1.022 - Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems
Institute for Data, Systems, and Society
Massachusetts Institute of Technology

Lecture 7

Graph Laplacian

- Vertex degrees often stored in the diagonal matrix \mathbf{D}, where $D_{i i}=d_{i}$

$$
\mathbf{D}=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

- The $|V| \times|V|$ symmetric matrix $\mathbf{L}:=\mathbf{D} \quad \mathbf{A}$ is called graph Laplacian

$$
L_{i j}=\left\{\begin{array}{cc}
d_{i}, & \text { if } i=j \\
1, & \text { if }(i, j) \in E \\
0, & \text { otherwise }
\end{array}, \mathbf{L}=\left(\begin{array}{cccc}
2 & 1 & 0 & 1 \\
1 & 2 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 3
\end{array}\right)\right.
$$

Courant Fischer Theorem

$$
\begin{aligned}
\lambda_{1} & =\min _{x \neq 0} \frac{x^{\top} L x}{x^{\top} x} & v_{1} & =\underset{\substack{x \neq 0 \\
x \neq 0}}{\operatorname{argmin}} \frac{x^{T} L x}{x^{\top} x} \\
\lambda_{2} & =\min _{\substack{x \neq 1}} \frac{x^{\top} L x}{x^{\top} x} & v_{2} & =\underset{\substack{x \neq 0 \\
x \perp v_{1}}}{\operatorname{argmin}} \frac{x^{T} L x}{x^{\top} x}
\end{aligned}
$$

Courant Fischer Theorem: M an $n \times n$ symmetric matrix with eigenvalues $\lambda_{1} \leq \ldots \leq \lambda_{n}$ and eigenvectors v_{1}, \ldots, v_{n}.

- S_{k} : the span of $v_{1}, \ldots, v_{k}, 1 \leq k \leq n\left(S_{0}=\{0\}\right)$.
- S_{k}^{\perp} :orthogonal complement of S_{k}.

Then,

$$
\lambda_{k}=\min _{\substack{\|x\| \neq 0 \\ x \in S_{\bar{K}}}} \frac{x^{T} M x}{x^{T} x} \quad v_{k}=\underset{\substack{\|x\| \neq 0 \\ x \in S_{k}^{\perp}}}{\operatorname{argmin}} \frac{x^{T} M x}{x^{T} x}
$$

Community detection and spectral clustering

- Nodes in many real-world networks organize into communities Ex: families, clubs, political organizations, urban areas, ...
- Supported by the strength of weak ties theory

- Community (a.k.a. group, cluster, module) members are:
\Rightarrow Well connected among themselves
\Rightarrow Relatively well separated from the rest

Graph partitioning and minimum cuts

- Community members should be well-connected among themselves
\Rightarrow Loosely connected with members of other communities

- A cut C is the weight of edges between blocks V_{1} and $V_{2}=V \backslash V_{1}$

$$
C=\operatorname{cut}\left(V_{1}, V_{2}\right)=\sum_{i \in V_{1}, j \in V_{2}} A_{i j}
$$

- Find cut that achieves the desired sizes in V_{1} and V_{2} while minimizing C

Graph partitioning and the Laplacian matrix

- Assign to each node $i \in V$ an identifier $s_{i} \in\{1,1\}$
\Rightarrow Form the vector $\mathbf{s}=\left[s_{1}, s_{2}, \ldots, s_{|V|}\right]$
- Notice that $C(\mathbf{s})=\sum_{i j} A_{i j}$ where $s_{i}=1$ and $s_{j}=+1$
- It can be shown that $C(\mathbf{s})=\frac{1}{4} \mathbf{s}^{\top} \mathbf{L s}$, where \mathbf{L} is the Laplacian matrix
\Rightarrow You will show this in your homework
- We have expressed the cut (relevant graph-related quantity)
\Rightarrow In terms of vectors and matrices (amenable algebraic objects)
- Find vector $\mathbf{s} \in\{1,1\}^{|V|}$ such that:

$$
\begin{aligned}
& \Rightarrow \sum_{i} s_{i}=\left|V_{2}\right| \quad\left|V_{1}\right| \text { (desired group sizes), and } \\
& \Rightarrow \text { Minimizes } C(\mathbf{s})=\frac{1}{4} \mathbf{s}^{\top} \mathbf{L s}
\end{aligned}
$$

Spectral graph partitioning

- Finding such optimal s is still challenging
\Rightarrow Due to the integer restriction $\mathbf{s} \in\{1,1\}^{|V|}$
- Relax this requirement into $\sum_{i} s_{i}^{2}=|V|$
\Rightarrow Note that $\mathbf{s} \in\{1,1\}^{|V|}$ implies $\sum_{i} s_{i}^{2}=|V|$ but not vice versa
- New relaxed problem: Find \mathbf{s} that minimizes $C(\mathbf{s})=\frac{1}{4} \mathbf{s}^{\top} \mathbf{L s}$
\Rightarrow Subject to $\sum_{i} s_{i}=\left|V_{2}\right| \quad\left|V_{1}\right|$ and $\sum_{i} s_{i}^{2}=|V|$
- The optimal \mathbf{s}^{*} is given by

$$
\mathbf{s}^{*}=\mathbf{v}_{2}+\frac{\left|V_{2}\right| \quad\left|V_{1}\right|}{|V|} \mathbf{1}
$$

\Rightarrow where \mathbf{v}_{2} is the eigenvector of \mathbf{L} with the second smallest eigenvalue

Recovering the partitions

- How do we go back to two groups from the (non-integer) s*?
\Rightarrow Find $\mathbf{s} \in\{1,+1\}^{|V|}$ that is most aligned with \mathbf{s}^{*}
- Algorithm: Spectral graph partitioning
$\Rightarrow 1)$ Compute Laplacian matrix \mathbf{L} of graph of interest
$\Rightarrow 2$) Find \mathbf{v}_{2}, the eigenvector of \mathbf{L} with the second smallest eigenvalue
$\Rightarrow 3$) Order the entries of \mathbf{v}_{2} in decreasing order
$\Rightarrow 4)$ Assign $s_{i}=1$ to the $\left|V_{1}\right|$ top-sorted entries and rest $s_{i}=+1$
- Minor subtlety \Rightarrow Both \mathbf{v}_{2} and \mathbf{v}_{2} are eigenvectors
\Rightarrow Repeat the above procedure for \mathbf{v}_{2}
\Rightarrow Choose partition (from those two) that minimizes the cut

Community detection problem

- What if we do not know a priori the sizes of the sought communities?
\Rightarrow We cannot implement the above procedure
\Rightarrow More importantly, the cut might not be the right criterion

- Consider the ratio cut R instead

$$
R\left(V_{1}, V_{2}\right)=\frac{C\left(V_{1}, V_{2}\right)}{\left|V_{1}\right|}+\frac{C\left(V_{1}, V_{2}\right)}{\left|V_{2}\right|}
$$

\Rightarrow Small groups are penalized \Rightarrow Balanced partition

Spectral community detection

- The ratio cut criterion can be relaxed in a similar way
- Main difference \Rightarrow Unknown group sizes
- Algorithm: Spectral community detection
$\Rightarrow 1)$ Compute Laplacian matrix \mathbf{L} of graph of interest
$\Rightarrow 2)$ Find \mathbf{v}_{2}, the eigenvector of \mathbf{L} with the second smallest eigenvalue
$\Rightarrow 3)$ Assign $s_{i}=1$ if $\left[\mathbf{v}_{2}\right]_{i}<0$ and $s_{i}=+1$ otherwise
- What if we want to detect more than two groups?
- Opt. 1: Apply the above process iteratively

Clustering via other low-dimensional representations ||||l|

- Votes by $n=100$ senators in the 2004-2006 US Senate about $m=542$ bills

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license
For more information, see https://ocw.mit.edu/help/faq-fair-use/.
- Republicans tend to vote similar to other republicans [El Ghaoui 17]
\Rightarrow Same occurs with democrats
\Rightarrow How can we capture this? \Rightarrow Notion of covariance

Principal Component Analysis (PCA)

- One can interpret the covariance matrix as a weighted graph
\Rightarrow Large positive values indicate similar voting patterns between senators
- PCA projects senators onto the top eigenvectors of the covariance matrix
\Rightarrow These are the direction of maximum variance

- The parties can be recovered almost perfectly from the 2D representation

Example of more than two groups

- Genes mirror geography within Europe, Novembre et al., Nature (2008)
- Two-dimensional embedding of 'gene similarity' matrix
\Rightarrow Consistent with origins of individuals in European map

Novembre, John, Toby Johnson, Katarzyna Bryc, et al. "Genes mirror geography within Europe." Nature 456 (2008): 98-101. © Springer Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see

Using centrality for community detection

- Communities as connected components when deleting bridges

- How can we automatically detect bridges?
- Can we use the notion of (betweenness) centrality but for edges?
\Rightarrow For the interested, see Chapter 3.6 of our main text

MIT OpenCourseWare
https://ocw.mit.edu/

1.022 Introduction to Network Models

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

