

1.022 - Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts Institute of Technology

Lecture 6

イロン イロン イヨン イヨン

Graph Laplacian

▶ Vertex degrees often stored in the diagonal matrix **D**, where $D_{ii} = d_i$

► The |V| × |V| symmetric matrix L := D - A is called graph Laplacian

$$L_{ij} = \begin{cases} d_i, & \text{if } i = j \\ -1, & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}, \ \mathbf{L} = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & -1 & -1 & 3 \end{cases}$$

Variants of the Laplacian exist, with slightly different interpretations
 ⇒ Normalized Laplacian L_n = D^{-1/2}LD^{-1/2}
 ⇒ Random-walk Laplacian L_{rw} = D⁻¹L

ヘロト ヘヨト ヘヨト ヘヨト

Smoothness: For any vector $\mathbf{x} \in \mathbb{R}^{|V|}$ of "vertex values", one has

x
$$\mathbf{L}\mathbf{x} = \sum_{(i,j)\in E} (x_i - x_j)^2$$

which can be minimized to enforce smoothness of functions on G

- Incidence relation: $\mathbf{L} = \mathbf{B}\mathbf{B}$ where \mathbf{B} has arbitrary orientation
- ▶ Positive semi-definiteness: Follows since \mathbf{x} $\mathbf{L}\mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^{|V|}$
- **•** Rank deficiency: Since L1 = 0, L is rank deficient

・ロト ・回 ト ・ヨト ・ヨト

Spectrum and connectivity: L1 = 0, so 0 is an eigenvalue

$$0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n$$

- The second-smallest eigenvalue λ_2 is called the algebraic connectivity
- If $\lambda_2 = 0$, then G is connected
- If G has k connected components then $0 = \lambda_k < \lambda_{k+1}$

Matrix Tree Theorem: The number of spanning trees of G is

$$t(G) = \lambda_2 \times \ldots \times \lambda_n.$$

Spanning tree: a subgraph that is a tree which includes all the vertices.

・ロト ・回ト ・ヨト ・ヨト

Courant Fischer Theorem

$$\lambda_{1} = \min_{x=0} \frac{x^{T} L x}{x^{T} x} \qquad v_{1} = \underset{x=0}{\operatorname{argmin}} \frac{x^{T} L x}{x^{T} x}$$
$$\lambda_{2} = \min_{x=0} \frac{x^{T} L x}{x^{T} x} \qquad v_{2} = \underset{x \perp v_{1}}{\operatorname{argmin}} \frac{x^{T} L x}{x^{T} x}$$

Courant Fischer Theorem: M an $n \times n$ symmetric matrix with eigenvalues $\lambda_1 \leq \ldots \leq \lambda_n$ and eigenvectors v_1, \ldots, v_n .

•
$$S_k$$
: the span of v_1, \ldots, v_k , $1 \le k \le n$ $(S_0 = \{0\})$.

Then,

$$\lambda_{k} = \min_{x \in S_{k}^{\perp} \atop x \in S_{k}^{\perp}} \frac{x^{T} M x}{x^{T} x} \qquad \qquad v_{k} = \arg_{x \in S_{k}^{\perp} \atop x \in S_{k}^{\perp}} \frac{x^{T} M x}{x^{T} x}$$

æ

<ロ> <同> <同> <同> < 同> < 同> < □> <

- Nodes in many real-world networks organize into communities
 Ex: families, clubs, political organizations, urban areas, ...
- Supported by the strength of weak ties theory

- ► Community (a.k.a. group, cluster, module) members are:
 - \Rightarrow Well connected among themselves
 - \Rightarrow Relatively well separated from the rest

< ロ > < 同 > < 三 > < 三 >

Social interactions among members of a karate club in the 70s

 \Rightarrow Canonical network for community detection methods

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

The club split into two during the study (white and red groups)

 \Rightarrow Offers ground-truth community membership

Could we have predicted the split only from the network structure?

イロト イポト イヨト イヨト

Political blogs

▶ The political blogosphere for the US 2004 presidential election

Adamic, Lada and Natalie Glance. "The Political Blogosphere and the 2004 U.S. Election: Divided They Blog." March 4, 2005. © Lada Adamic and Natalie Glance. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://www.mit.edu/help/faq-fair-use/</u>.

Community structure of liberal and conservative blogs is apparent

 \Rightarrow Strong evidence of partisan homophily in the network

Can we detect both parties without looking at the blogs' content?

(a)

Social network from a town's middle and high school students

Moody, James. "Race, School Integration, and Friendship Segregation in America. American Journal of Sociology 107 (2001): 679–716. © University of Chicago Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Two binary divisions are apparent from the structure of the network

⇒ Racial division marked in red

 \Rightarrow Age division (middle - high) marked in blue

Can we estimate race and age of a student from the structure?

Physicists working on Network Science

- Co-authorship network of physicists working on networks
 - \Rightarrow Edges represent the existence of a collaborative publication

Newman, M. E. J., and M. Girvan. "Finding and evaluating community structure in networks." *Physical Review E 69* (2004): 026113. @ American Political Society. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/fig-fai-use/</u>.

Tightly-knit subgroups are evident from the network structure

 \Rightarrow Some researchers work at the boundary between two groups?

Can we recover this information without relying on visual inspection?

Automatic detection of communities

- Recurring theme in all of the examples provided
 - \Rightarrow How can we automatically detect communities in a network?
- But ... what is a sensible definition of community?
 - \Rightarrow Multiple definitions lead to multiple community detection methods

(日)

Community detection is a challenging problem

- \Rightarrow No universal definition of community
- \Rightarrow No prior knowledge of community number or sizes
- \Rightarrow Rare ground-truth data for validation
- We begin with a simpler problem \Rightarrow Graph partitioning
- Divide V into a given number of non-overlapping groups of a given size
- Graph partitioning is still a hard problem
 - \Rightarrow Even graph bisection (two groups, equal size) has $\binom{|V|}{|V|/2}$ possibilities
- Exhaustive search intractable beyond small datasets
- Need to rely on tractable relaxations of natural partitioning criteria

ヘロン ヘロン ヘビン ヘビン

Graph partitioning and minimum cuts

Community members should be well-connected among themselves
 ⇒ Loosely connected with members of other communities

• A cut C is the weight of edges between blocks V_1 and $V_2 = V \setminus V_1$

$$C = \operatorname{cut}(V_1, V_2) = \sum_{i \in V_1, j \in V_2} A_{ij}$$

Find cut that achieves the desired sizes in V_1 and V_2 while minimizing C

・ロト ・回ト ・ヨト ・ヨト

▶ Assign to each node $i \in V$ an identifier $s_i \in \{-1, 1\}$

 \Rightarrow Form the vector $\mathbf{s} = [s_1, s_2, \dots, s_{|V|}]$

- Notice that $C(\mathbf{s}) = \sum_{ij} A_{ij}$ where $s_i = -1$ and $s_j = +1$
- ► It can be shown that $C(\mathbf{s}) = \frac{1}{4}\mathbf{s}$ Ls, where L is the Laplacian matrix ⇒ You will show this in your homework
- ► We have expressed the cut (relevant graph-related quantity) ⇒ In terms of vectors and matrices (amenable algebraic objects)
- Find vector $\mathbf{s} \in \{-1,1\}^{|V|}$ such that:

 $\Rightarrow \sum_{i} s_{i} = |V_{2}| - |V_{1}| \text{ (desired group sizes), and}$ $\Rightarrow \text{Minimizes } C(\mathbf{s}) = \frac{1}{4}\mathbf{s} \mathbf{Ls}$

<ロ> <部> < 部> < き> < き> < き</p>

1.022 Introduction to Network Models Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.