
1

1.00 Lecture 5

More Data Types,
 Control Structures

Introduction to Methods

eading for next time: Big Java: 2.1-2.5, 8.8 R

Floating Point Anomalies
•  Anomalous floating point values:
–  Undefined, such as 0.0/0.0:

• 00.0/0.0 produces result NaN (Not a Number)
•  Any operation involving NaN produces NaN as result
•  Two NaN values cannot be equal
•  Check if number is NaN by using methods:

– Double.isNaN(double d) or Float.isNAN(float f)
–  Methods return boolean which is true if argument is NaN

–  Overflow, such as 1.0/0.0:
• 1.0/0.0 produces result Infinity
•  Same rules, results as for NaN:
 Double.isInfinite(double d)

–  Underflow, when result is smaller than smallest
possible number we can represent (absolute value)
•  Complex condition to detect, usually get zero result

2

Range of double precision numbers

-1.8*10308 +1.8*10308 0 -4.9*10-324 +4.9*10-324

Range that can be
represented

Range that can be
represented

Overflow Overflow Underflow

Example
ppublic class NaNTest {

 public static void main(String[] args) {

 double a=0.0, b=0.0, c, d;

 c= a/b;

 System.out.println("c: " + c);

 if (Double.isNaN(c))

 System.out.println(" c is NaN");

 d= c + 1.0;

 System.out.println("d: " + d);

 if (Double.isNaN(d))

 System.out.println(" d is NaN");

 if (c == d)

 System.out.println("Oops");

 else

 System.out.println("NaN != NaN");

 double e= 1.0, f;

 f= e/a;

 System.out.println("f: " + f);

 if (Double.isInfinite(f))

 System.out.println(" f is infinite");

 }

}

3

Example
ppublic class NaNTest {

 public static void main(String[] args) {

 double a=0.0, b=0.0, c, d;

 c= a/b;

 System.out.println("c: " + c); // c: NaN

 if (Double.isNaN(c))

 System.out.println(" c is NaN"); // c is NaN

 d= c + 1.0;

 System.out.println("d: " + d); // d: NaN

 if (Double.isNaN(d))

 System.out.println(" d is NaN"); // d is NaN

 if (c == d)

 System.out.println("Oops");

 else

 System.out.println("NaN != NaN"); // NaN != NaN

 double e= 1.0, f;

 f= e/a;

 System.out.println("f: " + f); // f: Infinity

 if (Double.isInfinite(f))

 System.out.println(" f is infinite"); // f is infinite

 }

}

Doubles Are Bad Loop Counters
/// Suppose we have a stepper motor we want to move from

// x= 0 to x= 10 in increments of 0.2

public class Counter {

 public static void main(String[] args) {

 int i= 0;

 double x= 0.0;

 while (x < 10.0) {

 x += 0.2;

 i++;

 if (i % 10 == 0 || i >= 48)

 System.out.println(x: " + x + " i: " + i);
 }

 }

}

4

Doubles Are Bad Loop Counters

 i : 10 x : 1.9999999999999998

 i : 20 x : 4.000000000000001 Notice accumulating,
 i : 30 x : 6.000000000000003 increasing error.
 i : 40 x : 8.000000000000004 Don t use floats or
 i : 48 x : 9.599999999999998 doubles as loop counte
 i : 49 x : 9.799999999999997

 i : 50 x : 9.999999999999996

 i : 51 x : 10.199999999999996

We went one iteration too many

rs

Exercise

Create a class InverseTest. In main():
–  Set xStart= 0.0, xEnd= 2.0, deltax= 0.1
– 

• 

Write a for loop on x from xStart to xEnd,
incrementing x by deltax each time
•  Use double TOLERANCE = 1E-14 to terminate the loop at

the correct point. Without TOLERANCE, it won t.
–  Output x
–  Compute and output 1/(xEnd - x)
–  See next slide for some of the code

What should happen at the end of the loop?
–  Does Java catch the zero divide?

If you have time:
–  Implement this with an int loop counter
–  Does this necessarily fix all the problems?

• 

• 

5

Exercise
ppublic class InverseTest {

 public static void main(String[] args) {

 double xStart= 0.0, xEnd= 2.0, deltax= 0.1;

 final double TOLERANCE= 1E-14;

 for (…) { // Your code here

 // Loop on x, which goes from xStart to xEnd

 // in steps of deltax

 // Output x

 // Compute and output 1/(xEnd-x)

 }

 }

}

Numerical Problems
Problem Integer Float, double

Zero divide Program terminates
(throws an exception)

Infinity

0/0 Program terminates
(throws an exception)

NaN (not a number)

Overflow No warning. Program
gives wrong results.

Infinity

Underflow Not possible No warning, set to 0
usually

Rounding,
accumulation errors

Not possible No warning. Program
gives wrong results.

Common, bad news cases

6

More on Control Structures

•  Three control structures in Java, or any
language:
–  Sequence: execute next statement

•  This is default behavior
–  Branching: if, else statements

•  If, else are the primary construct used
•  Switch statement used if many choices

–  Iteration: while, do, for loops
•  Additional constructs exist to terminate loops

prematurely

Terminating Iteration: Break
•  Break statement in for, while or do-while loops

transfers control to statement immediately after end
of loop

 public class BreakTest {

 public static void main(String[] args) {

 for (int i = 0; i < 6; i++) {

 if (i >= 3)

 break; // End loop

 System.out.println(i: +i);

 }

 System.out.println("Done");

 }

 }

// What will this print?

// If break in inner, nested loop, control is

// transferred to the outer loop

7

Terminating Iteration: Continue

•  Continue statement jumps to end of loop but
continues looping

public class ContinueTest {

 public static void main(String[] args) {

 for (int i = 0; i < 6; i++) {

 if (i < 4)

 continue; // Skip rest of loop

 System.out.println(i: +i);

 }

 System.out.println("Done");

 }

}

// What will this print?

// If continue in inner, nested loop, control stays

// in inner loop

Control exercise

•  Write a class LoopExercise:
–  main() method has:

•  Loop over int i going from 0 through 8
–  Make j = i2-5
–  If j negative, skip the rest of the loop
–  Find s= square root of j (use Math.sqrt(j);)
–  If s > 4, end the loop
–  Output i, j and s to see what s happening

•  Print Done at the end of the program
•  This is characteristic of, e.g., gearbox design problem:

–  Integer number of teeth
–  Double diameter
–  Minima and maxima for gear ratios, rpms, etc.
–  Loop to find feasible ones (skip rest of loop if infeasible)
–  If feasible, search for best (end the loop when found)

8

Java Methods

•  Methods are discrete units of behavior
–  You ve already used some:

•  JOptionPane.showInputDialog()
•  Math.sqrt()
•  System.out.println()

–  You ll write your own for the rest of the term, as part of
classes

–  Right now, you are writing classes but they only have a
main() method and they create no objects

–  We ll write additional methods in our classes
–  (And then create objects that have methods)
–  For now, our methods will have the keywords public
static in them
•  Treat them as an incantation for this and the next lecture

Java Methods

•  Methods are the interface or communications
between program components
–  They provide a way to invoke the same operation from

many places in your program, avoiding code repetition
–  They hide implementation details from the component

using the method
–  Variables defined within a method are not visible to

users of the method; they have local scope within the
method

–  The method cannot see variables in the component that
calls it either. There is logical separation between the
two, which avoids conflicts in variable names

9

Method example
ppublic class MethodExample {

 public static void main(String[] args) {

 double boxWeight= 50;

 double boxCube= 10;

 String boxID= Box A ;

 double density= getDensity(boxWeight, boxCube);

 System.out.println("Density: "+ density);

 printBox(boxWeight, boxCube); // Prints density 2nd time

 }

 public static double getDensity(double bw, double bc) {

 double result= bw/bc; // 'result' could be 'density'

 return result;

 }

 public static void printBox(double w, double c) {

 System.out.println("Box weight: "+w+" cube: "+c);

 System.out.println(" Density: "+getDensity(w,c));

// System.out.println(ID: +boxID); // No access to ID

 } // Won t compile!

}

Passing Arguments
 main(�){
 double boxWeight= 50;
 double boxCube=10;
 String boxID= Box A ;
 double density=getDensity
 (boxWeight, boxCube);
 �

double getDensity(double bw, double bc
{ // Method makes its own copy

 // of arguments bw and bc
double result= bw/bc;
return result;}

Argument 1 Argument 2Return value

Communi-
cation only
via arg list,
return value

Arguments
matched by

 position

Data type,)
meaning
must match

Explore with
debugger

boxWeight boxCube

bw bc

density

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

