
 

 

 
 

 

 
 

1.00 Lecture 23 

Input/Output 

Introduction to Streams 


Exceptions 


Reading for next time: Big Java 19.3-19.4 

Streams 

•	 Java can communicate with the outside 
world using streams 

•	 Picture a pipe feeding data into your Java 
program 
–	 Where can the data come from? 
– Keyboard input, files, other programs, network

sockets, other streams 
•	 Picture a pipe leading out of your Java 

program 
–	 Where can the data go? 
– Screen output, files, other programs, network

sockets, other streams 
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Java I/O 
•	 I/O -- input/output, how you get data into

and out of your program 
•	 Streams abstract away the details of I/O 
– have the same methods whatever your data

source or destination 
•	 Streams work in one direction only 
– input streams control data coming into

program from some source 
– output streams control data leaving the

program for some destination 
– if you want to both read and write data, you'll

need two separate streams 

Java Stream Classes 

•	 Java provides a hierarchy of classes for
streams (in java.io.*) 
– Abstract, top-level classes that define general

methods for different types of streams 
•	 InputStream -- reads bytes (binary data) 
•	 OutputStream -- writes bytes 
•	 Reader -- reads characters (text data) 
•	 Writer -- writes characters 

– Many, many subclasses implement streams 
•	 Some are tailored for specific data sources or

destinations, e.g., 
– FileReader reads chars from a file 

• Some add functionality to existing streams 
–	 BufferedReader buffers input into lines for more

efficiency 
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System.out 

• What is System.out.println()? 
– System is a special class that is automatically

instantiated once when your program runs 
–	 It has three static member variables 

• in -- InputStream (connected to terminal input) 
• out -- PrintStream (connected to terminal output) 
•	 err -- PrintStream (connected to error output -- 

screen or special window in IDE) 
– println() is an overloaded method in 

PrintStream that takes a String or primitive 
data type as an argument, prints it to a stream
and adds a line termination character. 

File 
Reader 

Buffered 
Reader 

Stream Pipeline 

• We can pipeline streams to get their combined 
characteristics 

• FileReader reads characters from a text file 
• BufferedReader buffers the character stream 

for efficiency and allows you to read line by line 
(readLine()) 
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Exercise 1: Download and Run 
import java.io.*; 

public class SimpleReader { 

    public static void main(String[] args) { 


try { 

            String eol = System.getProperty( "line.separator" ); 

FileReader fin = new FileReader("TestIn.txt"); 

            BufferedReader b = new BufferedReader(fin); 

            FileWriter fout = new FileWriter("TestOut.txt"); 

            BufferedWriter bout= new BufferedWriter(fout); 

            String currentLine; 

            int i = 1; 

            while ((currentLine = b.readLine()) != null) { 

bout.write((i++) + " " + currentLine + eol);} 

b.close(); 

bout.close(); 

            System.out.println("Done"); 

} 

        catch (FileNotFoundException ef) { // Later in lecture 

            System.out.println("File not found");} 

        catch (IOException ei) { 

            System.out.println("IO Exception"); } 

} } 

Exercise 2 
• Create new text file of 10 lines for your program to read 

–	 File-> New -> File, name it ‘TestIn1.txt’ 
–	 Modify SimpleReader to read the new file and write TestOut1.txt 
–	 After the program runs, hit Refresh (F5) in Eclipse Explorer to

see the file 
–	 Try to read a file that doesn’t exist. 

• Change the while statement to (a bad idea): 
while (b.readLine() != null) { 

fout.write((i++) + " " + b.readLine() + "\n");} 

–	 What happens, and why? (It’s a common error) 
• “Accidentally” write to your input text file (e.g. TestIn.txt) 

–	 Make a copy of your input text file first. What happens? 
• Other notes: 

–	 Always check for end of file (EOF): 
•	 readLine() returns null 

–	 Always close your streams when done: saves system resources,
avoids file corruption if system crashes 
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The 3 Flavors of Streams 

In Java, you can read and write data to a file: 
–	 as text using FileReader and FileWriter 
– as binary data using DataInputStream 

connected to a FileInputStream and as a 
DataOutputStream connected to a 
FileOutputStream 

– as objects using an ObjectInputStream 
connected to a FileInputStream and as an 
ObjectOutputStream connected to a 
FileOutputStream 

Parsing 
•	 readLine() is ok if you want to read whole lines 
•	 read() is ok if you want to read character by 

character 
•	 What if you have structured data? 

–	 meaning is dependent on position or formatting 
–	 comma-separated values (or other delimiters/separators) 

•	 Reading this data in a meaningful way is called 
parsing 
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Parsing 
•	 When you parse (tokenize) a file, you are looking

for tokens 
–	 Sequences of one or more characters that "belong"

together 
–	 Sometimes tokens are separated by delimiters ( ",", "\t",

" ", "\n"), sometimes not 
•	 Three ways to parse in Java 

–	 Use the split() method in String class with regular
expressions. Simplest way to parse simple delimited
files. 

–	 StreamTokenizer : works with Stream, reads token by
token, treats delimiters as tokens, recognizes “words” 
and “numbers” 

–	 Scanner : default use is simple, works with files and
Strings 

String’s split() Method 

•	 Call split() on the String you want to parse and get
back an array of Strings parsed into “tokens”. 

•	 Argument is the delimiter you want to use. 
•	 Characters []\^$.|?*+() have special meaning in 
split() and must be escaped to use them as a 
delimiter, e.g., "\." to use a period as a delimiter. 

•	 The String “\\s” as an argument to split() means 
use any whitespace (" ","\t","\n"…) as a delimiter. 
–	 “\\s+” means use any succession of whitespace characters

as a (single) delimiter.
String s = “James Bond,3-0007,10-250";

String[] parts = s.split(",");

// parts = { "James Bond", "3-0007", “10-250"}; 
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Exercise 3 

•	 Write a new class called WordCount,based on 
SimpleReader above. 

•	 Read TestIn just as before, but instead of writing 
it back out, use split() to count the number of 
"words" on each line. 

•	 Sum them as you read the file, and output the 
word count at the end. 

Errors 

•	 Error is any condition that produces
unwanted or incorrect results. Strategies
to deal with errors: 
– Anticipate where errors might occur, and

program to prevent them if possible 
• We do this 99% of the time 

– Catch errors as they occur; possibly reroute
execution flow, set alternate values, show 
messages 
• You may not anticipate everything that can go wrong 
• Some errors may be out of your control (e.g. input) 
• You still need to handle these, however 

– Java exceptions are how we handle this 

second group of errors 
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Exceptions 

•	 Exceptions are how Java handles errors 
that the method in which the error occurs 
can’t handle 
– Exceptions are objects that are thrown 

(created and sent to calling methods) in 
response to runtime errors 

– Runtime errors can occur from attempting 
illegal operations, invalid input, corrupted or 
unavailable resources, system problems, … 

Exceptions: Try, throw, catch 

•	 The Java exception mechanism has three elements: 
–	 Throw (what a method does) 

•	 If method detects error that it cannot handle, 
•	 Method throws an exception 

–	 Method returns either its usual return value or an exception object 

–	 Try block (what the caller of the method does first) 
•	 Called methods that may throw an exception are placed in a try 

block (defined by curly braces) in the calling method 
–	 A regular return value continues program flow as usual. 
–	 An exception return causes execution to go to the catch block. 

– Catch blocks follow try blocks (what caller does on error) 
•	 Each block contains an exception handler of a given type 
•	 Exception objects have types; different types can be handled by 

different catch blocks, each with logic specific to the exception 
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Catching an exception 
import javax.swing.*; 

public class BadInput { 

public static void main(String[] args) { 

while (true) { 

String answer = JOptionPane.showInputDialog("Enter an 

integer (0 to quit)"); 

int intAnswer = -1; // Must declare outside try block 

try { // Try block 

    intAnswer = Integer.parseInt(answer); // Throw 

            System.out.println(intAnswer);  // Regular flow 

} catch (NumberFormatException e) {  // Catch block 

    JOptionPane.showMessageDialog(null, "Not an integer"); 

} 

if (intAnswer == 0) 

break; 

} 

System.exit(0); 


} 

} 

Exercise 4 
•	 Download BadInput from the Web site 
•	 Comment out: 

–	 Try block (‘try’ and the curly braces; leave intAnswer = 
…), 

–	 Catch block (remove the entire block, including code) 
–	 Save/compile 

•	 Enter non-integer input. See what happens. 
–	 What happens if the user types a non-integer, “Cathy”, for 

example? 
–	 Is this what we’ve been doing so far in 1.00 for input? 

•	 Then remove the comments, restoring the try/catch 
blocks 
–	 Save/compile 
–	 Enter non-integer input. 
–	 What happens? 
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Exceptions, Streams, Inheritance 

•	 Since exceptions are objects, exception classes 
may use inheritance. FileNotFoundException 
is a subclass of IOException. 

•	 When an error is detected, Java will create and 
throw a new instance of an appropriate type of 
exception. 

•	 The first catch statement matching the exception 
class or one of its superclasses is executed. 
–	 The order of the catch blocks matters 

Exception Inheritance Example 
try	 // From exercise 1 
{ 
// Read file. If bad file, throw exception 
// If file ok, continue execution as usual 
FileReader fin = new FileReader( “TestIn.txt" ); 
// Other statements follow, but need value of “fin”
 // They can’t be executed if the line above didn’t work 
} 
catch ( FileNotFoundException ef ) 
{ 
// Handle not finding the file (bad file name, no permission…) 

} 
catch ( IOException ei ) 
{ 
// Handle any other read error (disk crashed…) 

} 

// If we reversed these catch blocks, the program 
// would not compile (unreachable code) 
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Checked vs. Unchecked Exceptions 
•	 Java distinguishes between checked and 

unchecked exceptions. 
•	 Checked exceptions are those which the 

programmer must handle at runtime, such as a
FileNotFoundException. 
–	 These are generated by user, not programmer, error. 
–	 Example: All IOExceptions are checked exceptions. 
–	 If you call a method that can throw a checked exception, 

you must put the method call in a try block and catch the 
exception. 

•	 You do not have to handle unchecked exceptions 
–	 Unchecked exceptions are the result of programmer error, 

so the best way of handling them is to fix the program 
–	 Examples: NullPointerException, 

ArrayIndexOutOfBoundsException. 


When to Use Exceptions 
•	 Why do we need exceptions? 

–	 Usually errors are caught in a low-level routine: file reader or 
math function that is very general-purpose and has no idea 
whether the error is serious or not 

–	 The caller (user) of that routine is the one who knows the 
context of the error and can decide the best course of action. 
After an error in an I/O reader: 
•	 A mangled Tweet message can be ignored 
•	 A mangled turn left message to an aircraft cannot be ignored 

•	 If you can fix an error locally, don’t use an exception 
–	 Exceptions are used when the method can’t fix the error itself 

•	 In 1.00, your primary use of exceptions will be in 
stream I/O and sensor I/O, where their use is required 
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