MIT OpenCourseWare <u>http://ocw.mit.edu</u>

1.020 Ecology II: Engineering for Sustainability Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Civil and Environmental Engineering

1.020 Ecology II: Engineering for Sustainability

Problem Set 6 – Resource Allocation Due: 5PM Weds. April 30, 2008

A. Introduction

The objective of this problem is to allocate agricultural water to maximize profits, subject to environmental constraints.

B. Problem Description

There are 3 farms, all growing rice.

Water is allocated by an irrigation district to each farm to maximize district income (over all 3 farms)

The maximum land available for cultivation is specified for each farm.

Yield is enhanced by fertilizer application.

Fertilizer cost is negligible

Total nitrogen runoff must not exceed a specified threshold.

Variable definitions:

Objective: Maximize $F = \sum_{i=1}^{3} pY_i L_i$ = Net district revenue (\$ season⁻¹)

 $p = \text{Rice price } (\$ \text{ tonnes}^{-1})$

 L_i = Crop area for Farm *i* (ha)

 $Y_i = Y_{0i} + \gamma_i F_i$ = Net yield Farm *i* (tonnes ha⁻¹ season⁻¹)

 Y_{0i} = Nominal yield Farm *i* (tonnes ha⁻¹ season⁻¹)

 γ_i = Fertilizer enhanced yield coefficient for Farm *i* (tonnes crop (kg fertilizer)⁻¹)

 F_i = Amount of fertilizer applied to Farm *i* (kg ha⁻¹ season-1)

 $N_i = \eta_i F_i L_{\text{max}\,i}$ = Nitrogen runoff from Farm *i* (kg season⁻¹)

 $L_{\max i} =$ Maximum land area Farm i

[Note: As a simplification, above expression assumes fertilizer is applied to entire farm] η_i = Fraction of applied nitrogen that runs off Farm *i* (unitless)

$$R = \sum_{i=1}^{3} N_i = \text{Total nitrogen runoff (kg season^{-1})}$$
$$W = \sum_{i=1}^{3} W_i L_i = \text{Total water used (MCM season^{-1})}$$
$$W_i = \text{Unit water requirement Farm } i \text{ (MCM ha}^{-1} \text{ season}^{-1}\text{)}$$

Resource and environmental constraints:

Water: $W \leq W_{avail}$ Land: $L_i \leq L_{\max i}$ for each Farm iNitrogen runoff: $R \leq R_{\max}$

C. Inputs

Price $p = 200 \ \text{s} \text{ tonne}^{-1}$

Nominal rice yield Y_{0i} tonnes ha⁻¹

Farm1	Farm2	Farm3
100	70	90

Fertilizer coefficient γ_i : tonnes kg⁻¹

Farm1	Farm2	Farm3
0.9	1.2	1.1

Nitrate runoff fraction η_i : unitless

Farm1	Farm2	Farm3
0.4	0.35	0.45

Water requirement W_i : m season⁻¹

Farm1	Farm2	Farm3
1.0	1.2	0.9

Resource limits

Resource	Symbol	Value	Units
Water	W_{avail}	2.4	MCM season ⁻¹
Land Farm1	$L_{\max,1}$	200	ha
Land Farm2	L _{max,2}	100	ha
Land Farm2	$L_{\rm max,3}$	150	ha
N Runoff Limit	<i>R</i> _{max}	0-5000	kg season ⁻¹

D. Problem Set Tasks

*** All of the information requested below should be compiled in a single MS Word (or equivalent) file with all your team member names clearly identified in the file name and submitted via the 1.020 Stellar site ***

1. Use MATLAB's quadprog function to find the set of crop land areas and amount of fertilizer applied that maximizes revenue when $R_{\text{max}} = 5000$ kg season⁻¹. [HINT: Make sure that you include all land, water, and nitrogen runoff constraints. Also, make sure that the Hessian matrix you construct is symmetric].

2. Determine the increase in revenue obtained if R_{max} is reduced. Do this by plotting 1) the revenue and 2) the shadow price of the nitrogen runoff constraint vs. R_{max} over the range $R_{\text{max}} = 0$ to $R_{\text{max}} = 5000$. Use the MATLAB function subplot to put the two plots in the same figure window.

3. Explain why the shadow price of the runoff constraint increases as the maximum permitted nitrogen increases [Hint: Examine the fertilizer yield coefficients as well as changes in cropland allocations to see how the benefits of fertilizer increase as greater amounts are permitted].