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Graph Laplacian 

� Vertex degrees often stored in the diagonal matrix D, where Dii = di 

⎛ ⎞ 1 
2 0 0 0

⎜ ⎟0 2 0 0  ⎜ ⎟D = ⎝ 0 0 1 0  4 3 
0 0 0 3 2 

� The |V | × |V | symmetric matrix L := D − A is called graph 
Laplacian 

⎛ ⎞ ⎧ 2 −1 0 −1⎨ di , if i = j ⎜ ⎟ −1 2 0 −1 ⎜ ⎟= −1, if (i , j) ∈ E , L = Lij ⎩ ⎝ 0 0 1 −1
0, otherwise −1 −1 −1 3

� Variants of the Laplacian exist, with slightly different interpretations 

⇒ Normalized Laplacian Ln = D−1/2LD−1/2 

⇒ Random-walk Laplacian Lrw = D−1L
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Laplacian matrix properties 

�

�

�

� Smoothness: For any vector x ∈ R|V | of “vertex values”, one has 
�

x Lx = (xi − xj )
2 

(i,j)∈E 

which can be minimized to enforce smoothness of functions on G 

� Incidence relation: L = BB where B has arbitrary orientation 

� Positive semi-definiteness: Follows since x Lx ≥ 0 for  all  x ∈ R|V | 

� Rank deficiency: Since L1 = 0, L is rank deficient 
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Laplacian matrix properties 

�

Spectrum and connectivity: L1 = 0, so 0 is an eigenvalue 

0 =  λ1 ≤ λ2 ≤ . . . ≤ λn 

� The second-smallest eigenvalue λ2 is called the algebraic connectivity 
� If λ2 = 0,  then  G is connected 
� If G has k connected components then 0 = λk < λk+1

Matrix Tree Theorem: The number of spanning trees of G is 

t(G ) =  λ2 × . . .× λn. 

� Spanning tree: a subgraph that is a tree which includes all the 
vertices. 
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Courant Fischer Theorem 

� �

� �

� �� � ��

xT Lx xT Lx 
λ1 = min v1 = argmin

x=0 xT x x=0 xT x 

xT Lx xT Lx 
λ2 = min v2 = argmin

x=0 xT x xT x x=0 
x⊥v1 x⊥v1 

Courant Fischer Theorem: M an n × n symmetric matrix with 
eigenvalues λ1 ≤ . . .  ≤ λn and eigenvectors v1, . . . , vn. 

� Sk : the  span  of  v1, . . . , vk , 1  ≤ k ≤ n (S0 = {0}). 
� S⊥:orthogonal complement of Sk . k 

Then, 
xT Mx xT Mx 

λk = min vk = argmin . 
x =0 xT x xT x x =0 

x∈S⊥ 
x∈S⊥ 

k k 
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Community detection and spectral clustering 

� Nodes in many real-world networks organize into communities 

Ex: families, clubs, political organizations, urban areas, . . . 

� Supported by the strength of weak ties theory 

� Community (a.k.a. group, cluster, module) members are: 

⇒ Well connected among themselves

⇒ Relatively well separated from the rest
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Zachary’s karate club 

 

� Social interactions among members of a karate club in the 70s 

⇒ Canonical network for community detection methods

 
 https://ocw.mit.edu/help/faq-fair-use/  

� The club split into two during the study (white and red groups) 

⇒ Offers ground-truth community membership

� Could we have predicted the split only from the network structure? 
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Political blogs 

 
 

� The political blogosphere for the US 2004 presidential election 

 
 

 https://ocw.mit.edu/help/faq-fair-use/.

� Community structure of liberal and conservative blogs is apparent 

⇒ Strong evidence of partisan homophily in the network
� Can we detect both parties without looking at the blogs’ content? 
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School students 

 

 

� Social network from a town’s middle and high school students 

Moody, James. "Race, School Integration, and Friendship Segregation in America. American Journal of Sociology 107 (2001): 679–716.  © University of Chicago Press. All rights reserved. 
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

� Two binary divisions are apparent from the structure of the network 
⇒ Racial division marked in red

⇒ Age division (middle - high) marked in blue
� Can we estimate race and age of a student from the structure? 
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Physicists working on Network Science 

 
                 

� Co-authorship network of physicists working on networks 
⇒ Edges represent the existence of a collaborative publication

 
                 

 

� Tightly-knit subgroups are evident from the network structure 
⇒ Some researchers work at the boundary between two groups?

� Can we recover this information without relying on visual inspection? 
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Automatic detection of communities 

� Recurring theme in all of the examples provided 

⇒ How can we automatically detect communities in a network?
� But ... what is a sensible definition of community? 

⇒ Multiple definitions lead to multiple community detection methods
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Graph partitioning and community detection 

� Community detection is a challenging problem 

⇒ No universal definition of community

⇒ No prior knowledge of community number or sizes

⇒ Rare ground-truth data for validation

� We begin with a simpler problem ⇒ Graph partitioning 
� Divide V into a given number of non-overlapping groups of a given size 
� Graph partitioning is still a hard problem � �|V | ⇒ Even graph bisection (two groups, equal size) has possibilities |V |/2 

� Exhaustive search intractable beyond small datasets 
� Need to rely on tractable relaxations of natural partitioning criteria 
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Graph partitioning and minimum cuts 

� Community members should be well-connected among themselves 

⇒ Loosely connected with members of other communities

� A cut C is the weight of edges between blocks V1 and V2 = V \V1 

�
C = cut(V1, V2) =  Aij

i∈V1, j∈V2 

� Find cut that achieves the desired sizes in V1 and V2 while minimizing C 
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Graph partitioning and the Laplacian matrix 

�

�

� Assign to each node i ∈ V an identifier si ∈ {−1, 1} 

⇒ Form the vector s = [s1, s2, . . . , s|V |]�
� Notice that C (s) =  ij Aij where si = −1 and  sj = +1

� It can be shown that C (s) =  14 s Ls, where L is the Laplacian matrix 

⇒ You will show this in your homework

� We have expressed the cut (relevant graph-related quantity) 

⇒ In terms of vectors and matrices (amenable algebraic objects)

� Find vector s ∈ {−1, 1}|V | such that: �⇒ = |V2| − |V1| (desired group sizes), andi si 

⇒ Minimizes C (s) =  14 s Ls 
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