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Graph Laplacian 
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I Vertex degrees often stored in the diagonal matrix D, where  D
ii = d

i 

1 0 1 

BB@ 

2 0 0 0  
0 2 0 0  
0 0 1 0  

CCA D = 
4 3 

0 0 0 3  2 

I The |V | ⇥ |V | symmetric matrix L := D A is called graph 
Laplacian 

1 0 8
< 

2 1 0 1 
1 2 0 1 
0 0 1 1 

d

i , if i = j 
, L = 

BB@ 
CCA L

ij = 1, if (i , j) 2 E : 
0, otherwise 1 1 1 3 

I Variants of the Laplacian exist, with slightly di↵erent interpretations 

) Normalized Laplacian L
n = D�1/2

LD

�1/2 

) Random-walk Laplacian L
rw = D�1

L 
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Courant Fischer Theorem 
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Courant Fischer Theorem: M an n ⇥ n symmetric matrix with 
eigenvalues �

1  . . .   �
n and eigenvectors v
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, . . . , v
n

. 
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k : the span of v
1

, . . . , v
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Community detection and spectral clustering 

I Nodes in many real-world networks organize into communities 

Ex: families, clubs, political organizations, urban areas, . . . 

I Supported by the strength of weak ties theory 

I Community (a.k.a. group, cluster, module) members are: 

) Well connected among themselves 

) Relatively well separated from the rest 
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Graph partitioning and minimum cuts 

I Community members should be well-connected among themselves 

) Loosely connected with members of other communities 

I A cut C is the weight of edges between blocks V
1 and V

2 = V \V
1 

X 
C = cut(V

1

, V
2

) =  A

ij 

i2V

1

, j2V

2 

I Find cut that achieves the desired sizes in V
1 and V

2 while minimizing C 
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Graph partitioning and the Laplacian matrix 
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I Assign to each node i 2 V an identifier s
i 2 { 1, 1} 

) Form the vector s = [s
1

, s
2

, . . . , s|V |] P 
I Notice that C (s) =  

ij Aij where s
i = 1 and  s

j = +1  

I It can be shown that C (s) =  1
4 s

>
Ls, where  L is the Laplacian matrix 

) You will show this in your homework 

I We have expressed the cut (relevant graph-related quantity) 

) In terms of vectors and matrices (amenable algebraic objects) 

I Find vector s 2 { 1, 1}|V | such that: 
P 

) 
i si = |V

2

| |V
1

| (desired group sizes), and 

) Minimizes C (s) =  1
4 s

>
Ls 
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Spectral graph partitioning 
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I Finding such optimal s is still challenging 

) Due to the integer restriction s 2 { 1, 1}|V | 
P 

2 I Relax this requirement into = |V | i si 
2 ) Note that s 2 { 1, 1}|V | implies 

P 
i si = |V | but not vice versa 

I New relaxed problem: Find s that minimizes C (s) =  1
4 s

>Ls 
P P 

) Subject to i si = |V
2

| |V
1

| and i s
2 = |V | i 

I The optimal s⇤ is given by 

|V
2

| |V
1

| 
s⇤ = v

2 + 1 |V | 

) where v
2 is the eigenvector of L with the second smallest eigenvalue 
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Recovering the partitions 
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I How do we go back to two groups from the (non-integer) s⇤? 
⇤ ) Find s 2 { 1, +1}|V | that is most aligned with s 

I Algorithm: Spectral graph partitioning 

) 1) Compute Laplacian matrix L of graph of interest 

) 2) Find v
2

, the eigenvector of L with the second smallest eigenvalue 

) 3) Order the entries of v
2 in decreasing order 

) 4) Assign si = 1 to the |V
1

| top-sorted entries and rest si = +1  

I Minor subtlety ) Both v
2 and v

2 are eigenvectors 

) Repeat the above procedure for v
2 

) Choose partition (from those two) that minimizes the cut 
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Community detection problem 

I What if we do not know a priori the sizes of the sought communities? 

) We cannot implement the above procedure 

) More importantly, the cut might not be the right criterion 

I Consider the ratio cut R instead 

C (V
1

, V
2

) C (V
1

, V
2

) 
R(V

1

, V
2

) =  + |V
1

| |V
2

| 
) Small groups are penalized ) Balanced partition 
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Spectral community detection 

�

I The ratio cut criterion can be relaxed in a similar way 
I Main di↵erence ) Unknown group sizes 

I Algorithm: Spectral community detection 

) 1) Compute Laplacian matrix L of graph of interest 

) 2) Find v
2

, the eigenvector of L with the second smallest eigenvalue 

) 3) Assign si = 1 if  [v
2

]i < 0 and  si = +1 otherwise 

I What if we want to detect more than two groups? 
I Opt. 1: Apply the above process iteratively 
I Opt. 2: A generic spectral approach 

) Find eigenvectors v
1

, . . . , vK of L 

) Assign ([v
1

]i , . . . , [vK ]i ) to node  i 2 V 

) Use this embedding to do further processing 
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Clustering via other low-dimensional representations 

I Votes by n = 100 senators in the 2004-2006 US Senate about m = 542 bills 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

I Republicans tend to vote similar to other republicans [El Ghaoui 17] 

) Same occurs with democrats

) How can we capture this? ) Notion of covariance
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Principal Component Analysis (PCA) 

I One can interpret the covariance matrix as a weighted graph 

) Large positive values indicate similar voting patterns between senators
I PCA projects senators onto the top eigenvectors of the covariance matrix 

) These are the direction of maximum variance

I The parties can be recovered almost perfectly from the 2D representation 
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Example of more than two groups 

I Genes mirror geography within Europe, Novembre et al., Nature (2008) 
I Two-dimensional embedding of ‘gene similarity’ matrix 

) Consistent with origins of individuals in European map

Novembre, John, Toby Johnson, Katarzyna Bryc, et al. "Genes mirror geography within Europe." Nature 456 (2008): 98–101.       
© Springer Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 
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Using centrality for community detection 

I Communities as connected components when deleting bridges 

I How can we automatically detect bridges? 
I Can we use the notion of (betweenness) centrality but for edges? 

) For the interested, see Chapter 3.6 of our main text
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