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Chapter 2 System Performance 

•	 Introduction 
•	 System Cost 
•	 Profitability, Breakeven Volume and 

Return on investment 
•	 Service 
•	 Capacity 
•	 Safety, Security, and Risk 
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Aspects of Infrastructure Performance
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Infrastructure Management


Managing Infrastructure 

Strategic Planning 

Maintenance Policy Operating Policy 

Operating Capacity 

Hours of Operation 
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System Performance

Basic Cost & Revenue Concepts


1.	 Cost terminology 
2.	 Breakeven volume and long-run cost 

functions 
3.	 Cost, revenue and profitability 
4.	 Present economy 

Can we afford to build a project based upon 

what customers or others are willing to pay?
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A Simple, Linear Cost Function: 
TC = a + bV = 50 + V, 10 <V<100 
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A Simple, Linear Cost Function: 
Avg Cost = a/V + b = 50/V + 1 

Marginal Cost (V)= d(TC)dv = b = 1 
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Lifecycle Cost - A Key 
Concept for CEE Project 
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Lifecycle Cost - Greatest Potential For 
Lifecycle Savings is in Design! 

Design 

Construct 

Expand 

Operate 
Decommission 

Salvage 

Time 

-10 

0 

10 

20 

30 

40 

50 

60 

70 

80 

90 

A
nn

ua
l E

xp
en

se
 

Easy to modify
design and 
materials 

Limited ability to 
modify infrastructure 
or operation 

Few options -
cost already
incurred 

Still possible to make some 
modifications in design or 
materials 

1. Cost Terminology 



3. Cost, Revenue and Profitability


Breakeven Volume for Profitability

Breakeven point P is where TR = TC
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5. Dimensions of space and time 

Differing Perspectives of 

Economists & Engineers


•	 Economists 
–	 Assume that production function is known 
–	 Very elegant, calculus-based formulations of concepts 
–	 Great concern with prices and effects on volume 
–	 Often use sophisticated statistical techniques and historical 

data to estimate production functions 
•	 Engineers 

–	 Must define the production function 
–	 Design and analysis of specific options 
–	 Great concern with costs and capacity 
–	 Often use models to estimate future costs 
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5. Dimensions of space and time


Complicating Factors for

Projects


Long lives 
Demand can change substantially 
Competition from other suppliers and new technologies 
can be expected 
The time value of money becomes critical 
Externalities are important 

Unique projects 
Difficult to test supply & demand 

Equilibration takes place through what may be slowly 
evolving changes in land use and location decisions 
by firms and individuals 
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Transport Options, Early 19th Century


Rough Road 
$1-2,000/mile to 
construct 

1 ton/wagon 
12 miles/day 
12 tm/day/vehicle 

$0.20 to $0.40/tm for 
freight rates 

Turnpike 
$5-10,000/mile 

1.5 tons/wagon 
18 miles/day 
27 tm/d/v 

$0.15 to $0.20/tm 

Canal 
>$20,000/mile 

10-100 tons/boat 
20-30 miles/day 
200-3000 tm/d/v 

$0.05/tm 

Railroad 
$15-50,000/mile 

500 tons/train 
200 miles/day 
100,000 tm/d/v 

<$0.05/tm 

Martland, Toward More Sustainable Infrastructure, Chapter 2 



Why Build Canals? 

Water is the most economical & efficient way 
to transport bulky, non-perishable goods 

BUT - you need the waterway! 
High volume of goods so long as speed is not 
a great factor 

Canals are built so that 
Freight rates decline 
Food can be delivered to cities 
Cities can become trade centers 
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Background on Canals 

Tow Path Tow Path 

Capacity: 
Gross tonnage/boat equals water 
displaced, so width and depth are key 
Space is needed for two boats to pass 
If canal is straight, rafts or barges can be 
linked 
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Regent’s Canal, London 



Excavation Costs Increase With 

the Size of the Canal


Doubling the width and depth of the canal 

can lead to major increases in excavation
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Locks Reduce Excavation, But 
Reduce Speed & Capacity 

Locks 

Avoided Excavation 



C&O Canal

Washington, 


D.C. 

The length and width 
of canal boats were 
limited by the size of 
the locks. 
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Water Supply is Essential 

Locks 

Lake or reservoir 
A.  Horizontal Alignment 

B. Vertical Alignment 



China's Grand Canal


Geography:  N-S canal links major rivers 
Geopolitics:  transport improvements help 
unit the empire 
Benefits 

Steady supply of grain from south to north 
300,000 tons of grain per year in 7th century 

Costs: 
5.5 million laborers worked 6 years on one 
1,500 mile stretch (20 man-years per mile) 
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 Bridgewater Canal


Built in 1761 to link Manchester England with coal 
mines 
Benefits: 

Halved the price of coal in Manchester (a direct benefit 
of increased efficiency of transport) 
Helped Manchester become England's leading industrial 
center (development benefit for the region) 

Stimulation of infrastructure development 
By 1840s, Britain had a network of 5,000 miles of canals 
& navigable rivers 
Technological improvements:  straighter, deeper, wider 
canals; aqueducts to cross rivers 
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Potowmack Canal 1785-1802

First extensive system of river navigation in US 

George Washington was the "champion" 
$750,000 investment 

Purpose 
Open up the area west of Appalachia and linking to the Potomac 
River (current-day Washington DC) 
Cut freight cost in half (relative to wagon) 
185 miles in 3 days with a 16-20 ton payload 

Problems 
Construction:  shaky economy; lack of skilled workers, weather 
Operation:  only navigable 3 mo/yr; sediments; wooden locks 
decayed 

Results 
Spurred canal investment & development of west 
$175,000 in debt by 1816 
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Middlesex Canal 1793-1803


Purpose:  
Improve efficiency of existing system by providing a 
better link from NH to Boston (chartered by 
Massachusetts) 
Reduced transfer from barge to wagon for delivery to 
Boston (cut costs by 75%) 

Costs 
50 bridges, 8 aqueducts, 27 locks 
$528,000 investment = $20,000/mile = 3% of assessed 
value of Boston (an early Big Dig!) 

Problems 
1-way freight - and not much of it 
Disruption of trade (Portsmouth & NH did not like this!) 
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Erie Canal, 1817-1825


First proposed in 1724; discussed widely in late 1700s and 
early 1800s 

Thomas Jefferson:  "A splendid project - for the 20th century." 
Purpose 

Easiest way to cross Appalachian Mountains 
Constructed 363 miles of canal with 83 locks and 18 major 
aqueducts from Albany to Buffalo for $8 million 
Issues 

How to finance 
Which route (avoid Lake Ontario - too close to the British!) 
Merchants using ground transport were against it 
Lack of engineers - in fact this project created CE schools at RPI 
and Union College 
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Erie Canal - Results


Problems 
1000 died from malaria 
What depth:  enough for freight, but no more than they 
could finance 

Results 
Too many boats almost from day 1 - increased in 1835 
to 70 ft wide with 7 ft depth (from 40 and 4) 
Revenues exceeded all expectations 
Opening up Lake Erie was "decisive impetus for

commerce to move E-W rather than N-S

Population growth - Rochester and Buffalo became 
boom towns 
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Morris Canal 1824-31


Purpose:  link coal fields of Lehigh Valley with NYC 
Cost was $2.1 million vs. $1 million estimate 

Circuity (99 mile canal to go 55 miles) 
Elevation (up 914 feet then down 750 feet) 

Notable 
Use of rail cars to haul boats up an inclined plane 
Acted as their own bank to finance canal 
Interfered with salmon spawning 
Speeds restricted to < 3 mph to avoid washing out banks 
Needed to widen for wider boats (increased loads from 25 to 
50-75 tons 

Results 
"Immediate and pronounced" - prices of coal and wood fell in NY, 
business was stimulated, towns grew 
Peaked 1860-70, then overtaken by RR 

Martland, Toward More Sustainable Infrastructure, Chapter 2 



Middlesex Canal vs. Erie Canal


Middlesex Erie 

Cost/mile


Hinterland


Development 

Financial 

$20,000 $22,000 

New Hampshire Northwest Territory 

Boston increases 
advantage over 

Portsmouth 
NYC gains w.r.t.  Boston; 
Rochester, Buffalo grow 

Investors break even 
by 1860, replaced by 

RR 

Vastly profitable; 
NYC becomes financial 

center of US 
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User's Perspective 

Issue: if costs are lower, then we will use 
the facility 
Analysis:  can we reduce cost/ton-mile by 
providing an opportunity for larger or better 
vehicles to operate over a better 
infrastructure 

Compare equipment costs and operating costs 
for the current and the new options 
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Owner's Perspective


Issue: should I build the facility? 
Analysis: 

Compare annual revenues to annual costs 
Cost: 

Construction costs can be converted to 
annual payments on a loan 
Maintenance costs 

Revenue: 
Tolls must be less than the savings that user 
gets from using the canal to attract traffic 
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Investor's Perspective


Issue: if we invest in this, will we be able to 

recover our investment plus a reasonable 

return?

Analysis:  


What will the project cost? 
How long will it take? 
How much revenue will  it generate (and will 
the owner be able to repay our loans) 
Do we have better options for investing? 
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Contractor's Perspective


Issue: should we agree to build the facility

for the amount proposed (or what should we

bid?)

Analysis:


Construction costs as a function of technology, 
methods, labor productivity, availability of 
materials, and costs 
Is our estimated cost less than the proposed 
budget? 
Is the estimated profit enough for us to accept 
the risks of construction? 
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Public Perspective 
Basic issue:  should we assist (or protest) in the 
project by providing financial or legal support 
Analysis:  what are the public benefits 

Land use 
Development 
Environmental impact


How can we help, if indeed we want to help?

Limit liability 
Enforce ability to collect tolls 
Use emminent domain to assemble land 
Choice of route? scale of project? 

Possibly a major political issue! 
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Summary - What Do We Learn From

the Experience With Canals


Ideas and concepts are around long before the 
means to build the infrastructure are available 
Major projects can be decisive in directing 
development and population growth - but it is also 
possible to spend major resources on projects with 
modest potential 
Changes in technology can kill projects (RRs killed 
both the turnpikes and the canals) or improve them 
(efficiency gains from larger boats justified enlarging 
canals) 
Financing is a major concern 
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Transport Options, Early 21st Century

Arterial Roads 
$1-5 million/mile 
to construct 

10 tons/truck 
100 miles/day 
1000 tm/day/vehicle 

$0.10 to $0.50/tm for 
freight rates 

Interstate 
Highway 
$5-100 
million/mile 

20 tons/trailer 
1-3 trailers per tractor 
500 miles/day 
10,000/d/v 

$0.15 to $0.20/tm 

Canal & waterway 
>Highly variable - 
few built 

1500 tons/barge 
Up to 40 barges/tow 
50-200 miles/day 
6 million tm/d/v 

$0.01/tm 

Railroad 
$0.5-5 million/mile 

5-15,000 tons/train 
500 miles/day 
5 million tm/d/v 

$0.02/tm 
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System Performance

Basic Concepts: Much More Than Cost


1. Service Measures 
2. Capacity 
3. Safety, Security and Risk 
4. Cost Effectiveness 
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Service Quality in Transportation 

• Average trip time 
• Trip time reliability 
• Probability of excessive delays 
• Comfort  
• Convenience 
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Engineering-Based Service Functions


• Express service as a function of: 
– Infrastructure characteristics 
– Operating characteristics 
– Level of demand 
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Estimating Commuting Time: 

Trip Segments


• Walk to bus stop 
• Wait for bus (10 minute headways) 
• Ride bus two miles to subway station 
• Transfer from bus to subway platform 
• Wait for subway train (5 minute headways)

• Ride train 3 miles (5 intermediate stops) 
• Exit station and walk to destination 
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Estimating Commuting Time:
Segment Times Based upon Personal Experience

• Walk to bus stop:                                       5 minutes
• Wait for bus (10 minute headways):  0 to 10 minutes
• Ride bus two miles to subway:          5 to 10 minutes 

(depending upon number of stops, road traffic, and 
weather)

• Transfer from bus to subway platform:      3 minutes
• Wait for train (5 minute headways):    0 to 5 minutes
• Ride train 3 miles (5 stops):            12 to 15 minutes
• Exit station and walk to destination:           7 minutes

• Total:  36-55 minutes; average ~ 45 minutes
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Estimating Commuting Time: 
Segment Times Based Upon Trip Characteristics 

• Time to walk to bus stop = Distance/average walking speed 

• Wait for bus = Half of headway 

• Time on bus = Distance/15 mph + 1 minute per stop 

• Transfer from bus to subway platform = Distance/average walking 
speed in station plus time to buy ticket plus queue time 

• Wait for subway train = half of headway 

• Train time = Distance/30mph + 45 seconds per stop 

• Exit station and walk to destination = Station time plus 
distance/average walking time 

It is possible to develop an engineering-based service function 
that can be used to estimate average time for any trip. 



Estimating Commuting Time: 

Studying the Effects of Service Changes


•	 Possible changes designed to improve service 
–	Extend bus routes or subway lines 
–	Have more bus stops 
–	Have more frequent bus or train operations 

•	 Use the service function to compare service with 
and without the service improvements for a
representative sample of users 

•	 Sum results over all users to obtain average 
change in service 
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Capacity


•	 Multiple measures are possible 
•	 Network capacity can be constrained at 

bottlenecks 
•	 Engineering-based capacity functions 

can be developed 
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Capacity of a Highway Intersection: 

Theoretical Calculations


•	 Assumptions indicate: 
–	 One car in each direction every 

two seconds while light is green 
–	 If so, there should be 60 cars 

per minute 
•	 Does this mean that 

theoretical capacity is: 
–	 60 cars per minute? 
–	 3600 cars per hour? 
–	 84,400 cars per day? 
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Capacity of a Highway 

Intersection: Measured Capacity


•	 Observation of intersection 
at rush hour: 
–	 The first car sometimes 

takes 4-5 seconds 
–	 Subsequent cars average a 

little more than 2 seconds 
–	 Maximum in one cycle:  56 
–	 Average in one cycle:  52 

•	 Does this imply: 
–	 Theoretical capacity is at 

least 56 but less than 60 
cars/minute? 

–	 Practical capacity is: 52
cars/minute or 3120/hour? 
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Capacity of a Highway Intersection: 

Insights from Commuters


•	 You need to consider 
performance over a much 
longer period because of 
problems related to: 
–	 Weather 
–	 Road maintenance 
–	 Emergency vehicles 
–	 Accidents 
–	 Gridlock (frustrated drivers 

may block the intersection 
when the light turns red) 
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Capacity of a Highway Intersection: 

Results of a More Thorough Study


•	 Average flow was 48 cars per 
minute in study that included 
extended rush hour 
observations in all seasons 

•	 Delays commonly averaged 
more than 5 minutes, which was 
believed to be unacceptable by 
both drivers and highway
engineers 

•	 Does this imply that: 
–	 Capacity is 48 cars per minute? 
–	 Capacity is less than 48 

cars/minute? 
–	 Capacity is inadequate? 
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Capacity of a Highway Intersection: 

Lessons


•	 Practical capacity is well below theoretical capacity 
•	 Capacity can be sharply restricted by common disruptions 

(accidents, bad weather, etc) 
•	 During peak periods of operation, demand may exceed capacity of 

the system, resulting in delays 
•	 Practical capacity is ultimately limited by what is believed to be 

“acceptable delay” or the “acceptable frequency of extreme delays” 

•	 Three useful concepts: 
–	 Maximum capacity: maximum flow through the system when 

everything works properly 
–	 Operating capacity: average flow under normal conditions 
–	 Sustainable capacity: maximum flow that allows sufficient time for 

maintenance and recovery from accidents 
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