1.00 Lecture 5

More Data Types,
Control Structures
Introduction to Methods

Reading for next time: Big Java: 2.1-2.5, 8.8

Floating Point Anomalies

« Anomalous floating point values:

— Undefined, such as 0.0/0.0:
* 0.0/0.0 produces result NaN (Not a Number)
* Any operation involving NaN produces NaN as result
* Two NaN values cannot be equal
* Check if number is NaN by using methods:
- Double.isNaN(double d) or Float.isNAN(float f)
— Methods return boolean which is true if argument is NaN
— Overflow, such as 1.0/0.0:
» 1.0/0.0 produces result Infinity
« Same rules, results as for NaN:
Double.isInfinite(double d)
— Underflow, when result is smaller than smallest
possible number we can represent (absolute value)
+ Complex condition to detect, usually get zero result

Range of double precision numbers

Range that can be Range that can be
represented represented
Overflow Underflow Overflow
-1.8*10308 -4.9*10324 0 +4.9*10-324 +1.8*10308

Example

public class NaNTest {
public static void main(string[] args) {

double a=0.0, b=0.0, c, d;
c= a/b;
System.out.printin("c:
if (Double.isNaN(c))
System.out.printin(" c is NaN");
d= c + 1.0;
System.out.printin("d: " + d);
if (Double.isNaN(d))
System.out.printin(" d is NaN");
if (c = d)
System.out.printin("oops");
else
System.out.printin("NaN != NaN");
double e= 1.0, f;
f= e/a;
system.out.printin("f: " +);
if (Double.isInfinite(f))
system.out.printin(" f is infinite");

+ C);

Example

public class NaNTest {
public static void main(string[] args) {
double a=0.0, b=0.0, c, d;
c= a/b;
System.out.printin("c:
if (Double.isNaN(c))
System.out.printin(" c is NaN"); // c is NaN
d= ¢ + 1.0;
System.out.printin("d: " + d); // d: NaN
if (Double.isNaN(d))
System.out.printin(" d is NaN"); // d is NaN
if (c == d)
System.out.printin("oOops");
else
System.out.printin("NaN != NaN"); // NaN != NaN
double e= 1.0, f;
f= e/a;
System.out.printin("f: " + f); // f: Infinity
if (Double.isInfinite(f))
system.out.printin(" f is infinite"); // f is infinite

+ C); // c: NaN

Doubles Are Bad Loop Counters

// Suppose we have a stepper motor we want to move from
// x= 0 to x= 10 in increments of 0.2

public class Counter {
public static void main(string[] args) {

int i= 0;
double x= 0.0;
while (x < 10.0) {
X += 0.2;
i++;
if (i%10==0 || 1>=48)
System.out.printIn(“x: " + x + " i: " + i);

Doubles Are Bad Loop Counters

i 10 x : 1.9999999999999998

'i : 20 x : 4.000000000000001 Notice accumulating,

'! : 30 x : 6.000000000000003 increasing error.

'! : 40 x : 8.000000000000004 Don’ t use floats or

'! : 48 x : 9.599999999999998 doubles as loop counters
i1 49 x : 9.799999999999997

i 50 x : 9.999999999999996

i@ 51 x : 10.199999999999996

We went one iteration too many

Exercise

* Create a class InverseTest. In main():
— Set xStart= 0.0, xEnd= 2.0, deltax= 0.1

— Write a ‘for’ loop on x from xStart to xEnd,
incrementing x by deltax each time

* Use double TOLERANCE = 1E-14 to terminate the loop at
the correct point. Without TOLERANCE, it won’t.

— Output x
— Compute and output 1/(xEnd - x)
— See next slide for some of the code
* What should happen at the end of the loop?
— Does Java catch the zero divide?
* If you have time:
— Implement this with an int loop counter
— Does this necessarily fix all the problems?

Exercise

public class InverseTest {
public static void main(string[] args) {

double xStart= 0.0, xEnd= 2.0, deltax= 0.1;

final double TOLERANCE= 1E-14;

for (.) {

// Your code here

// Loop on x, which goes from xStart to XxEnd

//
// output x

in steps of deltax

// Compute and output 1/(XEnd-x)

3
}
}
Numerical Problems
Problem Integer Float, double
Zero divide Program terminates | Infinity
(throws an exception)
0/0 Program terminates | NaN (not a number)
(throws an exception)
Overflow No warning. Program | Infinity
gives wrong results.
Underflow Ngt possible No warning, set to 0
usually
Rounding, Not possible No warning. Program
accumulation errors gives wrong results.

L—

Common, “bad news” cases

More on Control Structures

* Three control structures in Java, or any
language:
— Sequence: execute next statement
* This is default behavior
— Branching: if, else statements
* If, else are the primary construct used
» Switch statement used if many choices
— lteration: while, do, for loops

+ Additional constructs exist to terminate loops
‘prematurely’

Terminating lteration: Break

* Break statement in for, while or do-while loops
transfers control to statement immediately after end
of loop
public class BreakTest {

public static void main(String[] args) {
for (int i = 0; i < 6; i++) {

if (i >= 3)
break; // End Toop
(System.out.printin(“i: “+i);
}
System.out.println("Done™);

}
}
// what will this print?
// If “break” in inner, nested loop, control is
// transferred to the outer loop

Terminating Iteration: Continue

+ Continue statement jumps to end of loop but
continues looping

public class ContinueTest {
public static void main(string[] args) {
for (int i =0; 1 < 6; i++) {
if (1 < 4)
continue; // Skip rest of Tloop

(system.out.printIn(“i: “+i);
}

System.out.printin("Done");

}

}
// what will this print?
// If “continue” in inner, nested loop, control stays

// 1in inner Tloop

Control exercise

* Write a class LoopExercise:

— main() method has:

* Loop over int i going from 0 through 8
— Make j = i2-5
— If j negative, skip the rest of the loop
— Find s= square root of j (use Math.sqrt(j);)
— If s > 4, end the loop
— Output i, j and s to see what’ s happening

* Print “Done” at the end of the program

* This is characteristic of, e.g., gearbox design problem:
— Integer number of teeth
— Double diameter
— Minima and maxima for gear ratios, rpms, etc.
— Loop to find feasible ones (skip rest of loop if infeasible)
— If feasible, search for best (end the loop when found)

Java Methods

* Methods are discrete units of behavior

You’ ve already used some:
» JOptionPane.showlnputDialog()
* Math.sqrt()
» System.out.printin()

You’ Il write your own for the rest of the term, as part of
classes

Right now, you are writing classes but they only have a
main() method and they create no objects

We' Il write additional methods in our classes

(And then create objects that have methods)

For now, our methods will have the keywords public
static inthem
« Treat them as an incantation for this and the next lecture

Java Methods

* Methods are the interface or communications
between program components

They provide a way to invoke the same operation from
many places in your program, avoiding code repetition

They hide implementation details from the component
using the method

Variables defined within a method are not visible to
users of the method; they have local scope within the
method

The method cannot see variables in the component that
calls it either. There is logical separation between the
two, which avoids conflicts in variable names

Method example

public class MethodExample {
public static void main(string[] args) {
double boxweight= 50;
double boxCube= 10;
String boxID= “Box A”;
double density= getDensity(boxweight, boxCube);
System.out.printin("Density: "+ density);
printBox(boxweight, boxCube); // Prints density 2™ time
}
public static double getDensity(double bw, double bc) {
double result= bw/bc; // 'result' could be 'density'
return result;
}
public static void printBox(double w, double c) {
System.out.printin("Box weight: "+w+" cube: "+c);
System.out.printin(" Density: "+getDensity(w,c));
// System.out.printin(“ ID: “+boxID); // No access to ID
} // won’t compilel!
}

Passing Arguments
main(...){
double boxWeight= 50;
double boxCube=10;
String boxID= “Box A”;
double density=getDensity
eight, boxCube);

Communi-
cation only
via arg list,
return value

density boxWeight boxCube Arg u ments
matched by
Return value Argument 1Argument2 sition
double getQensity(double bw, doub bc) Data type,
{ I/l Mefhod makes its own copy mez?mgmh
u

Il of arguments bw and bc
double regult= bw/bc;

return result;} Explore with

debugger

MIT OpenCourseWare
http://ocw.mit.edu

1.00/1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

