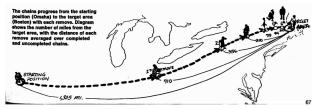


1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts Institute of Technology


Lecture 11

イロン イロン イヨン イヨン

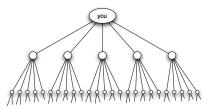
Small-world phenomenon

► Stanley Milgram's experiment ⇒ six degrees of separation

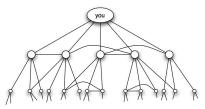
Milgram, Stanley. "The Small-World Today." Psychology Today 1 (1967): 61–67.© Sussex Publishers. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

▶ Get letter from 'starter' to target by forwarding to acquaintances ⇒ Letters arrive with a median of six steps

Two rather surprising facts


- \Rightarrow 1) Short paths between two nodes exist in abundance
- \Rightarrow 2) People without global knowledge can find these paths

< ロ > < 同 > < 回 > < 回 >

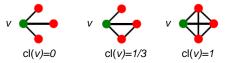

How can this happen?

Pure exponential growth produces a small world

Triadic closure reduces the growth rate

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Can a model exhibit both many closed triads and very short paths?


Clustering coefficient

- ▶ Q: What fraction of *v*'s neighbors are themselves connected?
- The clustering coefficient cl(v) of $v \in V$ is

$$\mathsf{cl}(v) = \frac{2|E_v|}{d_v(d_v-1)} \in [0,1]$$

 $\Rightarrow |E_v|$ is the number of edges among v's neighbors

- An indication of the extent to which edges 'cluster'
- The global (average) clustering coefficient is

$$\mathsf{cl}(G) = \frac{1}{|V|} \sum_{v \in V} \mathsf{cl}(v)$$

ヘロト ヘヨト ヘヨト ヘヨト

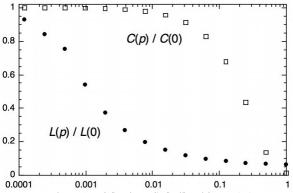
Network	size	av. shortest path	Shortest path in fitted random graph	Clustering (averaged over vertices)	Clustering in random graph
Film actors	225,226	3.65	2.99	0.79	0.00027
MEDLINE co- authorship	1,520,251	4.6	4.91	0.56	1.8 x 10 ⁻⁴
E.Coli substrate graph	282	2.9	3.04	0.32	0.026
C.Elegans	282	2.65	2.25	0.28	0.05

æ

・ロン ・部 と ・ ヨ と ・ ヨ と …

- Reconciling short paths and high clustering coefficients
- Desired number of nodes n, average degree K and probability p
 - \Rightarrow 1) Construct a circle of *n* nodes
 - \Rightarrow 2) Connect each node to its K closest neighbors
 - \Rightarrow 3) With probability *p* rewire each edge uniformly

Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of 'small-world' networks." Nature 393 (1998): 441–42. © Springer Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://co.wnit.edu/he/fi/afa_fair-use/.


Small p: regular lattice. Large p: close to ER graph

 \Rightarrow There is a sweet spot in between

(日) (同) (三) (三)

- Plot clustering coefficient and average shortest path
 - \Rightarrow As a function of the rewiring probability p
- What happens for $p \approx 0.01$?

Watts, Duncan J., and Steven H. Strogatz. "Collective dynamics of 'small-world' networks." Nature 393 (1998): 441–42. © Springer Nature. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mic.du/hdp/fiac_fair-use/.

Image: Image:

1.022 Introduction to Network Models Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.