
2/11/12

1

1.00 Lecture 33

Numerical Methods:
Root Finding

No .java files to upload in today s class; create
a text file or .java file with roots tool results and
upload it as your active learning solution

Reading for next time: Big Java 14.1-14.3

Root Finding in Nonlinear Equations
•  Two cases:

–  One dimensional function: f(x)= 0
–  Systems of equations (F(X)= 0), where

•  X and 0 are vectors and
•  F is an n-dimensional vector-valued function. E.g.,
•  x0x 2

1 + 3x1 = 20
•  x 3

0 – x 2
1 +x0x1= 5

•  We address only the 1-D function
–  In 1-D, we can bracket the root between bounding values
–  In multidimensional case, it s impossible to bracket the root

(as we see on the next slide)
•  (Almost) all root finding methods are iterative

–  Start from an initial guess
–  Improve solution until convergence limit satisfied
–  Only smooth 1-D functions have convergence assured

2/11/12

2

Solve f(x,y)=0 and g(x,y)=0

If n>2, find intersection of n unrelated zero contour hypersurfaces of dimension n-1

From Numerical Recipes

Root Finding Methods

•  Elementary (pedagogical use only):
–  Bisection
–  Secant

•  Practical (using the term advisedly):
–  Brent s algorithm (if derivative unknown)
–  Newton-Raphson (if derivative known)
–  Laguerre s method (polynomials)
–  Newton-Raphson (for n-dimensional problems)

•  Only if a very good first guess can be supplied
•  See Numerical Recipes in C for methods

–  Library available on

•
 

Why is this so hard?
–
 

The computer can t see the functions. It only has
function values at a few points. You d find it hard to solve
equations with this little information also. Exercise
(0 to 20).

Image removed due to copyright restrictions. Figure 9.6.1 Solution of two nonlinear equations in two unknowns.
From Press, William, Saul Teukolsky, et al. Numerical Recipes in C: The Art of Scientific
Computing. Cambridge University Press, 1992. See: http://www.nrbook.com/a/bookcpdf.php.

Athena is MIT's UNIX-based computing
environment. OCW does not provide access to it.
Can translate or link to Java

http://www.nrbook.com/a/bookcpdf.php
asi122
Line

2/11/12

3

Root Finding Preparation
Before using root finding methods: • 
–  Try to solve the equation(s) analytically. May be possible

•  Use Mathematica, etc. to check for analytical solutions
–  Graph the equation(s): Matlab, etc.

•  Are they continuous, smooth; how differentiable?
–  Linearize the equations and use matrix methods to get

approximate solutions
–  Approximate the equations in other ways and solve

analytically
–  Bracket the ranges where roots are expected

•  For fun, look at f (x) = 3x2 + (1/π 4) ln[(π − x)2]+1
–  Plot it at 3.13, 3.14, 3.15, 3.16; f(x) is around 30
–  Well behaved except at x= ππ
–  Dips below 0 in interval x= π +/- 10-667

–  This interval is less than precision of doubles
•  You ll never find these two roots numerically

–  This is in Pathological.java: experiment with it later

Bisection
ction •  Bise

–  Interval passed as arguments to method must be
known to contain at least one root

–  Given that, bisection always succeeds
•  If interval contains two or more roots, bisection finds one
•  If interval contains no roots but straddles a singularity,

bisection finds the singularity
–  Robust, but converges slowly
–  Tolerance should be near machine precision for

double (about 10-15)
•  When root is near 0, this is feasible
•  When root is near, say, 1010 ,this is difficult: scale

–  Numerical Recipes, p.354 gives the basic method
•  Checks that a root exists in bracket defined by arguments
•  Checks if f(midpoint) == 0.0 (within some tolerance)
•  Has limit on number of iterations, etc.

2/11/12

4

Bisection
x1 x2 m

f(x)= x2 - 2

-8 -6 -4 -2 0 2 4 6 8

f(x1)*f(m) > 0, so no root in [x1, m]

f(m)*f(x2) < 0, so root in [m, x2]. Set x1=m

Assume/analyze only a single root in the interval (e.g., [-4.0, 0.0])

Bisection
x1 x2 m

f(x)= x2 - 2

-8 -6 -4 -2 0 2 4 6 8

f(m)*f(x2) > 0, so no root in [m, x2]

f(x1)*f(m) < 0, so root in [x1, m]. Set x2= m

Continue until (x2-x1) is small enough

2/11/12

5

Function Passing Again
// MathFunction is interface with one method

public interface MathFunction {

 public double f(double x);

}

// Quadratic implements the interface

public class Quadratic implements MathFunction {

 public double f(double x) {

 return x*x - 2;

 }

}

Bisection- Simple Version
public class BisectSimple {

 public static double bisect(MathFunction func, double x1,

 double x2, double epsilon) {

 double m;

 // Rare case of double loop variables being ok

 for (m= (x1+x2)/2.0; Math.abs(x1-x2) > epsilon;

 m= (x1+x2)/2.0)

 if (func.f(x1)*func.f(m) <= 0.0)

 x2= m; // Use left subinterval

 else

 x1= m; // Use right subinterval

 return m;

 }

 public static void main(String[] args) {

 double root= BisectSimple.bisect(new Quadratic(), -1.0, 8.0, 1E-15);

 System.out.println("Root: " + root);

 System.out.println(Sqrt: + -Math.sqrt(2.0)); // As a check

 }

}

2/11/12

6

Bisection- NumRec Version
ppublic class RootFinder { // NumRec, p. 354

 public static final int JMAX= 100; // Max no of bisectio

 public static final double ERR_VAL= -10E10;

 public static double rtbis(MathFunction func, double x1,

 double x2, double xacc) {

 double dx, xmid, rtb;

 double f= func.f(x1);

 double fmid= func.f(x2);

 if (f*fmid >= 0.0) {

 System.out.println("Root must be bracketed");

 return ERR_VAL; }

 if (f < 0.0) { // Orient search so f>0 lies at x+dx

 dx= x2 - x1;

 rtb= x1; }

 else {

 dx= x1 - x2;

 rtb= x2; }

 // All this is preprocessing ; loop on next page

ns

Bisection- NumRec Version, p.2
 for (int j=0; j < JMAX; j++) {

 dx *= 0.5; // Cut interval in half

 xmid= rtb + dx; // Find new x

 fmid= func.f(xmid);

 if (fmid <= 0.0) // If f still < 0, move

 rtb= xmid; // left boundary to mid

 if (Math.abs(dx) < xacc || fmid == 0.0)

 return rtb;

 }

 System.out.println("Too many bisections");

 return ERR_VAL;

 }

 // Invoke with same main() but use RootFinder.rtbis()

 // This can be faster than the simple version,

 // requiring fewer function evaluations

 // It s also more robust, checking brackets, limiting

 // iterations, and using a better termination criterion.

 // Error handling should use exceptions (we don t here)

 // Can use as black box , like classes in java.util, etc.

2/11/12

7

Exercise: Bisection

•  Download Roots
•  Use the bisection application in Roots to explore

its behavior with the 5 functions
–  Choose different starting values (brackets) by clicking at

two points along the x axis; red lines appear
–  Then just click anywhere. Each time you click, bisection

will divide the interval; a magenta line shows the middle
–  When it thinks it has a root, the midline/dot turns green
–  The app does not check whether there is a zero in the

bracket, so you can see what goes wrong�
–  Record your results; note interesting or odd behaviors
–  Roots is persnickety:

•  It throws away any segment with f*f >=0. It looks at both sides.

Newton s Method
•  Based on Taylor series expansion:

f (x+δ) ≈ f (x)+ f '(x)δ + f ' '(x)δ 2 / 2+ ...
–  For small increment and smooth function,

higher order derivatives are small and f (x +δ) = 0
implies δ = − f (x) / f ' (x)

–  If high order derivatives are large or first
derivative is small, Newton can fail miserably

–  Converges quickly if assumptions met
–  Has generalization to n dimensions that is one

of the few available
–  See Numerical Recipes for safe Newton-

Raphson method, which uses bisection when
first derivative is small, etc.
•  rtsafe, page 366; Java version in your download

2/11/12

8

Newton s Method

f(x)

f (x)

Initial guess of root

Newton s Method Pathologies
f (x) ~ 0

f(x)

Initial guess of root

1

Infinite cycle

2

2/11/12

9

Newton

public class Newton { // NumRec, p. 365

 public static double newt(MathFunctionNewton func, double a,

 double b, double epsilon) {

 double guess= 0.5*(a + b); // No real bracket, only guess

 for (int j= 0; j < JMAX; j++) {

 double fval= func.fn(guess);

 double fder= func.fd(guess);

 double dx= fval/fder;

 guess -= dx;

 System.out.println(guess);

 if ((a - guess)*(guess - b) < 0.0) {

 System.out.println("Error: out of bracket");

 return ERR_VAL; // Conservative

 }

 if (Math.abs(dx) < epsilon)

 return guess;

 }

 System.out.println("Maximum iterations exceeded");

 return guess;

 }

s Method

Newton s Method, p.2
 public static int JMAX= 100;

 public static double ERR_VAL= -10E10;

 public static void main(String[] args) {

 double root= Newton.newt(new Quad(), -1.0, 8.0, 1E-15);

 System.out.println("Root: " + root);

 }

} // End Newton

public class Quad implements MathFunctionNewton {

 public double fn(double x) {

 return x*x - 2;

 }

 public double fd(double x) {

 return 2*x; } }

public interface MathFunctionNewton {

 public double fn(double x); // Function

 public double fd(double x); } // 1st derivative

2/11/12

10

Exercise
•  Use Newton s method application in

Roots to experiment with the 5 functions
–  Choose starting guess by clicking at one point along the

x axis; red line appears
–  Then just click anywhere. When you click, a magenta

tangent line displays
–  Click again, and the intersection of tangent and x axis is

found, and the guess (red line) moves
–  When it thinks it has a root, the line/dot turns green
–  The app does not check whether there is a zero in the

limits, so you can see what goes wrong�
–  Record your results; note interesting or odd behaviors

Secant Method
•  For smooth functions:

–  Approximate function by straight line
–  Estimate root at intersection of line with x axis

•  Secant method:
–  Uses most recent 2 points for next approximation line
–  Does not keep root bracketed
–  False position variation keeps root bracketed, but is slower

•  Brent s method is better than secant and should be the
only one you really use:
–  Combines bisection, root bracketing and quadratic rather than

linear approximation
–  See p. 360 of Numerical Recipes. Java version is in your

download.

2/11/12

11

Secant Method

b

1

a

Bracket (contains zero)

Secant Method

1

b

a

2/11/12

12

Secant Method

Both points defining new line
are above x axis and thus don t
bracket the root

1

2

a

b

c

Secant Method

1

2

a

b

c

d

2/11/12

13

Secant Method

Now the points bracket the root
(above, below x-axis) but this
isn t required

1

2

3

a

b

c

d

Secant Method

2

3

1

a

b

c

d

e

2/11/12

14

Exercise
•  Use secant method application in Roots to

experiment with the 5 functions
–  Choose different starting values by clicking at two

points along the x axis; red and orange lines appear
–  Then just click anywhere. When you click, a magenta

secant line displays
–  Click again, and the intersection of secant and x axis is

found, and the right and left lines (red and orange lines)
move

–  When it thinks it has a root, the midline/dot turns green
–  The app does not check whether there is a zero in the

limits, so you can see what goes wrong�
–  Record your results; note interesting or odd behaviors

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

