structure of the modes is
sketched at the left for the different values of m.

Figure 5.I3B Ratio of frequency to pure barotropic Rossby
wave frequency for y < 0 and to baroclinic Rossby wave
frequency for y > 0.

wave modified by topography. In this case the sloping
bottom works against /8 and tends to reduce the fre-
quency. The effect is achieved with a partial cosine
wave of one sign throughout the depth. The results for
m and co are shown in figure 5.13. For y < 0 figure
5.13B shows w normalized with respect to the baro-
tropic Rossby wave frequency (to which it tends as
y- -). A larger slope gives more vertical structure
until the node reaches the bottom for small Jyj and the
form is again a half-baroclinic mode.

It is interesting to note that the frequency is always
negative, i.e., the phase velocity is westward even
when the bottom slope is large and works against /f.
These oscillatory modes are not possible without so
the most that the bottom slope can do is to change the
magnitude but not the sign of the frequency. When ic
helps /3, it makes the response less baroclinic. When it
opposes ,i, it makes the response less barotropic.

(2) p - cosh uz/H: This is the form for pure topo-
graphic waves (, = 0, b q= 0) but is not a solution for
pure Rossby waves ( #= 0, b = 0). It satisfies (5.163),
and then (5.165) and (5.166) yield

ke k/3xl
O K2

- (2S 2H2) XhK2
- E2(5.171)(° =-K2- (AIS2H') /K A2

and

-u tanh/ = bk (5.172)CO

Eliminating o gives

,u tanh = XlK2 - E/2. (5.173)

For pure topographic waves (y = 0) we have Ax = K
and (5.172) becomes

xlbk
= - 1Ktanh (5.174)X,K tanh X,K'

Strong stratification or short wavelength gives
tanh K - 1 and

Xlbk aNk
K K (5.175)K -

The frequency has a maximum value for waves trav-
eling parallel to bottom contours since the associated
particle velocity is transverse, i.e., up or down the
slope, and has maximum vertical displacement; hence
it is subjected to maximum restoring force. The wave
amplitude decays exponentially upward from the bot-
tom.

For weak stratification or long waves (K << 1),
tanhh K - hXK and

bk
= b - K2. (5.176)

These are topographic, barotropic Rossby waves with
b replacing ,3.

All of these evanescent waves, with or without 3,
have phase velocity always to the left of upslope, since
they are basically topographic waves and can be only
modified by ,3. When f, and b work together, the phase
velocity is westward. When they are opposed, the phase
velocity is eastward.

With y > 0 we have already seen that the oscillatory
solution has no barotropic mode. That function is
taken over by this evanescent form, which reenforces
,3 and tends always to increase the frequency above the
value for barotropic Rossby waves. For y >> 1 the
change is small, but as the slope increases, the fre-
quency does too. As X1K increases, the wave is confined
closer to the bottom (figure 5.14A) and the frequency
rises even more (figure 5.14B). This is Rhines's fast
baroclinic mode referred to earlier. The frequencies in
figures 5.14B and 5.14C are normalized with respect to
the barotropic Rossby wave frequency.

When the slope is negative and small -y >> 1), the
mode is confined to a shallow layer near the bottom
where the effect of the slope dominates (figure 5.14A).
The frequency is small and tends to zero as -y in-
creases. When the slope is large (-y << 1), /8 is a per-
turbation and the frequency ratio exceeds unity (figure
5.14C). Strong stratification or short wavelength
(h,K >> 1) also serves to confine the mode to the bot-
tom and increase the frequency.

Rhines (1977) summarized the observational evi-
dence of the existence of these bottom-trapped waves
in current-meter records taken at site D (39°10'N,
70°W) by Luyten, Schmitz, and Thompson of the Woods
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Hole Oceanographic Institution. Rhines (1971a) and
Thompson and Luyten (1976) used spectral analysis to
show that the kinetic energy increases toward the bot-
tom and that the horizontal velocities are negatively
correlated, as they should be for these waves. The evi-
dence is particularly striking in the high-pass filtered
records by Luyten that Rhines showed.

McWilliams and Flierl (1976) have described a num-
ber of mesoscale features observed during the MODE-
0 and MODE-1 programs in terms of the linear, quasi-
geostrophic waves that can exist given the mean prop-
erties in the observational regions. Although nonlinear
effects seem to have been present, modified forms of
the linear wave features can be identified (see chapter
11).

5.11 Baroclinic Instability

The wave solutions in the foregoing two sections are
valid when the phase velocity is large compared to the
ambient fluid velocity. The condition is not really sat-
isfied either by baroclinic waves or by short barotropic
waves. Furthermore, the steady wind-driven and ther-
mohaline velocities derived earlier are equilibrium so-
lutions but they are not necessarily stable. Here, we
shall extend our study by considering quasi-geostrophic
perturbations on a mean flow and exploring the ques-
tion of stability. (Also see the discussion in chapter
18.)

In pursuing this approach one should allow for both
horizontal and vertical variations in the basic velocity

log (W/WR,)
3-

-I 0 I
log (XiK)

10.01
Iog(-W/WR.)

I

log(XiK)

Figure s.I4A Vertical scale jL for the evanescent mode
cosh z/ H as a function of horizontal wavenumber. Each curve
is marked with value of y. The vertical structure of the modes
is sketched at the left for the different values of .

Figure 5 .4B Ratio of frequency with y > 0 to pure barotropic
Rossby wave frequency. This mode tends to the limit of pure
barotropic Rossby wave for vanishing topography. Decreasing
y corresponds to increasing bottom slope and serves to' in-
crease frequency.

Figure 5.I4C Ratio of - to frequency of pure barotropic
Rossby wave frequency. Frequency decreases as bottom slope
decreases because mode is not possible without topography.

field. Although both types of variations can lead to
instabilities, it is known from earlier studies, particu-
larly for atmospheric motions (Kuo, 1949), that the
observed fluctuating motions generally have a struc-
ture characteristic of barotropically stable modes. In
other words, fluctuations do not seem to draw their
energy from the horizontal variation in the basic ve-
locity field. For that reason we shall explore a mean
velocity that has a variation only in the vertical direc-
tion and refer the reader to the published literature for
studies involving horizontal variations (Kuo, 1949;
Lipps, 1963).

5.11.1 Linear Theory
The problem that we consider is baroclinic instability
of the basic velocity field. The topic has an extensive
literature in meteorology, beginning with the work of
Charney (1947) and of Eady (1949) and extended, inter
alios, by Kuo (1952), Phillips (1951, 1954), Green (1960),
Charney and Stem (1962), Pedlosky (1964a), and Breth-
erton (1966a,b). As is the case with the development of
a topic, the earliest papers explore the basic concepts
and the later ones help to illuminate the issues raised.
I have found Bretherton's two articles to be especially
enlightening, though each of the ones mentioned, and
some others too, discuss important aspects of the prob-
lem. The mathematical development given below fol-
lows Bretherton 11966a).

Since our intent is to discuss the dynamical balances,
we do so with the simplest model that contains the
essential elements. Additional effects are mentioned
later. So consider the very special case of a uniformly
rotating channel (f = constant) with two layers of equal
thickness, H, = H2, and a total depth H = H - H2 =
2H. The upper layer has a uniform basic current U,
and the lower layer an equal but opposite current -U.
Lateral walls at y = 0, M are sufficiently close so that
the depth of each layer in the coefficients can be con-
sidered constant. Geostrophic balance of the basic state
yields

fU, = fU = -gH,, 
(5.177)

fU 2 = -fU = -g[(l - ElH, + FH2 1],

and this basic state is perturbed by infinitesimal quasi-
geostrophic motions.

We first linearize the potential vorticity ( + f)/lh of
each layer by writing

+f_ 5+f _ +f f 
h H(1 + H I H H H H H2 2

where f/H is the mean and /H - (f/qIH2 ) the pertur-
bation potential vorticity, and iq the fluctuating
disturbance of the layer depth.

The linearized equation for conservation of potential
vorticity becomes
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(a + uf o) ( - f) - f Hy =0, (5.178)

where we have multiplied through by H which is taken
as a constant in the coefficients and where is the
mean velocity of the layer.

We use the following definitions and relations for
the two layers:

Upper

H,

= 1 - 2

Uf = U

Q -= - H = 2U
H1 1X2

q, - , -q2)/Hl
Lower

H2(= H,)

71 = 712

u- = -U (5.1 

f

_ (2 - )U _2U

q2 4 - f21H 2

where we have neglected the O(E) term in the expres-
sion for f/H 2. The neglect of the O(E) terms is equiv-
alent to assuming a rigid lid at the top since it corre-
sponds to neglecting the barotropic radius of
deformation gH/f 2.

Equations (5.180) take the form

(Oa + U )q, + 6 1xzQl. = 0,
15.184)

(ao - UOx)q2 - 2.Ql1, = 0,

with and q given by (5.182) and (5.183). We now add
and subtract the two equations in (5.184) to obtain the
symmetric set

({q + q2 )t + U(q, - q2 )x + Q1({ 1l - 02)x = 0, (5.185a)

(q1 - q2)t + U(ql + q2 ),, + Q1,(O 1 + 02)r = 0. (5.185b)

From (5.183)

ql + q2 = V2( 1 + 2),

2 = 2) 2)
q - q = V2( - 2) - - 6s0),

I:

(5.186)

f2

is the reduced gravity radius of deformation based on
H,. For convenience we have defined Q and q as H,
times the potential vorticities. Using (5.179) in (5.178)
we obtain

(a, + UO.x)q, + vQ,, = 0, (5.180)
(5.180)

(at - U O.)q2 - v2Q2. = 0,

where we have neglected the O(E) term in Q 2 to write
Q2V= -QlIyV

The q's can be related to the 7l's, or more conveni-
ently to "pressure" potentials 6, though the geo-
strophic relations

V1= OX, U1 = -.,, v2 = 2X = 
(5.181)

U2 = -2y,

where

1 - g7/f, 2 =- g[( - E)al + Ellf. (5.182)

Then

(l = Vix - U1, = V21, 42 = V2 - U22 = V2,

(5.183)

1 1q = V22+ T (1 - 2),

and we have a system in which only sums and differ-
ences of the variables appear. The sum is related to the
vertical mean, the difference to the baroclinic contri-
bution. Thus, the potential vorticity for the entire
depth is just the sum of relative vorticities because the
height adjustments are equal and opposite. The differ-
ential potential vorticity involves twice the effect of
the interface. The symmetry of the set is made possible
by the equal mean depths, and equal and opposite mean
velocities and mean potential vorticities.

Since all coefficients are constant, the system has
solutions of the form

e- kot+ikx sinly, mir1 = M m= 1,2,...,M' (5.187)

which satisfies the lateral boundary condition of zero
normal flow at y = 0, M. Then (5.186) can be used to
express the amplitudes of q, - q2 in terms of 4,1 -+ 42

as

q, + q2 = -K2 (6 1 + 02), K2 = k 2 + 12,

q - q2 = -(K 2 + 2/X1)(1 - 2).

(5.188)

For the moment we keep the x and t derivatives on the
O's but use (5.188) to write

K2( 1 + 2)1

+ [U(K2 + 21X2) - Q1,(l, - O2)X = 0,

(K + 2/x )( 1 - O2)

+ (UK2 - Q,,)(, + )2), = 0.

Then substituting for Q,, yields

K2(41 + s2)1 + K2U(6 1 - ,2). = 0,

(5.189a)

(5.189b)

(5.190a)
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(K2 + 2/X1l) 1 - 2)t + UK2(61 + )2)x

2U
(2 1 + 2)2 = O. (5.190b)

Use of (5.187) in 15.189) and in (5.190) leads to the
frequency equation

k2

K2 K2 + 2 /IX) [U(K + 2/h) - Q1 ][UK2 - Qi,]

K2 - (21X)
= kU2. 2 (5.191)

K + 2/)21'

When t2 is negative, the perturbations grow exponen-
tially and instability occurs. In terms of potential vor-
ticity, instability requires

U(K2 + 2/X2) > Q,, > UK2. (5.192)

The right-hand side in (5.191) shows that long waves,
with K2 < 2/1XI, are unstable. For shorter wavelengths
the system is oscillatory with no growth. For 1 = k the
maximum growth rate is U(3 - 2V)l2/X1 and occurs
for XK 2 = 2(V2 - 1).

We can get some insight into the instability mech-
anism by noting the following. The local change of the
average potential vorticity q, + q2 is balanced by the
sum of the mean advections of q and by the sum of
the perturbation advections of Q in the two layers.
Because both the mean advection velocity and mean
potential vorticity have opposite signs in the two lay-
ers, these two balancing quantities involve the differ-
ences rather than the sums of the perturbation quan-
tities, as we can see in (5.185a). But we would not
expect internal adjustments of the interface to affect
the average potential vorticity since the effect in one
layer is cancelled by the effect in the other. This ex-
pectation is borne out when we evaluate the different
terms to get (5.190a), where only the mean advection
of the relative vorticity is left to balance ( + 2)t.

Thus, if at some instant of time we had q, - q2 - sin kx
and ql + q2 - 0, the quantity q, + q2 would be -cos kx
at the next instant.

Now consider the local change in the differential
potential vorticity q, - q2. Again, because of the equal
but opposite U and Q, in the two layers, (q - q2) is
balanced by terms involving the sums of the pertur-
bation quantities, as we see from (5.185b). The mean
convective part U(q, + q2 )x gives rise to a change in
q, - q2 like -sinkx after the initial instant and acts
as a restoring force, tending to cancel the initial q, -
q2 (-sinkx). The perturbation advection of Q has the
opposite sign as we see from (5.190b) and gives rise to
a change in q - q2 like sinkx, i.e., it reenforces the
initial distribution. The latter, destabilizing, effect will
dominate for large wavelengths, i.e., for K2 < 1/X2. We
expect this to be the case because internal adjustments

of the interface should cause significant changes in the
differential potential vorticity.

A second way of looking at the problem is to observe
that the perturbation advection of mean potential vor-
ticity vQ, has the form of mean advection of pertur-
bation potential vorticity Uq, when we substitute the
expressions for v and Q. Because vQu involves advec-
tion of the layer thickness, only the part due to the
interface adjustment appears in Uq,. When the terms
are combined as mean advections in (5.190), we see
that the first involves advection in the positive direc-
tion by U but the second can have either sign depend-
ing on the sign of K2 - (2/X2). For small K the phase is
appropriate for reenforcement and instability occurs.

We can understand the energetics of the instability
by writing the disturbances in the more convenient
form

41 + 02 = Ae' tsinkx sinly, (5.193)

01 - 02 = Be'n coskx sinly,

where the solution of the stability problem gives the
growth rate a- as

(2/K2 - K2)112o = + kU + K
(2/X2 + K(2)1/2 '

Then (5. 190a) yields

aA = UkB

or

B = ± 2/X2 + K 1 A.

(5.194)

(5.195)

For very long waves (K << 2/) we have A B for the
growing mode and A -B for the decaying mode. For
k = I the corresponding results are B = +(V2-1) 12A.

Now consider the case with U > 0 so that the upper
layer is thicker toward y = 0 (south). The quantity h12
is a measure of the perturbation thickness of the lower
layer so - 2 is a measure of the excess heat. Then
-vl 712 and -v2712 correspond to northward transports of
heat in the respective layers. Using an overbar for an
average over x and y, we have -(vl + v2)q2 as the
northward heat transport in the two layers. Eqs. (5.181)
and (5.183) can be used to write

H2
-(v + V2)71 = X2 (61 + )216 - 2)f I

= 2 AB,
fX2

(5.196)

so we have northward heat transport for the unstable
mode A - B and southward heat transport for the stable
mode A - -B.

The vertical velocity at the interface is w = (t +
U 0o, 2 + vH 2,, and the upward heat transport is given
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by -wT2. When the foregoing relations are used to
evaluate the latter quantity, we find that the unstable
mode transports heat upward and the stable mode
transports heat downward. For the unstable mode the
northward and upward heat fluxes combine to ex-
change a particle of fluid initially at the south just
above the interface with a particle at the north that
was initially just below the interface. Thus, the net
effect is to level the interface and the instability grows
by drawing on the potential energy of the sloping in-
terface. It can also be shown that the stable mode tends
to increase the slope of the interface, and there is no
energy available for such a change. Furthermore, the
oscillatory, neutral modes that occur for K2 > 2/X2 have
zero northward heat flux.

From (5.193) the values of (0 and 02 are

02 = 2(A sinkx + B coskx)e ' sinly,
(5.197)

= ½(A sinkx - B coskx)e' sinly,

Hence, with K2 << 2/;X the unstable mode A B yields

Ae't sin (kx +- sinly

(5.198)
2 Be"' sin (kx sinly

and we note that the upper-layer disturbance is dis-
placed to the west of (lags) the lower-layer disturbance
by 7r/2. For k = 1 the phase lag of the upper layer is
about 66°. Observed baroclinic instabilities in the at-
mosphere are characterized by such a phase shift. The
phases are reversed for the stable mode.

At this point it is a simple matter to take into ac-
count the effect of variable f by noting0 ( f ) -8 H2(5.199)0y H H H2 '

so that the term f3v must be added to each layer in
(5.180). The result is to add i(0, + 2), to (5.185a) and
/(l 1 - 02),. to (5.185b) and the system (5.190) becomes

(,/1+ 0,)t 3 (, + + + 2)., + U(, 1 - 2).. = 0,

(K2 + 2) (1 - 2), - 0/31 - 2) (5.200)

+ U (K2 -2) ( + 2), = 0.

The frequency equation is

+ 2kK 2 + 1/A) k2p2
K2 (K2 + 2/X2) K2 (K2 + 2/X1)

k 2U2

K2 + 2/Xl (K2 - 2/X2) = 0 (5.201)

and the condition for instability is changed to

XK8 - 4X4K4 + 1 < 0

or

2-2 1 - fi K4 < 2 +21 U2
4U 2 4U 2'

(5.202)

(5.203)

Thus, the wavelength is bounded at the long end as
well and the unstable range is cut down. A necessary
condition on U is

21Ul > i2x. (5.204)

With X = 36 km this gives a velocity difference be-
tween the layers of 2.5 cm s- .

These results were first derived by Phillips (1951).
The condition on UI is a particular example of the
more general necessary condition for instability (Char-
ney and Stern, 1962; Pedlosky, 1964a) that the mean
potential vorticity gradient (including /3) must change
sign in the region. If 8 dominates, Q, is positive every-
where and the flow is stable.

In two-layer models we note particularly that east-
ward flow in the upper layer requires -HL, > 0 so that
the stabilizing /3-effect is reenforced in (5.199). Hence,
instability can occur only if -fH2y/H2 (which is nega-
tive) is large enough to offset . If the lower layer is
very deep, the system is stable. On the other hand,
westward flow in the upper layer is destabilizing
(-H, < 0) and a shallow upper layer is more conducive
to instability since fH,,/H, increases with decreasing
H,. Two-layer oceanic models normally have a shallow
upper layer so instability sets in first in regions where
the surface velocity is to the west. Since geostrophic
westward flow is associated with a thermocline that
deepens to the north, the instability serves to transport
heat to the south iwhen the thermocline is flattened.
Thus, the primary instability tends to resist the effect
of the thermal driving.

A bottom slope also affects the stability. We can
make use of the general condition in the present case
to observe that if the bottom slope is in the same
direction as, and exceeds, the slope of the interface it
stabilizes the flow because Q2,, has the same sign as
Q,,. More generally, when /I is included, a stable flow
can be destabilized (and vice versa) by changing the
sign of U and/or the slope.

These results can be generalized to flows with arbi-
trary, stable strati1cation (Charney and Stern, 1962;
Pedlosky, 1964a). Necessary conditions for instability
are that (1) Q, change sign somewhere between the
surface and the bottom, (2) QU, < 0 at z = 0, or (3)
Q,(U, + N2H1Jf) > 0 at z = -H.

Bretherton (1966a) compared the two-layer model
with the continuously stratified (constant-N) model of
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Eady (1949) to explain the similarity in the results of
two systems that have obvious differences. In the two-
layer case the vertical difference in Q, is necessary for
instability whereas in the Eady model Q is constant.
The latter system becomes unstable because the slop-
ing isopycnals intersect the bottom and introduce de-
stabilizing boundary effects. When the boundary con-
ditions are incorporated into the potential vorticity of
the fluid as infinitesimally thin sheets adjacent to the
boundaries, their effects can be interpreted as internal
differences in Q, and the similarity between the two
models is evident. The two models are opposite ex-
tremes in the simulation of the variable stratification
of the ocean. In the two-layer model the stratification
is squeezed into a discontinuous layer and boundary
effects are distributed uniformly throughout each layer.
The constant-N model smears out vertical differences
in the stratification, thereby exaggerating the stratifi-
cation at the boundaries, but boundary effects appear
properly as boundary conditions.

The question of critical layer instability, where the
phase speed of the disturbance is equal but opposite to
the convective velocity, is addressed by Bretherton
(1966b), who showed that the existence of a critical
layer in a fluid makes it highly unlikely that the flow
will be stable. If Q, vanishes or if certain other con-
ditions are satisfied at or near the critical layer, stabil-
ity is possible, but generally instability will occur.
Bretherton used his analysis to show that the addition
of p to Eady's problem (Green, 1960) yields Q, = 1IH,
i.e., Q, does not vanish, and since a critical layer exists,
the flow is unstable. This destabilizing effect of /3 is in
direct contrast to the result that we found for the two-
layer case. For a two-layer system, however, there is no
critical layer (it is buried in the discontinuity of the
interface), and the corresponding mode is stable. The
instability that does occur with two layers is due to
the change of sign of Qv between the two layers. We
have already pointed out that the equivalent effect is
due to boundary effects in the Eady problem without

Stommel (1965) suggested that the enormous
amount of potential energy present in the stratification
of the ocean and associated with the mean circulation
may be a possible source of energy for instabilities. The
obvious mechanism to tap that energy is baroclinic
instability. Gill, Green, and Simmons (1974) have ex-
plored the stability of several combinations of vertical
profiles of density and of vertical shear of horizontal
velocity. Using exponential approximations to mean
observed vertical profiles, they concluded that west-
ward flows9 (isopycnals sloping up toward the equator)
are the most likely unstable ones, and they analyzed
one such case with a velocity maximum at the surface
and two with the maximum at 100 m depth. For one
of the latter the slope of isopycnals reverses (up toward

the pole) at 100 m depth. The most unstable modes
have wavenumbers close to the reciprocal of the inter-
nal radius of deformation (wavelength 190 km) and e-
folding time of 80 days with velocities significant in
the upper kilometer or so. When U has a subsurface
maximum where the isopycnals reverse slope, the
growth rate decreases, suggesting that seasonal changes
that can affect the isopycnal slope can also affect the
stability. The maximum growth rate occurs for profiles
with monotonic Uz. Secondary instabilities with min-
imum amplitude at 1000 m depth, smaller wavelength,
and smaller growth rate also occur. Since the ampli-
tudes of these secondary instabilities are large at depth,
they are strongly affected by topography. The conver-
sion of available potential energy to eddy energy for all
of the primary instabilities is confined to the upper
half-kilometer.

Because linear instability theory yields no informa-
tion about absolute amplitudes, Gill, Green, and Sim-
mons (1974) assumed that the eddies draw energy from
the mean field at the rate at which it is supplied to the
mean field by the wind. That sets the amplitudes for
the disturbances. By assuming further that the primary
and secondary instabilities draw equal amounts of
available potential energy, they obtain maximum eddy
velocities of 0.14 m s- ' and wavelengths of 200 km in
the upper kilometer and corresponding values of
0.05 ms -' and 300-500 km in deep water. The latter
values are close to the observed but the amplitudes of
the upper velocities are on the small side.

The analysis by Gill, Green, and Simmons (1974)
supplies qualitative, and even some quantitative, sup-
port for the pertinence of linear baroclinic-instability
theory to observed eddy motions in the ocean. Linear
growth rates have the right magnitude and the scales
and distributions of the disturbances are also approxi-
mately correct. However, more detailed features and
quantitative results require additional considera-
tions.l 0 Nonlinear processes must be important, par-
ticularly in altering the structure of the mean field,
which is assumed known in the linear theory. Friction,
too, must have at least a quantitative effect over the
lifetime of these flows.

5.11.2 Finite-Amplitude Effects
Phillips (1954) calculated the finite-amplitude effects
of the baroclinically unstable modes to determine the
lowest-order corrections to the assumed mean proper-
ties. He derived the heat fluxes given above, the in-
duced meridional circulation, and the changes in the
zonal momentum wrought by nonlinear corrections.
The altered fields are in qualitative agreement with
observed structures in the atmosphere.

This use of the most rapidly growing eigenfunctions
of linear theory to determine nonlinear corrections to
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the system has been applied and extended by a number
of other investigators. In part, the purpose is to enable
one to take into account the effects of these smaller-
scale processes in larger-scale models by a consistent
parameterization. Nongeostrophic processes can also
be included to give an idea of the effects on the evo-
lution of the flow.

In an excellent review article on finite-amplitude
baroclinic instability Hart (1979a) gives an account of
the different approaches to the treatment of the non-
linear system and the reader is referred to Hart's paper
for a more detailed discussion and an extensive bibli-
ography. The different treatments summarized by Hart
include simple physical effects of the first nonlinear
interaction (e.g., Phillips, 1954), weakly nonlinear in-
teractions between the perturbation and the mean field
(e.g., Stuart, 1960), a truncated set of normal modes
with amplitudes that must be determined by the dy-
namical system (e.g., Lorenz, 1963a), and a mean-field,
single-wave approach (e.g., Herring, 1963). Pedlosky
(1975) gives a discussion appropriate to oceanic eddies.

These studies of finite-amplitude effects are impor-
tant in providing an understanding of the interplay of
different parts of the system and especially for deter-
mining which processes are pertinent to the behavior
of the observed system. For example, observed asym-
metries in the structure of the evolved eddies can be
traced to nongeostrophic effects [see Hart (1979a) for
references], and inclusion of those effects may be nec-
essary to recover the asymmetries, even in strongly
nonlinear models. But other features, such as the oc-
clusion observed in fully developed cyclones or eddies
and the greater intensity of eddy amplitudes as com-
pared to mean-flow velocities, do not emerge from
these local, finite-amplitude treatments, and recourse
to more nonlinear (numerical) models is suggested if
the results are to be applicable to oceanic flows.

One such treatment, a numerical study of baroclinic
instability by Orlanski and Cox (1973), using Bryan's
(1969) numerical model of the general circulation, fo-
cused on the stability of an intense, confined, stream
along a coast. The application is to the Florida Current
(Miami to Cape Hatteras). The effects of a bounding
coast, bottom topography, nonlinearity, friction, and
diffusion are all included in this study, which shows
that an evolved eddy field is established 10 days after
the current, is initially uniform in the downstream
direction, and is randomly perturbed in density and
velocity. The disturbance of maximum growth has a
scale of about 20 km, which seems to be the defor-
mation radius (not reported but estimated from the
published temperature pattern). The growth rate de-
creases by about a factor of 10 from the initial value
when nonlinear effects become important. This seems
to be a characteristic effect of nonlinearity; similar
results are reported for meteorological studies (Gall,

1976). The initially rapid growth of the disturbances is
much faster than one obtains for a current in an un-
bounded ocean, so there is a strong suggestion that
bottom topography and the nearby coast are important
factors in determining the growth rate. An energy dia-
gram shows that the flux of energy is from mean to
eddy potential energy, then to eddy and finally mean
kinetic energy. These transfers are all consistent with
baroclinic instability and its evolution.

5.12 Effect of Nonlinearity and Turbulence

Linear theory provides at least a qualitative explana-
tion of some observed dynamic features in the ocean,
including westward intensification of boundary cur-
rents, the several types of long-period wave motions,
and the existence of baroclinically unstable modes. It
is also clear, however, that nonlinear processes provide
more than merely quantitative corrections. For exam-
ple, the observed Gulf Stream transport is several times
the value predicted by linear theory, and the recircu-
lating gyre associated with the increased transport (see
chapter 4) not only involves flows that are baroclini-
cally unstable, but the unstable modes seem to be fully
developed as well. The effects of smaller-scale proc-
esses cannot generally be parameterized in terms of
eddy coefficients, so an analysis of the evolution of the
flow requires analysis of strong, interacting features
and the use of concepts and relationships developed for
turbulent flows.

Because of the difficulties inherent in nonlinear stud-
ies, many of the explorations have used numerical
models, some of which have required extensive cal-
culations. Rhines (1977) has made a significant effort
to construct a comprehensive account of the emerging
dynamic picture. Only an outline of that remarkable
synthesis can be given here.

Most of the numerical experiments discussed in this
section are oriented toward a study of processes. Except
for the calculations by Bryan (1969) they were not in-
tended to be simulations of ocean circulation. There-
fore, the models are often very idealized (two-layer,
rectangular basins with cyclic boundary conditions,
etc.). At times the results can only be suggestive of
what happens in nature, but they should be of great
help in indicating what should be included in more
realistic, predictive models.

The linear theories discussed in the earlier sections
must be supplemented by a few additional observa-
tions. One is that baroclinically unstable motions
evolve into fully developed, closed eddies. A descrip-
tion of the latter is not accessible with theories based
on extensions from linear treatments and one must
resort to numerical experiments to obtain the evolved
fields. A second observation is that mature eddies are
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often (but not always) in an occluded state in which
the motion has penetrated vertically to form a rela-
tively barotropic gyre. In horizontal wavenumber space
the window for vertical penetration is at or near the
internal radius of deformation. This tendency toward
barotropy in a Boussinesq fluid means that certain fea-
tures of the system can be described as if the flow were
two-dimensional, a significant simplification for both
analytic and numerical studies.

5.12.1 Nonlinear Effects with Constant Depth
Batchelor (1953a) points out that for nonlinear, two-
dimensional flow in an inviscid fluid the time rates of
change of integrated energy and enstrophy (squared rel-
ative vorticity) vanish:

a E dk = 0,& f. ' V at k 2Edk = 0,

where E is the kinetic energy in wavenumber space.
(For a fluid with small viscosity the same relations
hold approximately for times short compared to the
transfer time to high wavenumbers where viscous dis-
sipation is significant.) If one assumes that an initially
narrow spectrum spreads in time about its mean wave-
number,

at k - k)' 2 Edk > 0, (5.206)

where k = fkE dk/fE dk, then use of (5.205) yields

Ok < 0. (5.207)
at

Thus, the mean wave number k, decreases. Further-
more, since fk 2 Edk is conserved, a transfer of energy
from, say, k, to 2k0 must be balanced by a transfer of
four times that energy to ko/2 or an equivalent change.
In order to achieve this red cascade of energy, fluid
elements with vorticity of like sign must coalesce into
larger eddies. Hence, a small number of strong, iso-
lated vortices will emerge and they will continue to
tend to coalesce. Nonlinearity will generate small
scales as well, and since enstrophy involves a weight-
ing by k2, enstrophy will peak at smaller scales (see
chapter 18).

The red cascade relies on nonlinear processes to pro-
vide the transfer to different scales. Furthermore, the
turbulent field must be spatially homogeneous and iso-
tropic. A local concentration of turbulent eddies will
spread spatially as well as in wavenumber and the
conditions for the red cascade can be violated. For ex-
ample, an initially isolated cluster of eddies will spread
to the point where nonlinear transfers are so weak that
the system no longer acts as turbulence and the evo-
lution to larger scales stops.

The relations (5.205) apply to an unbounded fluid on
the -plane as well. Yet in the vorticity balance the
planetary vorticity term fv becomes comparable to the
nonlinear term v.Va when the Rossby number is small
enough. If U is the rms turbulent velocity, and if mo-
tions cluster around wave number k,, the pertinent
measure of the Rossby number is 2Ukl/fB. As the red
cascade proceeds, k, becomes smaller and 2Uk/,3i drops
toward unity. Energy and vorticity can then be radiated
away by Rossby waves, decreasing the intensity of the
motion still further. Thus, the red cascade is halted as
turbulence gives rise to waves. It is interesting to note
that the larger scales generated by the turbulence are
the ones that radiate away most quickly. Hence, the
end state is toward a pattern of zonal flows with scale
k' (/2U)- 1" 2 (Rossby number -1).

Rhines (1975) ran a numerical calculation for a basin
with periodic boundary conditions in which an initially
turbulent, barotropic fluid with energy in a narrow
band of wavenumbers evolves toward the red cascade
with and without l. His results are illustrated in figure
5.15, where contours of qJ as a function of longitude x
are shown as time progresses. The relatively small in-
itial scales expand in time in both cases. With /, prop-
agation to the west occurs shortly after the start of the
experiment and the phase speed increases until k ap-
proaches k0 toward the end of the run.

A schematic illustration of the results is shown in
figure 5.16B. The initially turbulent field with energy
in a narrow band of wavenumbers starts at point a with
frequency k U and evolves toward lower wavenumbers,
hence lower frequencies. When it reaches the fre-
quency corresponding to barotropic Rossby waves, ev-
olution of the turbulent field is halted and gives way
to an evolving Rossby wave field with scale (/2U) -112.

Another obstacle to the red cascade is afforded by a
western meridional boundary, where, as we have seen,
reflection of Rossby waves favors the generation and
accumulation of smaller scales. These modes tend to
line up meridionally. Nonlinear flows also concentrate
energy and enstrophy near the western boundary.

The qualitative effect of stratification can be intro-
duced via a quasi-geostrophic two-layer model on the
,-plane. Rhines carried out a series of initial-value cal-
culations varying both the intensity and the scale of
the initial turbulence. In these experiments the inter-
nal radius of deformation Xi = (g'H,H2/Hf2) 12 is a crit-
ical parameter. When the initial, turbulent scale L is
small compared to Xi, the two layers are effectively
decoupled, as they are for linear waves. If the intensity
of the turbulent flow is not large, the red cascade will
develop in each layer until the frequency and scale of
the barotropic Rossby wave for that layer is reached.
This case is shown in figure 5.16A by the arrow from
point b to a point on the wave dispersion curve where
Xik > 1.
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Figure 5. I5 A Contour diagrams for qJ as function of longitude
and time for Rhines's numerical barotropic experiment with
initially turbulent field without /3. Cascade to large scales
occurs as time increases.

baroclinic

k
Figure .i6A Frequency-wavenumber diagram for baroclinic
modes. Solid curve shows linear baroclinic Rossby wave,
dashed curve linear barotropic Rossby wave. For turbulent
motions frequency is rms velocity U times k. Initial field of
small-scale motions evolves by nonlinear interactions toward
larger scales. If turbulent intensity is small (from point b),
frequency arrives at linear wave values before deformation
scale is reached and each layer experiences "barotropic" west-
ward propagation. If intensity is larger (from point c), evolu-
tion to large scales proceeds until deformation scale is reached
(point x); then layers couple and barotropic development in
figure 5.16B takes place. If initial turbulence has large scale
(from point d), smaller scales are generated by nonlinear trans-
fer and by baroclinic instability and system evolves to point
A, where barotropic mode is generated and behavior shifts to
figure 5.16B from point A.

barotropic

-

k

Figure 5. .6B From point a nonlinear interactions of initially
small-scale turbulent field produce red cascade until fre-
quency reaches linear barotropic value (solid curve), when
westward propagation disperses the energy to reduce nonlin-
ear interactions. Same development from points x and A after
barotropic mode is generated from initially baroclinic turbu-
lent field.

Figure 5 .I B Same experiment with ,. Westward propagation
increases with time as cascade to larger scales occurs. Cascade
is halted as k -, /[3/2U.

If the intensity of the turbulence (in either layer) is
increased to point c in figure 5.16A, the red cascade
will take place again, but now the scale of the internal
radius of deformation is reached (at point x) before the
wave steepness U/13L2 has dropped to unity. As k de-
creases toward X1 the two layers will begin to interact
with each other. The intensity of the flow allows a full
evolution of the eddying motion to the occluded state
described earlier and a barotropic response sets in. The
latter is shown by the point x in figure 5.16B. From
this point the system behaves like the barotropic sys-
tem described earlier and the barotropic red cascade
proceeds until the dispersion curve for the barotropic
Rossby wave is reached. These results can be extended
to the three-dimensional system.

If the initial, turbulent eddies have scales larger than
Xi, the flow can be treated locally as a large-scale basic
flow field that becomes baroclinically unstable to dis-
turbances with scale hi that derive their energy from
the large-scale potential-energy field. Hence, the sys-
tem will quickly develop smaller scales of motion. In
this case the release of potential energy is responsible
for the "blue" cascade. Once instability sets in at k 

,XF, the layers will couple, a barotropic response will
be generated, and the barotropic red cascade will occur.
The generation of smaller scales is shown in figure
5.16A from point d to A, where the layers couple; the
barotropic red cascade from that point is shown in
figure 5.16B. In Rhines's numerical experiment for this
case the upper layer is shallow and the instability sets
in where the large-scale eddy has a westward compo-
nent, consistent with our observation that in a shallow
upper layer westward flow is more unstable than east-
ward flow. At a later stage the eastward flow also be-
comes unstable. This particular case leads more
quickly to the banded zonal flow described earlier be-
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cause the baroclinic instability enhances the process
by destabilizing the initially large-scale flow (particu-
larly the large north-south scale) and by generating
eddies of size Xi, followed by a quick vertical coupling
and then occlusion. If the red cascade leads to a zonal
flow at an early stage, some of the potential energy in
the initial, large-scale field remains to support a baro-
clinic zonal flow, i.e., one with a vertical shear. This
is possible for AU/X123 < 1 where AU is the velocity
difference between the two layers.

Additional initial-value, run-down experiments were
carried out by Rhines to study special features. One is
the stability of a meridional baroclinic flow (essentially
a westward-traveling Rossby wave in the upper layer).
Eddies with scales slightly exceeding Xi form and grow
to larger amplitude, interacting laterally as they lock
together vertically. The barotropic red cascade then
sets in and a barotropic Rossby wave field again ra-
diates energy away, leaving a zonal flow with scale k- 1

as in the purely barotropic case discussed earlier. 1 Es-
sentially all of the initial potential energy is released
in the evolution of this flow.

Another experiment explores the instability of an
eastward jet an open-ocean "Gulf Stream") with /] =
0. The flow is initially confined to the upper layer with
a transverse scale of about 2hi. A superposed weak
disturbance develops rapidly via baroclinic instability
and eddies are generated in both layers. The evolution
of the flow involves an interaction between the (ini-
tially intense) mean flow and the growing waves as
well as wave-wave interactions within each of the
layers. The reader is referred to Rhines's paper for the
details of the developing system, but the final result is
mentioned here because of its pertinence to both ob-
servations and theories of the Gulf Stream. The flow
that emerges has a strong barotropic component with
a much increased "Gulf Stream transport," but there
is little evidence in the flow field of an identifiable
Gulf Stream. The density field (expressed as the inter-
face height), however, preserves much more of the
character of the observed Gulf Stream, with a mean-
dering structure, detached rings, and a crowding of iso-
pycnals along the axis. Thus, the dynamic picture in-
volves two dissimilar modes, one barotropic, the other
baroclinic, both of which are essential for a satisfactory
description of the pertinent physical processes.

5.12.2 Effects of Topography in Two-Layer Flow
The conservation of potential vorticity requires a bal-
ance between /Ot, vV4, dfldt, and -fdh/h dt. Non-
dimensional measures of these terms are a frequency
o/f, the Rossby number Ro = Uk/f, the -effect flfk,
and the topographic effect 8 = AH kT/Hk. Here k and
kT are the horizontal scales of the flow and of the
topography respectively, AH the amplitude of the to-
pography, and H the depth.

For transient flows the local change wof will be bal-
anced by a combination of the other parameters. If /fk
is larger than Ro or 8 (weak flow over small topogra-
phy), the system will respond with Rossby waves. In
this case, if kT >> k (small-scale topography), the
Rossby waves will be weakly scattered by topography
(Thompson, 1975). For large-scale topography (kT << k)
the response will be Rossby waves modified by topog-
raphy as described in sections 5.9 and 5.10. For inter-
mediate scales (kT - k) the oscillations are irregular
and will reflect the geometrical complexity of the to-
pography (Rhines and Bretherton, 1974).

Nonlinear flows (Ro > 8, /fk) will exhibit the spec-
tral broadening (red cascade) described above. Large
topography (8 > Ro, /fk) of small horizontal scale
(kT >> k) leads to generation of small scales through
topographic scattering and refraction. If the topo-
graphic scale is large (kT << k), a new "westward"
direction is defined to the left of upslope.

With stratification the interplay of the three effects
can be intricate. For example, if the flow is dominated
by nonlinearity near the surface, spectral broadening
will occur, and if the deep flow is weak, scattering will
lead to small scales and the pseudowestward direction
can generate fast baroclinic waves.

A series of initial-value numerical experiments by
Rhines (1977) made use of random topography of rms
amplitude 8 = 0.053 generated with a spectrum of
scalar wavenumber k- 1 . 5 with scales k - 8 over a pe-
riodic domain of width 2000 km. The internal defor-
mation radius Ai was 40 km, so the topography cutoff
scale was at the deformation radius.

A first experiment started off with turbulent eddies
of scale k - XiI and Ro > /fk. The initial flow was
confined to the upper layer. The deformation scale of
the flow leads to coupling of the two layers and deep
motion is generated. However, as soon as the deep
water is set into motion, it interacts with the irregular
topography which determines the direction of flow.
Thus, topography detunes the layers and barotropic
development is impeded.

When the initial flow includes deep motion as well
so that Ro > 8 there, the inertia of the flow eventually
overcomes the relatively weak effect of the topography
allowing coupling of the two layers to proceed. When
the flow has evolved to expanded scales, the barotropic
mode that emerges responds to the larger scales of the
topography and the flow follows f/h contours. During
the time that vertical adjustment is taking place, a
more complicated, quasi-local relation among vertical
structure, energy level (Ro) and topography (8) may
exist.

In both of these cases the initial flow has a small
scale so that it contains only a limited amount of po-
tential energy. If the initial eddies have a larger scale,
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there is more potential energy available to the disturb-
ances and faster growth via baroclinic instability is
possible. When there is no topography, deformation
scale disturbances will grow, the two layers will couple
and occlude, and the barotropic red cascade will then
take place. With rough topography, deformation-scale
eddies are still generated and the growth is enhanced
by the topography. This leads to an even larger release
of the potential energy of the initial, larger-scale flow,
though the locations of these enhanced deformation-
scale eddies are determined by the topography so the
two layers are detuned. To offset this detuning, contin-
uous spectral broadening by topography takes place in
deep water and the larger scales so generated can couple
with the larger scales of the surface eddies. Hence,
there is a tendency toward barotropy once again. If the
flow is sufficiently nonlinear, topography is not so im-
portant and the development is more like that of a flat-
bottom ocean.

What emerges from these considerations is that the
response of the ocean depends in a complicated manner
on the intensity and scale of the energy input and on
the topographic structure in the region of response.
However, the fact that the ratio of barotropic to baro-
clinic energy is a monotonic function of the ratio RoI8,
as suggested by the calculations, seems to be a zero-
order description of the observations. Rhines provides
a much more detailed discussion of these issues as well
as other considerations, such as the propagation of en-
ergy from a source area to distant regions with no input
and the trapping of certain modes by topography. Sev-
eral other investigators, including Bretherton and Kar-
weit (1975) and Bretherton and Haidvogel (1976), have
made important contributions to the study of the ef-
fects of different physical features on mid-ocean eddies.
Holloway (1978), Salmon, Holloway, and Hendershott
(1976), and Herring (1977) have applied closure mod-
eling to the problem to enrich the story (see chapters
11 and 18).

5.12.3 Closed Basin Circulation
It is evident from the results reported above that the
character of the circulation can undergo qualitative
local changes because of nonlinear interactions and
effects of bottom topography. When land boundaries
are added, the circulation can be very different from
that obtained by linear theory or even by nonlinear
steady theory. Significant differences emerge if nonlin-
ear, transient effects can develop fully. The latter are
not easily treated analytically and most of the useful
results have emerged from numerical experiments.

Some of the numerical studies (e.g., Robinson, Har-
rison, Mintz, and Semtner, 1977) use the primitive
equations rather than the quasi-geostrophic set that we
have been discussing. Although there are important
nongeostrophic effects, many of the important features

emerge from a study of the quasi-geostrophic system.
For a closed, forced system it is necessary to add

dissipation. This can be done by introducing the terms
Orx/Oz + A V2u and OrT/Oz + A V2v to the right-hand
sides of (5.32) and (5.33), respectively, and K, 2 po/Oz2 +

KHV2PO to the right-hand side of (5.44). The eddy coef-
ficients A, K,, and KH are taken to be constant.12 The
vertical stress terms OT/Oz and Or/Oaz contribute only
near top and bottom boundaries, where they are nor-
mally evaluated to take into account the effect of wind
stress and bottom drag via Ekman-layer processes.

Equation 5.54) is changed to

dq = (ikV x t) +A V4, + KHV2 ( dt OzatY"

dz N2 -zz) ,
(5.208)

where q = V2 + f + OlOz(ftpJ/N2) is again the
potential vorticity. If we write the variables in terms
of an ensemble mean (overbar) and a perturbation
(primed), we can write the equation for the mean po-
tential vorticity as

azi + v-Vj + v'.Vq'
=dk x)AVi+Hdat( 2

(.V x )+ v +AV +KHV2

+ K,- 2 I
O N2Z
0., ( ·-z

(5.209)

For a two-layer model the equivalent system before
averaging is

d [V,, + f ( - fn )] = k-- + A V4,,,
(5.210)

d [V* 2+ f foln ) = -K 2+AV 4
2.I L 2 .O \H2)] h,

Here, we have integrated vertically over each layer.
The effect of topography is in the term 13 in h2). Bot-
tom friction is written explicitly as -K42 = -KV 2 I2
and k.V x 0 is the wind-stress curl. The convective
derivative for each layer involves the horizontal veloc-
ity components for that layer.

In (5.210) the thicknesses h, and h2 of the two layers
include the variations of the free surface, the interface,
and the topography. In general, the hi should be allowed
to vanish, if need be, but no calculations have been
made with variable hi because following a material
surface is very difficult to do numerically. The usual
procedure is to set the hi at their mean values in the
coefficients. That means that surfacing of the ther-
mocline is not permitted, so the separation mechanism
of section 5.7 is not included. This is a serious omission
for the complete problem. The numerical calculations
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have been oriented toward determining the effects of
eddies and topography on the vertical transfer of vor-
ticity for the generation of abyssal circulation. The
results are applicable so long as h1 does not vanish.

Assuming a rigid lid at the top and a mean depth for
the hi in the coefficients, we can write (5.210) as

dq, kV o+vd = ----- + A V4,,,
dt H

(5.211)
dq2 V22dq = -K 2 2 + A V41,,
dt H2

where q, = V2 ,1 + f + for2 /HF q2 = V2
2 + f = -fo('q2

- '73)/H2, where 3 describes the topography. Again
writing mean and fluctuation variables, we obtain for
the mean equations

ai =kV x To
+ v1 Vq + v'Vq1 = H ° + A V4 ,

(5.212)
aq2 KV202

+ V2'V4q2 + v2~Vq2 = - H 2 + A V4 I2,

where

q = V2i, + f + o 2, ql = V2+b + fo'rllH1,

(5.213)

H2 ' q2 = V 2¢2 - for/IH 2-H2

The mean properties in each layer depend on the cor-
relations between fluctuating velocity and potential
vorticity in addition to the remaining mean variables.
We mention results from two numerical experiments.

The first is a numerical calculation by Holland (1973)
of the continuous system [(5.209) plus the remaining
equations of the system] for a rectangular basin 45°

wide and extending from the equator (where symmetry
is assumed) to about 65°N. A three-gyre wind system
drives the circulation in a basin with topography
shown in figure 5.17. Transport streamline patterns for
a baroclinic ocean without topography, for a barotropic
ocean with topography, and for a baroclinic ocean with
topography are illustrated in figure 5.17. The first of
the figures shows a structure not terribly different from
the one obtained from linear theory with oceanic gyres
determined by the wind pattern. The second exhibits
the strong effect of topography on homogeneous water
columns. The third contains response due to the com-
bined effects of eddies and topography. The pattern is
very different from the other two but the result of
greatest significance is the enhanced transport gener-
ated by the eddies in conjunction with topography. The
transport is increased by more than a factor of two over
the case without topography.13

A more recent numerical experiment, analyzed by
Holland and Rhines (1980), is based on the two-layer

system (5.212) with a sinusoidal, cyclonic, wind stress
in the north half-basin of amplitude 1 dyn cm- 2 and an
anticyclonic wind stress in the south. The basin is
small, extending 1000 km eastward and 2000 km
northward. The depth of the upper layer is 1 km, that
of the lower 4 km, the bottom is flat, and the density
difference is Ap = 0.002P2. Instead of the Navier-Stokes
form for lateral friction, a biharmonic form is used so
that V4 is replaced by -V6 in (5.212). At the sides
normal flow and tangential stress vanish.

The experiment was run until it approached a statis-
tically steady state, and time averages of the fields were
then determined. For a statistically steady state equa-
tions (5.212) and (5.213) can be rewritten as

V1.Vql + vI.V V2q1 + Vl + A V _ x
1 2HH

= 0. (5.214)

-- f - KV2 1V.vqZ2 -+ .V2V V2 w - , V.V + A V6*2 +
H2 H2

= 0,

Statistically steady streamlines for the two layers are
shown in figure 5.18. The upper layer consists of two
gyres, one anticyclonic, one cyclonic, with their cen-
ters displaced toward mid-latitude as is characteristic
of circulations with strong inertial effects. The smaller
gyres C and D contain the nonlinear recirculation. The
upper-layer pattern is not so different from the one for
a homogeneous ocean with strong inertial effects (fig-
ure 5.6). The lower layer, on the other hand, exhibits
entirely different behavior. Small intense gyres exist
under, and have flows parallel to, the small-surface
gyres C and D. Counterrotating gyres lie to the north
and south of the center two.

Now suppose that equations (5.214) are integrated
over the depth of each layer and over an area bounded
by the streamlines of the respective gyres. Then the
mean convective derivatives in (5.214) will vanish
[each of them can be rewritten in divergent form V.(vq)
and vanishes on horizontal integration because the
boundary is a streamline]. The remaining terms will
then balance and we have

H, v.V V2q1; + fo VVl; + HA V6i1 - kV x t0 = 0

U, + U2 + U3 + U4 = 0,
(5.215)

H2 V2'V V2 ; - foVIVqI + HA V672 + K V2i 2 = 0

L1 + L2 + L3 + L4 = 0,

where the subscripted capital letters (U for upper layer,
L for lower) identify the different terms. For the upper
layer from left to right these vorticity balances are due
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Figure 5.I7A Topography used by Holland (1973) in ocean
circulation calculation.
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Figure s.I7 B Horizontal transport streamfunction for (left)
baroclinic ocean with no topography, (middle) barotropic ocean
with topography, (right) baroclinic ocean with topography.
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to Reynolds stress, interfacial stress, lateral friction,
and wind stress, respectively. For the lower layer the
first three are the same and the last is due to bottom
friction.

The statistically steady streamlines fall between grid
points in the numerical experiment, so the different
quantities can be evaluated only approximately. Fur-
thermore, the mean vorticities showed time depend-
ence even for the long times of the averages. Hence,
the numerical results can provide only an approxima-
tion to (5.215).

Holland and Rhines evaluated the integrals for each
gyre. Their convention uses a positive sign for the in-
tegral if it serves to drive the vortex and a negative
value if it opposes the vorticity. The results are shown
in table 5.1. We try here to interpret the results in
terms of the processes described in earlier sections,
though such balances tell only part of the story.

In the upper layer the large gyres, A and B, are driven
primarily by the wind. Resistance is effected via Rey-
nolds stresses though there is a small retardation by
the interfacial stresses. The assumed biharmonic lat-
eral "friction" helps to drive the flow, but the magni-
tude of this driving is smaller than the errors due to
the approximate evaluation of the integrals, so even
the sign is not reliable.

The smaller gyres, C and D, are driven more by
Reynolds stresses than by the winds (which is not sur-
prising since these gyres are inertially controlled and
have their centers in the wrong place for directly wind-
driven gyres). The largest single contribution for these
smaller gyres comes from the retarding effect of inter-
facial stress. The interacting fluctuations of velocity
and interface height (temperature) in gyre C depress
the interface, thus tending to stretch vortex lines and
weaken the anticyclonic vortex. In the cyclonic gyre D
the interface is raised by v.Vq2I and the vortex lines
are compressed, thus generating anticyclonic vorticity.
Hence, in both small gyres the mean of the fluctuating
interactions serves to weaken the prevailing vorticity.
The approximation errors for these smaller gyres are
smaller but still annoying.

The difference between the integral values for the
small and large gyres in the upper layer gives the cor-
responding values for the region between the small and
large gyre in each basin--or it would if there were no
error. It is especially important to note that U2 for the
small gyres is larger than the value for the large gyres.
In other words, in the regions between the streamlines
in each half-basin the interfacial stress term drives the
gyre (against the retarding effect of Reynolds stresses).
This serves to raise the thermocline in the south (be-
tween C and A) and lower it in the north (between D
and B).

The lower layer, which would have no average flow
in a real steady state or for linear transient motions, is

Figure 5 . 8A Circulation gyres generated in top layer of ocean
model with cyclonic wind stress in north, equal-strength an-
ticyclonic wind stress in south. Gyres C and D contain recir-
culating water.

Figure 5.I8B Lower-layer gyres near mid-latitude have same
sign as those of upper layer. Other gyres opposite.

Table 5.1 Values of Ui and Li in Equation (5.215): Units
m

3
-2

Upper layer U U2 U3 U4 Imbalancea

GyreA -61.2 -17.6 5.1 53.9 -19.8
Gyre B -49.2 -10.2 5.7 57.9 5.2

Gyre C 11.0 -23.8 -0.3 7.9 -5.2
Gyre D 11.6 -21.2 0.4 3.3 -5.9

Lower layer L, L2 L3 L4 Imbalancea

Gyre A -19.9 44.6 -0.7 -24.1 -0.1
Gyre B -18.8 42.8 -0.6 -22.3 1.1
Gyre C -11.4 44.5 -7.3 -25.0 0.8
Gyre D -9.2 40.5 -6.5 -22.0 2.8

a. Imbalances are due to residual time dependence and
approximation errors for evaluating integrals.
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driven by the interfacial stresses (table 5.1). Thus, the
depression of the interface under upper-level gyre C
causes vortex shrinking in the lower layer and gener-
ates the anticyclonic gyre there. Similarly, the eleva-
tion of the interface under upper-level gyre D causes
vortex stretching in the lower layer and generates the
cyclonic gyre. We noted above that the interfacial
stresses change sign in the region between the small
and large gyre of each half-basin, so the same mecha-
nism leads to vortices of opposite sign, i.e., in the
lower layer D is opposed to B and C is opposed to A.
These results are all consistent with the simple idea of
vortex generation by vertical divergence-at least, in
the mean. Local balances could well be different, es-
pecially if there are large horizontal variations in the
different quantities, as there undoubtedly are.

The vertically integrated transport of the northward
boundary current near mid-latitude exceeds the Sver-
drup transport by a factor of three. Thus the effect of
eddies and the corotating deep gyre contribute greatly
to the transport. The transport of the counterrotating
deep gyres can overwhelm the value due to the surface
gyres above them.

An analysis of the results of the numerical experi-
ment (Holland, 1978) indicates that there is no region
where the Sverdrup balance is locally valid for the
vertically integrated flow. However, the nature of eddy
effects on the mean flow is such that spatial averaging
tends to reduce their importance. Hence, Sverdrup bal-
ance may apply approximately to a spatially averaged
region even when it does not apply at a point. Further-
more, the east-west scale of the basin is small
(1000 km), and the recirculating gyres extend across
almost the entire basin. In a wider basin the recircu-
lating gyre is probably not much larger and a region of
local Sverdrup balance can exist.

An interesting observation about this experiment is
that if one calculates the northward transport from
hydrographic data (the interface height) across the
boundary current, assuming zero deep flow, one ob-
tains a transport about 50% larger than the Sverdrup
transport and about half of the actual transport in the
two layers. Thus, the deeper thermocline gives a cor-
rection in the proper sense.

The Eulerian mean circulation in these models is
driven by a combination of wind-stress curl and the
divergence of the eddy flux of potential vorticity. In
some circumstances this eddy effect can be rewritten
in terms of an eddy diffusion coefficient based on La-
grangian dispersion of fluid particles. Taylor (1915) first
proposed such an approach for nondissipative systems.
Bretherton (1966b) made use of the argument and pur-
sued the issue in subsequent papers. Rhines (1977) (see
also Rhines and Holland, 1979) has been developing
the theory for more general use. A parameterization of

the effect of oceanic eddy processes is extremely im-
portant, but it is too early to try to summarize the
theory.

Holland's (1978) paper describing the numerical so-
lutions gives more details. An important point is that
the free jet (Gulf Stream) is barotropically unstable in
this case and the baroclinic instability of the westward
return flows is weaker. The calculation is intended to
study processes, however, rather than the observed
phenomenon, so the relative strengths of the instabil-
ities of the model are not necessarily a prediction of
what happens in the ocean.

A linear stability analysis of the mean and instan-
taneous flows in the experiment was carried out by
Haidvogel and Holland (1978). Many of the unstable
features that emerge from the full experiment could be
correctly accounted for by linear theory using the flows
of the experiment. In some cases, however, use of the
instantaneous velocity fields led to better results than
did the use of time-averaged or mean flows. Since the
time scale of the former was sometimes shorter than
the time scale of the deduced unstable motions, the
significance of the results is not clear. One point made
by Haidvogel and Holland is that the Reynolds stresses
deduced from linear theory have the wrong sign.
Hence, finite-amplitude effects must change the inter-
actions in the developed flow. We have already re-
marked on the importance of large amplitudes in the
occlusion phenomenon.

Semtner and Holland (1978) compare the results of
the quasi-geostrophic model with the results obtained
from the more complete (and much more expensive)
runs using a five-level primitive-equation model. The
two-layer quasi-geostrophic model can simulate many
of the features of the latter, particularly if the param-
eters, such as the depth ratio, are adjusted for optimum
fit. Gill et al. (1974) and Flierl (1978) have also made
such comparative studies but for more restricted phys-
ical models.

Large-scale numerical models to determine clima-
tological oceanic behavior have been carried out by the
NOAA group at Princeton [see Bryan, Manabe, and
Pacanowski (1975) for earlier references]. These models
are sometimes run together with meteorological
models, allowing an interaction of ocean and atmos-
phere, and have the greatest potential scope of any of
the numerical experiments. Because of the grand scope
there is little opportunity to vary the parameters. As
the simpler, process-oriented models map out the more
realistic domain of parameter space, larger models
based on more optimal parameters may achieve a pre-
dictive level.
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Notes

1. Approximating the stratification by two layers is an ideal-
ization. Even a cursory examination of the data (Veronis, 1972)
shows that it is not possible to simulate the real stratification
with two layers each of constant density separated by an
interface that corresponds to the thermocline. The idealiza-
tion is useful, however, in developing an intuition about the
effects of stratification, and the results obtained are suggestive
as guides when one is working with more realistic models.

2. Flierl (1978) has analyzed a variety of flows using a two-
layer fluid, two vertical normal modes and many vertical
normal modes. In each case he has calibrated the parameters
in the two-layer and two-mode systems to obtain the best fit
with the results derived from the more complete system con-
taining many normal modes. He has shown that the best-fit
parameters for the two-layer system vary widely depending
on the phenomenon under investigation. For example, a study
of topographic effects in a two-layer model requires an optimal
choice of mean depths for the upper and lower layers quite
different from the optimal choice required for a study of non-
linear effects. The optimal parameters for a model using two
normal modes are much less sensitive to the process being
studied.

3. Fofonoff (1962b) and Kamenkovich (1973) give detailed
discussions of the general thermodynamic properties of sea
water. Lynn and Reid (1968) and Veronis (1972) discuss the
vertical stability characteristics of water columns. Small-scale
mixing in waters stratified by heat and salt is discussed by
Turner (1973a) and by Stem (1975a). The latter raises the ques-
tion of the possibly crucial role played by the salinity balance
in global circulation.

4. Phillips first transforms the system to Mercator coordi-
nates and then makes the ,-plane approximation. That leads
to a rectangular coordinate system with eastward distance
x = (a cos 4o0) and northward distance y = (a cos tol.
Therefore, in polar latitudes, where linear distance between
meridians decreases, consistency requires that a correspond-
ingly smaller range of latitude be chosen for an equivalent
measure of distance. The two expansions lead to the same
vorticity equation obtained at first order, but his first-order
momentum equations are symmetric whereas our set is not.

5. It is well known that Ekman developed the analysis to
explain Nansen's observation that ice floes in the Arctic
drifted at an angle of 45° to the right of the wind. Nansen, in
fact, had a good physical argument to describe the process
that Ekman subsequently quantified.

6. The present analysis is for an idealized case. In nature
other processes, such as lateral penetration from distant top-
ographic irregularities (Armi, 1978), may affect the vertical
structure near the bottom.

7. hi = (ghIfo)1'2 is the radius of deformation for a rotating
system with a free surface defined by Rossby (1938) as the
distance over which a disturbance will be transmitted by
longitudinal pressure forces before the (transverse) effect of
rotation takes over. It emerges naturally from (5.146) to (5.148)
for longitudinal (Kelvin) waves near a wall, say along the y
direction, with no transverse (U) flow. Then (5.147) and (5.148)
yield the dispersion relation t2 = gh,12 for long gravity waves
and (5.146) gives a transverse decay scale of Xt.

8. The parameter B = NH/foL, where L is the horizontal di-
mension, is frequently used with continuously stratified
fluids (N. A. Phillips, 1963) and may be preferred because it

contains only external parameters. The use of XlK2 here means
that we measure the wave scale K relative to the internal
radius of deformation X,.

9: Baroclinic instability of a westward current implies equa-
torward heat transport by the finite-amplitude field. Thus, the
required poleward heat transport in the ocean must be sup-
plied by the mean circulation.

10. Gall (1976) shows that the vertical structure of finite-
amplitude motions that appear to evolve from baroclinic in-
stability differs significantly from the structure of the unsta-
ble infinitesimal motions.

11. Gareth Williams (1978, 1979) has carried out extensive
numerical experiments to explain Jupiter's bands and has ob-
tained strong zonal jets from both barotropic and baroclinic
eddy fields.

12. The assumption of constant eddy coefficients is less se-
rious here than in the linear theories discussed earlier if the
numerical calculations use a grid that is fine enough to resolve
the eddies that arise from baroclinically unstable modes. The
effect of the eddies can be taken into account explicitly and
the eddy coefficients then include processes on even smaller
(and hopefully dynamically less important) scales.

13. As can be seen in the first of the figures, the driving in
this case is not very strong. Perhaps stronger motions in the
deeps could override some of the topographic effect, as Rhines
(1977) showed in the calculations reported above. This exper-
iment is one of the earlier eddy-resolving calculations and the
dependence on the parameters was only marginally explored.
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