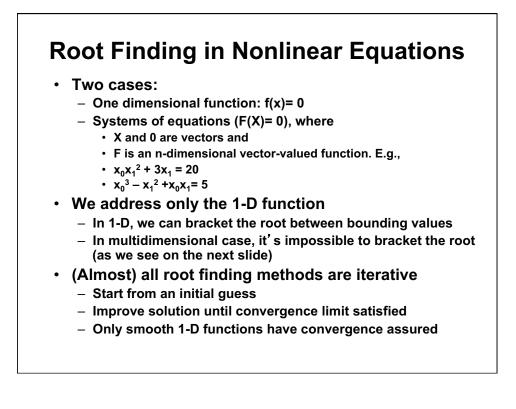
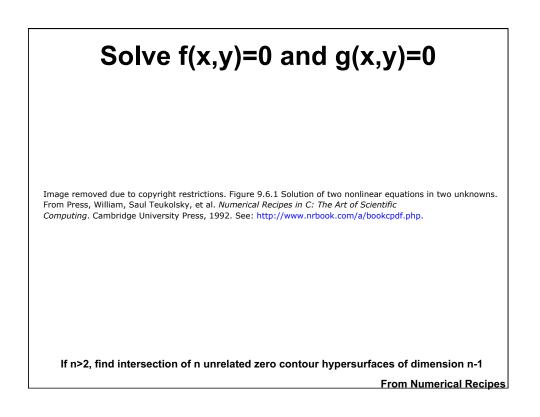
1.00 Lecture 33

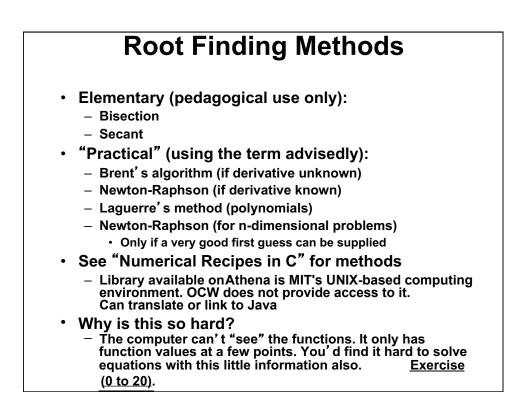
Numerical Methods: Root Finding

No .java files to upload in today's class; create a text file or .java file with roots tool results and upload it as your active learning solution

Reading for next time: Big Java 14.1-14.3

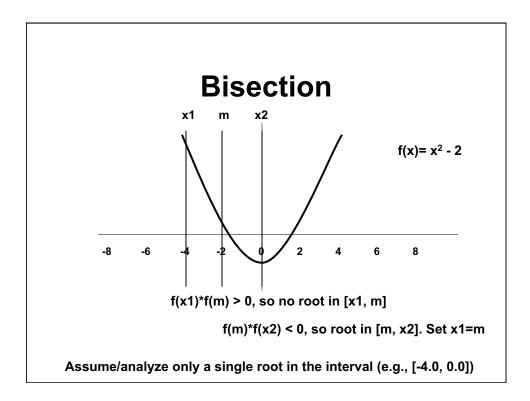


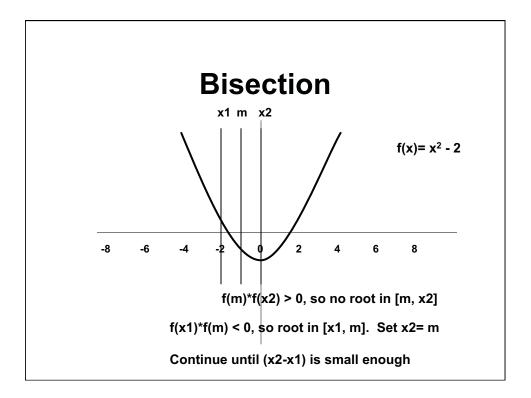


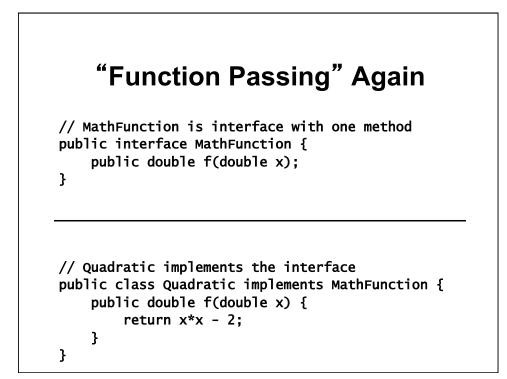


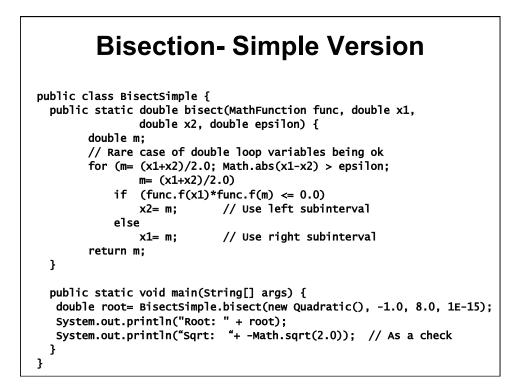
- Before using root finding methods:
 - Try to solve the equation(s) analytically. May be possible
 Use Mathematica, etc. to check for analytical solutions
 - Graph the equation(s): Matlab, etc.
 - Are they continuous, smooth; how differentiable?
 - Linearize the equations and use matrix methods to get approximate solutions
 - Approximate the equations in other ways and solve analytically
 - Bracket the ranges where roots are expected
- For fun, look at $f(x) = 3x^2 + (1/\pi^4) \ln[(\pi x)^2] + 1$
 - Plot it at 3.13, 3.14, 3.15, 3.16; f(x) is around 30
 - Well behaved except at x= π
 - Dips below 0 in interval x= π +/- 10⁻⁶⁶⁷
 - This interval is less than precision of doubles
 You'll never find these two roots numerically
 - This is in Pathological.java: experiment with it later

Bisection
 Bisection Interval passed as arguments to method must be known to contain at least one root Given that, bisection "always" succeeds If interval contains two or more roots, bisection finds <u>one</u> If interval contains no roots but straddles a singularity, bisection finds the singularity
 Robust, but converges slowly Tolerance should be near machine precision for double (about 10⁻¹⁵) When root is near 0, this is feasible When root is near, say, 10¹⁰, this is difficult: scale Numerical Recipes, p.354 gives the basic method Checks that a root exists in bracket defined by arguments Checks if f(midpoint) == 0.0 (within some tolerance) Has limit on number of iterations, etc.



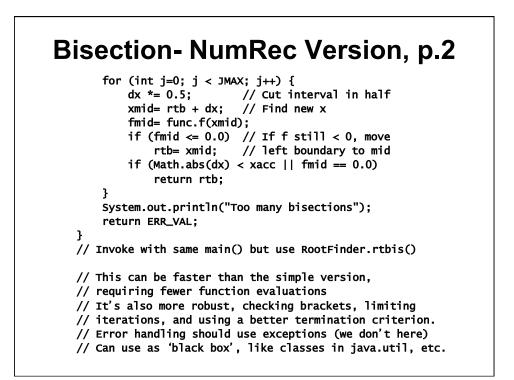






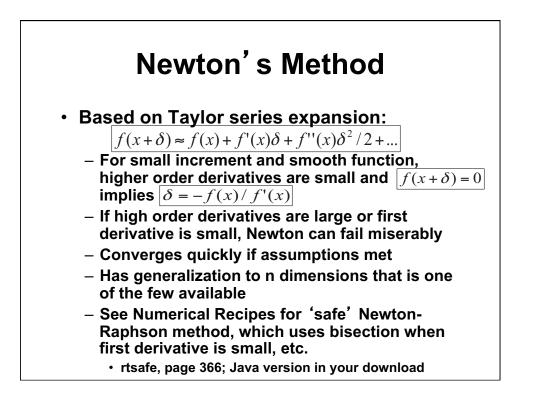
Bisection- NumRec Version

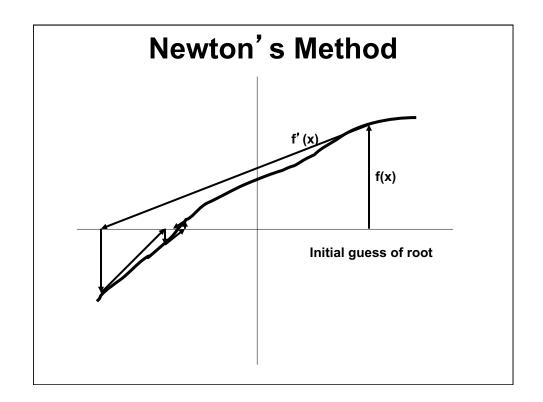
public class RootFinder { // NumRec, p. 354 public static final int JMAX= 100; // Max no of bisections public static final double ERR_VAL= -10E10; public static double rtbis(MathFunction func, double x1, double x2, double xacc) { double dx, xmid, rtb; double f= func.f(x1); double fmid= func.f(x2); if (f*fmid >= 0.0) { System.out.println("Root must be bracketed"); return ERR_VAL; } if (f < 0.0) { // Orient search so f>0 lies at x+dx dx= x2 - x1; rtb= x1; } else { dx= x1 - x2; rtb= x2; } // All this is 'preprocessing'; loop on next page

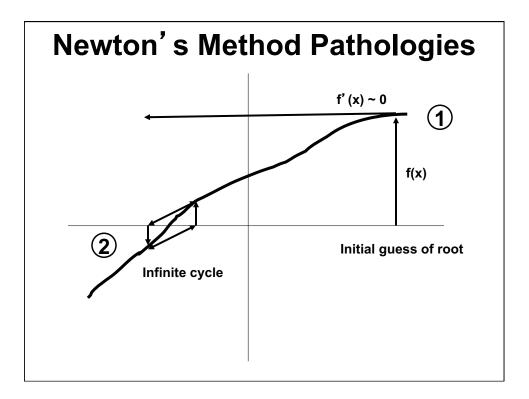


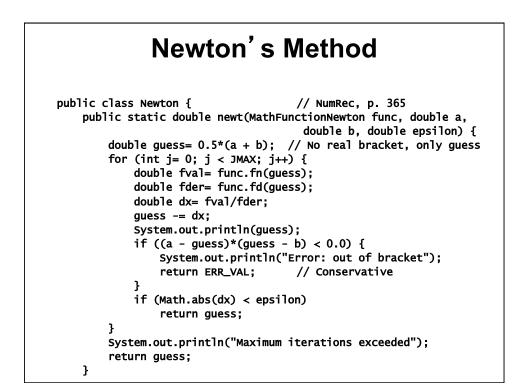
Exercise: Bisection

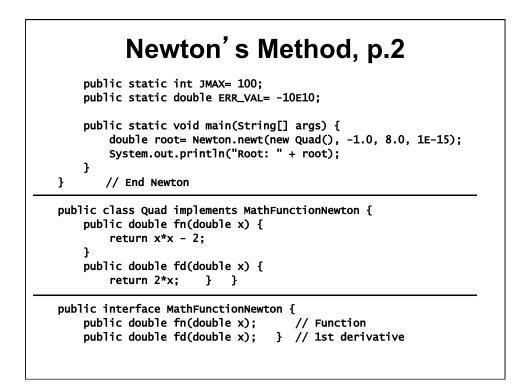
- Download Roots
- Use the bisection application in Roots to explore its behavior with the 5 functions
 - Choose different starting values (brackets) by clicking at two points along the x axis; red lines appear
 - Then just click anywhere. Each time you click, bisection will divide the interval; a magenta line shows the middle
 - When it thinks it has a root, the midline/dot turns green
 - The app does not check whether there is a zero in the bracket, so you can see what goes wrong...
 - Record your results; note interesting or odd behaviors
 - "Roots" is persnickety:
 - It throws away any segment with f*f >=0. It looks at both sides.







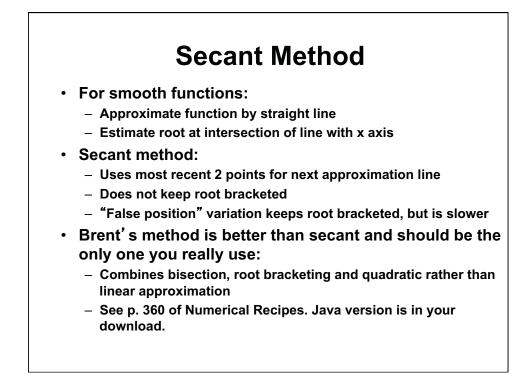


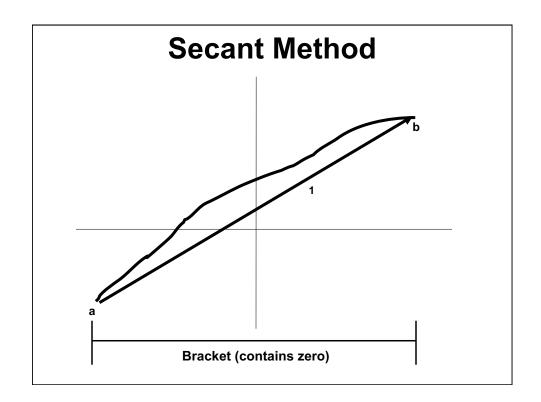


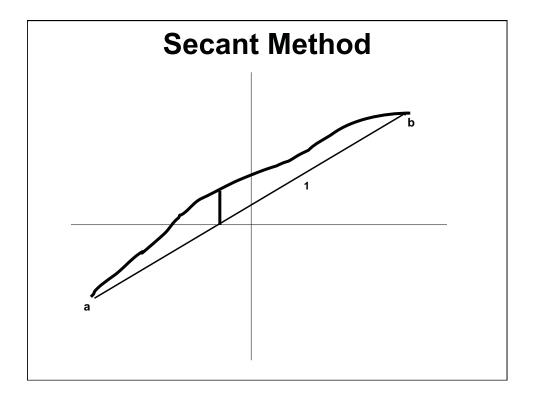
Exercise

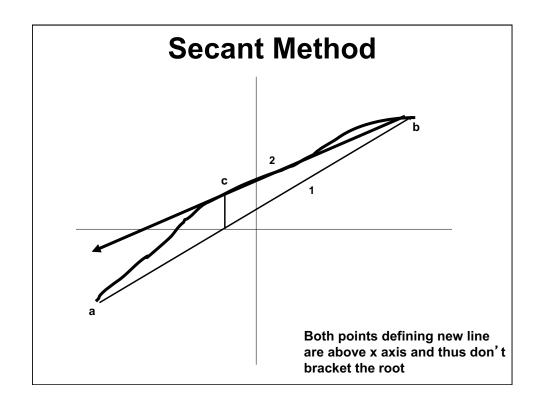
• Use Newton's method application in Roots to experiment with the 5 functions

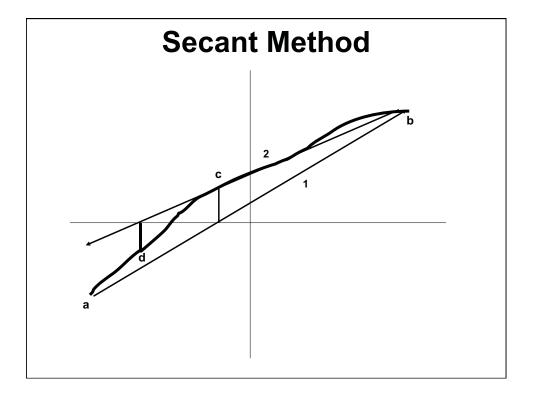
- Choose starting guess by clicking at one point along the x axis; red line appears
- Then just click anywhere. When you click, a magenta tangent line displays
- Click again, and the intersection of tangent and x axis is found, and the guess (red line) moves
- When it thinks it has a root, the line/dot turns green
- The app does not check whether there is a zero in the limits, so you can see what goes wrong...
- Record your results; note interesting or odd behaviors

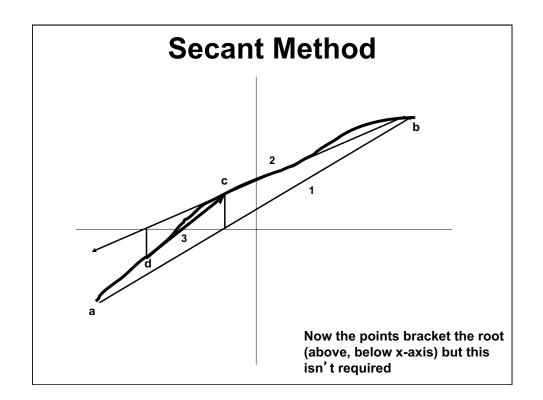


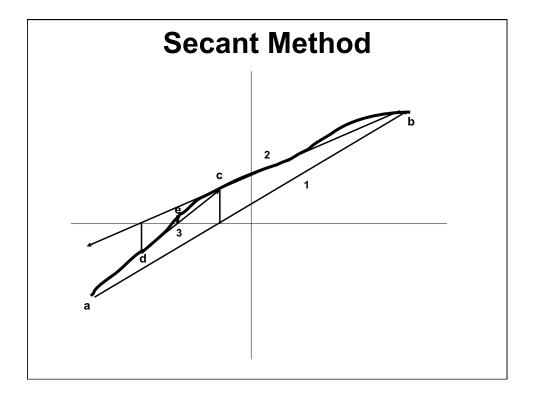












Exercise

- Use secant method application in Roots to experiment with the 5 functions
 - Choose different starting values by clicking at two points along the x axis; red and orange lines appear
 - Then just click anywhere. When you click, a magenta secant line displays
 - Click again, and the intersection of secant and x axis is found, and the right and left lines (red and orange lines) move
 - When it thinks it has a root, the midline/dot turns green
 - The app does not check whether there is a zero in the limits, so you can see what goes wrong...
 - Record your results; note interesting or odd behaviors

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.