
1

1.00 Lecture 29

Sensors and Threads

Reading for next time: Numerical Recipes 32-36 (online)
http://www.nrbook.com/a/bookcpdf.php

Threads and Sensors
•  When sensors send events to a Java program, a
SensorChangeEvent is delivered to a Java
program on a separate thread.

•  Class InterfaceKitPhidget uses 3 threads:
–  Central thread that looks for AttachEvents and

DetachEvents
–  Read thread that gets SensorChangeEvents
–  Write thread that manages setOutputState()

•  All Phidgets libraries are thread safe, as we ll
discuss later in this lecture

•  Event listeners are used to get events
–  Listeners are registered with the Phidgets library

http://www.nrbook.com/a/bookcpdf.php

2

Threads and Atomic Operations

If two threads access the same data, these • 
operations must be atomic, or execute without
interruption by another thread accessing the
same resource. Why? For example,
–  Thread inserts a new object into an ArrayList and the

new item exceeds the current capacity.
–  ArrayList method add()must copy ArrayList

contents to a new piece of memory with greater capacity
and then add the new element.

–  If add() is being executed by one thread and is partially
completed when another thread gets control and
attempts to get an element from the same ArrayList,
the interrupted first thread will have left the partially
copied list in an inconsistent state.

–  The result is unpredictable and may be garbage

PressureController4 Program
•  Download and run PressureController4 and PressureView4
•  On most computers this program will fail after a period of time

because it does not share a critical resource atomically
–  ConcurrentModificationException is thrown: conflict in ArrayList

•  Threads execute probabilistically. The program will run for a
different length of time on each execution.
–  On some systems, it may not fail at all.

•  PressureController4 is almost identical to earlier versions
except that it registers for SensorChangeEvents as follows:

interfaceKit.addSensorChangeListener(new
 SensorChangeListener() {

 public void sensorChanged(SensorChangeEvent se) {
 if (se.getIndex() == pressureIndex)
 pv.updateChart(se.getValue()); // Full history
}});
// Earlier versions just set pressure and repainted the
// one data point. This version shows the full history.

3

PressureController4 sample output

PressureView4
•  The data for the pressure graph is stored in

private ArrayList<Integer> vals;

•  The updateChart() method is called from
PressureController4 whenever a SensorChangeEvent
is received.

 public void updateChart(int newVal) {
 vals.add(newVal); // Writes to ArrayList
 repaint(); // Reads from ArrayList
 }

•  But paintComponent(), triggered by repaint(), uses
the same ArrayList to draw the graph

•  The Phidget objects create and start threads
•  Swing creates and starts a Swing thread
•  Thus, a Phidget thread and the Swing thread contend for

the ArrayList

© Oracle. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see http://ocw.mit.edu/fairuse.

http://ocw.mit.edu/fairuse

4

Why No Problem in past PressureController?
•  In past version, the SensorChangeEvent gets pressure value:

 private void updateSensor(SensorChangeEvent se) {
 System.out.println(se);
 if (se.getIndex() == pressureIndex) {
 pressure = se.getValue();
 pv.repaint(); // PressureView
 }}

PressureView's repaint() calls getPressure() from
PressureController, so the value of pressure is shared
between a Phidgets thread and a Swing thread

 public void paintComponent(Graphics g) { …
 double x= 100;
 double height=((double)model.getPressure()/1000.0)* 300

But Java variable assignment (4 bytes or less) is guaranteed to b
atomic. It cannot be interrupted when partially complete.

• 

 ;

•  e

–  An ArrayList can be interrupted, in PressureController4
–  We used a float (4 bytes) in CylinderThread rather than a double (8 bytes) for

this reason in the last lecture. Java is a bit behind the times on this one�

ssynchronized Methods

•  Java has synchronized keyword to avoid such problems:

 public synchronized void compute() {
 // body of method

 }

•  compute() cannot be interrupted by another

synchronized method acting on the same object.
•  If a second thread attempts to execute another

synchronized method on the same object, the second
thread will wait until the first synchronized method exits.

5

Exercise 1: PressureController4

•  Use the synchronized keyword to fix the
PressureController4 program and test it.

•  What methods need to be synchronized in
PressureController4 and PressureView4?
–  Use the smallest scope possible for the synchronized

keyword. Focus on where the ArrayList is used.
–  The Swing thread and a Phidgets thread are the two that

interact over the ArrayList.
•  You should not have to change any code other

than the method declarations.

Example 2: Life without Synchronization
Imagine: You and your mother deposit $100 into your account. Take a

moment to understand the code. (More details in download)
public class BankAccount{
 double total = 0.0;
 public BankAccount(double total){
 this.total = total;
 }
 public void deposit (double money){
 double temp = total + money;
 total = temp;
 }

}
public class ATM implements Runnable{
 private BankAccount ba;
 public ATM(BankAccount ba){ this.ba = ba; }
 public void run(){ ba.deposit(100); }
 public static void main(String[] args){
 BankAccount david = new BankAccount(500);
 Thread you = new Thread(new ATM(david));
 Thread mother = new Thread(new ATM(david));
 } // Start threads, join, etc.—see download

}

6

Life without Synchronization, p.2

Imagine: You AND your mother deposit $100 into your account.

What if the code gets scheduled to run as follows?

Thread you Thread mother
calls method calls method Time
deposit(100); deposit(100);

600 500 100
double temp = total + money;

600 500 100
double temp = total + money; 600

total = temp; 600
total = temp;

You ONLY have $600 in your account!

Exercise 2: Synchronization

•  Run ATM to see the problem.
•  Correct ATM.
•  Compile and run it a few times to make

sure that the problem is gone.

7

ssynchronized Method Cautions
•  synchronized methods only wait for other
synchronized methods.

•  Normal, unsynchronized methods invoked on the
same object will proceed.
–  Unsynchronized methods that don t use the data that

might be affected by synchronization are ok
•  Another thread can run another synchronized

method on a different instance (object) of the
same class.
–  That s usually ok. No data errors will occur; different

objects are being used.
–  If your different objects manipulate a common ArrayList,

for example, there may still be a problem.
•  By default, methods are NOT synchronized.

How Synchronization Works

•  Java implements ssynchronized methods via a
lock on the object being accessed

•  When a thread calls a synchronized method, it
tries to acquire the lock on the object.

•  If no other synchronized method called on this
object is in progress in any thread, then the lock
is free and the thread can proceed.

•  If another thread is executing a synchronized
method on the object, then the lock will not be
free and the first method must wait.

•  A library (e.g., the Phidget library) is thread-safe if
all methods that might interfere with each other
are synchronized.

8

Why not synchronize always?
•  When two different threads each require

exclusive access to the same resources,
situations occur where each gets access to one
of the resources the other thread needs. Neither
thread can proceed.

•  Suppose each of two threads needs exclusive
privilege to write two different files.
–  Thread 1 opens file A exclusively
–  Thread 2 opens file B exclusively

•  Now Thread 1 also needs exclusive access to file
B, and Thread 2 also needs exclusive access to
file A. Both threads are deadlocked.

•  The most common source of this problem occurs
when two threads attempt to run ssynchronized
methods on the same set of objects.

Symptoms of Deadlock

•  The symptoms of deadlock are:
–  Program hangs (stops executing), or
–  Portion of program governed by a particular thread is

endlessly postponed.
•  Synchronization and deadlock problems are hard

to debug because a program with such problems
may run correctly many times before it fails.
–  Order and timing of different TThreads' execution isn't

entirely predictable.
•  Programs must be correct independent of the

order and timing that its Threads are executed.
•  If you synchronize in order to prevent harmful

interference between threads, you risk deadlock.

9

Threads and Swing

•  With a very few exceptions, the Swing classes
expect to have their methods called only from the
Swing event thread.

•  To add an event to the event thread, create an
object that describes a task to be performed in
the event thread at some future time.
–  The object must be of type Runnable, so it can be

executed in a thread.
•  Then pass that object to the event thread using a

synchronized method,
 SSwingUtilities.invokeLater()

 that places it in the event thread's queue.
•  Swing will execute the task when it can

Using iinvokeLater()

•  How do we create an object on the event queue?
 Runnable update = new Runnable() { // Anonymous

 public void run() {

 component.doSomething(); // Task

 };

 SwingUtilities.invokeLater(update);

•  invokeLater() is a synchronized static method
in the SwingUtilities class in the
javax.swing package. It inserts the task in the
event queue.

10

Exercise 3: JEventViewer
•  Read JEventViewer. It is almost identical to

PressureController, but instead of writing the Phidget events
to System.out, it adds them to a Swing JTextArea.

•  Make the Phidget event thread modify a Swing component.

private JTextArea text;
 …
private void updateSensor(SensorChangeEvent se)

{ append(se.toString() + "\n");
}
private void append(final String s) {
 // Your code here:
 // Create an object of type Runnable
 // Write its run() method to text.append(s);
 // Call invokeLater()
}
// String s must be final so Java knows it
// cannot change after the Runnable is created

Synchronized Swing Methods

•  There are some Swing methods that may safely be
called from another thread. These include:
–  ppublic void repaint()

–  public void revalidate()

–  public void addEventTypeListener(Listener l)
–  public void removeEventTypeListener(Listener l)

•  Otherwise use InvokeLater()

MIT OpenCourseWare
http://ocw.mit.edu

1.00 / 1.001 / 1.002 Introduction to Computers and Engineering Problem Solving
Spring 2012

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

