
 

 

 
 

 

 
 

1.00 Lecture 23

Input/Output

Introduction to Streams

Exceptions

Reading for next time: Big Java 19.3-19.4

Streams

•	 Java can communicate with the outside
world using streams

•	 Picture a pipe feeding data into your Java
program
–	 Where can the data come from?
– Keyboard input, files, other programs, network

sockets, other streams
•	 Picture a pipe leading out of your Java

program
–	 Where can the data go?
– Screen output, files, other programs, network

sockets, other streams

1

 

 
 

 
 

 

 

 

 

 
 
 
 

 
 

 
 

 

Java I/O
•	 I/O -- input/output, how you get data into

and out of your program
•	 Streams abstract away the details of I/O
– have the same methods whatever your data

source or destination
•	 Streams work in one direction only
– input streams control data coming into

program from some source
– output streams control data leaving the

program for some destination
– if you want to both read and write data, you'll

need two separate streams

Java Stream Classes

•	 Java provides a hierarchy of classes for
streams (in java.io.*)
– Abstract, top-level classes that define general

methods for different types of streams
•	 InputStream -- reads bytes (binary data)
•	 OutputStream -- writes bytes
•	 Reader -- reads characters (text data)
•	 Writer -- writes characters

– Many, many subclasses implement streams
•	 Some are tailored for specific data sources or

destinations, e.g.,
– FileReader reads chars from a file

• Some add functionality to existing streams
–	 BufferedReader buffers input into lines for more

efficiency

2

 
 

 
 
 
 

 

 

 
 

System.out

• What is System.out.println()?
– System is a special class that is automatically

instantiated once when your program runs
–	 It has three static member variables

• in -- InputStream (connected to terminal input)
• out -- PrintStream (connected to terminal output)
•	 err -- PrintStream (connected to error output --

screen or special window in IDE)
– println() is an overloaded method in

PrintStream that takes a String or primitive
data type as an argument, prints it to a stream
and adds a line termination character.

File
Reader

Buffered
Reader

Stream Pipeline

• We can pipeline streams to get their combined
characteristics

• FileReader reads characters from a text file
• BufferedReader buffers the character stream

for efficiency and allows you to read line by line
(readLine())

3

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

asi122
Line

 
 
 
 

 
 

 
 

 
 

 
 

 

Exercise 1: Download and Run
import java.io.*;

public class SimpleReader {

 public static void main(String[] args) {

try {

 String eol = System.getProperty("line.separator");

FileReader fin = new FileReader("TestIn.txt");

 BufferedReader b = new BufferedReader(fin);

 FileWriter fout = new FileWriter("TestOut.txt");

 BufferedWriter bout= new BufferedWriter(fout);

 String currentLine;

 int i = 1;

 while ((currentLine = b.readLine()) != null) {

bout.write((i++) + " " + currentLine + eol);}

b.close();

bout.close();

 System.out.println("Done");

}

 catch (FileNotFoundException ef) { // Later in lecture

 System.out.println("File not found");}

 catch (IOException ei) {

 System.out.println("IO Exception"); }

} }

Exercise 2
• Create new text file of 10 lines for your program to read

–	 File-> New -> File, name it ‘TestIn1.txt’
–	 Modify SimpleReader to read the new file and write TestOut1.txt
–	 After the program runs, hit Refresh (F5) in Eclipse Explorer to

see the file
–	 Try to read a file that doesn’t exist.

• Change the while statement to (a bad idea):
while (b.readLine() != null) {

fout.write((i++) + " " + b.readLine() + "\n");}

–	 What happens, and why? (It’s a common error)
• “Accidentally” write to your input text file (e.g. TestIn.txt)

–	 Make a copy of your input text file first. What happens?
• Other notes:

–	 Always check for end of file (EOF):
•	 readLine() returns null

–	 Always close your streams when done: saves system resources,
avoids file corruption if system crashes

4

 

 

 

 
 

 
 
 

 

The 3 Flavors of Streams

In Java, you can read and write data to a file:
–	 as text using FileReader and FileWriter
– as binary data using DataInputStream

connected to a FileInputStream and as a
DataOutputStream connected to a
FileOutputStream

– as objects using an ObjectInputStream
connected to a FileInputStream and as an
ObjectOutputStream connected to a
FileOutputStream

Parsing
•	 readLine() is ok if you want to read whole lines
•	 read() is ok if you want to read character by

character
•	 What if you have structured data?

–	 meaning is dependent on position or formatting
–	 comma-separated values (or other delimiters/separators)

•	 Reading this data in a meaningful way is called
parsing

5

 

 

 

 
 

 

 

 

 
 

 

 

Parsing
•	 When you parse (tokenize) a file, you are looking

for tokens
–	 Sequences of one or more characters that "belong"

together
–	 Sometimes tokens are separated by delimiters (",", "\t",

" ", "\n"), sometimes not
•	 Three ways to parse in Java

–	 Use the split() method in String class with regular
expressions. Simplest way to parse simple delimited
files.

–	 StreamTokenizer : works with Stream, reads token by
token, treats delimiters as tokens, recognizes “words”
and “numbers”

–	 Scanner : default use is simple, works with files and
Strings

String’s split() Method

•	 Call split() on the String you want to parse and get
back an array of Strings parsed into “tokens”.

•	 Argument is the delimiter you want to use.
•	 Characters []\^$.|?*+() have special meaning in
split() and must be escaped to use them as a
delimiter, e.g., "\." to use a period as a delimiter.

•	 The String “\\s” as an argument to split() means
use any whitespace (" ","\t","\n"…) as a delimiter.
–	 “\\s+” means use any succession of whitespace characters

as a (single) delimiter.
String s = “James Bond,3-0007,10-250";

String[] parts = s.split(",");

// parts = { "James Bond", "3-0007", “10-250"};

6

 

 

 

 

 

 
 

 
 
 

 

Exercise 3

•	 Write a new class called WordCount,based on
SimpleReader above.

•	 Read TestIn just as before, but instead of writing
it back out, use split() to count the number of
"words" on each line.

•	 Sum them as you read the file, and output the
word count at the end.

Errors

•	 Error is any condition that produces
unwanted or incorrect results. Strategies
to deal with errors:
– Anticipate where errors might occur, and

program to prevent them if possible
• We do this 99% of the time

– Catch errors as they occur; possibly reroute
execution flow, set alternate values, show
messages
• You may not anticipate everything that can go wrong
• Some errors may be out of your control (e.g. input)
• You still need to handle these, however

– Java exceptions are how we handle this

second group of errors

7

 

 

 

 
 

 
 

 
 

 

 
 

 
 
 

Exceptions

•	 Exceptions are how Java handles errors
that the method in which the error occurs
can’t handle
– Exceptions are objects that are thrown

(created and sent to calling methods) in
response to runtime errors

– Runtime errors can occur from attempting
illegal operations, invalid input, corrupted or
unavailable resources, system problems, …

Exceptions: Try, throw, catch

•	 The Java exception mechanism has three elements:
–	 Throw (what a method does)

•	 If method detects error that it cannot handle,
•	 Method throws an exception

–	 Method returns either its usual return value or an exception object

–	 Try block (what the caller of the method does first)
•	 Called methods that may throw an exception are placed in a try

block (defined by curly braces) in the calling method
–	 A regular return value continues program flow as usual.
–	 An exception return causes execution to go to the catch block.

– Catch blocks follow try blocks (what caller does on error)
•	 Each block contains an exception handler of a given type
•	 Exception objects have types; different types can be handled by

different catch blocks, each with logic specific to the exception

8

 
 

 

 
 

 
 

 
 

 
 
 

Catching an exception
import javax.swing.*;

public class BadInput {

public static void main(String[] args) {

while (true) {

String answer = JOptionPane.showInputDialog("Enter an

integer (0 to quit)");

int intAnswer = -1; // Must declare outside try block

try { // Try block

 intAnswer = Integer.parseInt(answer); // Throw

 System.out.println(intAnswer); // Regular flow

} catch (NumberFormatException e) { // Catch block

 JOptionPane.showMessageDialog(null, "Not an integer");

}

if (intAnswer == 0)

break;

}

System.exit(0);

}

}

Exercise 4
•	 Download BadInput from the Web site
•	 Comment out:

–	 Try block (‘try’ and the curly braces; leave intAnswer =
…),

–	 Catch block (remove the entire block, including code)
–	 Save/compile

•	 Enter non-integer input. See what happens.
–	 What happens if the user types a non-integer, “Cathy”, for

example?
–	 Is this what we’ve been doing so far in 1.00 for input?

•	 Then remove the comments, restoring the try/catch
blocks
–	 Save/compile
–	 Enter non-integer input.
–	 What happens?

9

 

 

 

 

Exceptions, Streams, Inheritance

•	 Since exceptions are objects, exception classes
may use inheritance. FileNotFoundException
is a subclass of IOException.

•	 When an error is detected, Java will create and
throw a new instance of an appropriate type of
exception.

•	 The first catch statement matching the exception
class or one of its superclasses is executed.
–	 The order of the catch blocks matters

Exception Inheritance Example
try	 // From exercise 1
{
// Read file. If bad file, throw exception
// If file ok, continue execution as usual
FileReader fin = new FileReader(“TestIn.txt");
// Other statements follow, but need value of “fin”
 // They can’t be executed if the line above didn’t work
}
catch (FileNotFoundException ef)
{
// Handle not finding the file (bad file name, no permission…)

}
catch (IOException ei)
{
// Handle any other read error (disk crashed…)

}

// If we reversed these catch blocks, the program
// would not compile (unreachable code)

10

 

 

 
 
 

 
 

 

 
 

 

 
 

 
 

 

Checked vs. Unchecked Exceptions
•	 Java distinguishes between checked and

unchecked exceptions.
•	 Checked exceptions are those which the

programmer must handle at runtime, such as a
FileNotFoundException.
–	 These are generated by user, not programmer, error.
–	 Example: All IOExceptions are checked exceptions.
–	 If you call a method that can throw a checked exception,

you must put the method call in a try block and catch the
exception.

•	 You do not have to handle unchecked exceptions
–	 Unchecked exceptions are the result of programmer error,

so the best way of handling them is to fix the program
–	 Examples: NullPointerException,

ArrayIndexOutOfBoundsException.

When to Use Exceptions
•	 Why do we need exceptions?

–	 Usually errors are caught in a low-level routine: file reader or
math function that is very general-purpose and has no idea
whether the error is serious or not

–	 The caller (user) of that routine is the one who knows the
context of the error and can decide the best course of action.
After an error in an I/O reader:
•	 A mangled Tweet message can be ignored
•	 A mangled turn left message to an aircraft cannot be ignored

•	 If you can fix an error locally, don’t use an exception
–	 Exceptions are used when the method can’t fix the error itself

•	 In 1.00, your primary use of exceptions will be in
stream I/O and sensor I/O, where their use is required

11

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

