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Graph Laplacian

> Vertex degrees often stored in the diagonal matrix D, where D;; = d;

200 0 \ !
0 200
D= 0 010 4 3
0 0 0 3 >
» The |V| x |V| symmetric matrix L := D — A is called graph
Laplacian
2 -1 -1
di. - iMi=J -1 2 8 —1\
Lj=<¢ -1, if(i,j)eE ,L= 0 0 1 -1
0, otherwise

-1 -1 -1 3

» Variants of the Laplacian exist, with slightly different interpretations
= Normalized Laplacian L, = D~%/2LD~1/2
= Random-walk Laplacian L,, = D71L
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Laplacian matrix properties

» Smoothness: For any vector x € RIVI of “vertex values”, one has

x Lx = Z (xi — x;)?

(ij)EE
which can be minimized to enforce smoothness of functions on G
» Incidence relation: L = BB where B has arbitrary orientation
» Positive semi-definiteness: Follows since x Lx > 0 for all x € RIV!

» Rank deficiency: Since L1 = 0, L is rank deficient

u]
L)
I
i
!
N
o
o)

Lecture 6 Introduction to Network Models

W



Laplacian matrix properties
Spectrum and connectivity: L1 =0, so 0 is an eigenvalue

0= < <. <\,
» The second-smallest eigenvalue )\ is called the algebraic connectivity
» If A\, =0, then G is connected
» If G has k connected components then 0 = Ay < Agq1
Matrix Tree Theorem: The number of spanning trees of G is
tH(G) =X X ... X Ay

vertices.
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» Spanning tree: a subgraph that is a tree which includes all the
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Courant Fischer Theorem

xTLx CoxTlx
A1 = min — v = argmin —=
x=0 X'X x=0 X' X
_ xTlx - xTLx
A2 = min + vo = argmin ——
x=0  xTx 0 X'x
xLvy xLvy

Courant Fischer Theorem: M an n x n symmetric matrix with
eigenvalues \; < ... <\, and eigenvectors vi,..., V.

> Si: thespan of vi,..., v, 1 < k <n (S ={0}).
» S;t:orthogonal complement of Sy.

Then,
. xTMx - xT Mx
Ak = min - Vi = argmin —-—.
x =0 x'Xx x =0 X' X
xest xesit
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Community detection and spectral clustering

> Nodes in many real-world networks organize into communities
Ex: families, clubs, political organizations, urban areas,

» Supported by the strength of weak ties theory

b7\ KX

» Community (a.k.a. group, cluster, module) members are:
= Well connected among themselves
Lecture 6

= Relatively well separated from the rest
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Zachary's karate club

» Social interactions among members of a karate club in the 70s
= Canonical network for community detection methods

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For
ion, see http w.mit. fair-

> The club split into two during the study (white and red groups)
= Offers ground-truth community membership
» Could we have predicted the split only from the network structure?
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Political blogs

» The political blogosphere for the US 2004 presidential election

Commons license. For more

Adamic, Lada and Natalie Glance. "The Political Blogosphere and the 2004 U.S. Election: Divided They Blog."
ion, see hitps://ocw.mit

March 4, 2005. © Lada Adamic and Natalie Glance. All rights reserved. This content is excluded from our Creative

fag-fair-use/
» Community structure of liberal and conservative blogs is apparent
Lecture 6

= Strong evidence of partisan homophily in the network

[m]
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» Can we detect both parties without looking at the blogs' content?
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School students

» Social network from a town's middle and high school students

This content is excluded from our Creative Commons license. For more i

A}
see https://ocw.mit
» Two binary divisions are apparent from the structure of the network
= Racial division marked in red
Lecture 6

Moody, James. "Race, School Integration, and Friendship Segregation in America. American Journal of Sociology 107 (. zom) 679-716. © University of Chicago Press. All rights reserved.

= Age division (middle - high) marked in blue

Introduction to Network Models

» Can we estimate race and age of a student from the structure?
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Physicists working on Network Science

» Co-authorship network of physicists working on networks
=- Edges represent the existence of a collaborative publication

)

Newman, M. E. ., and M. Girvan. "Finding and evaluating community structure in networks." Physical Review E 69
(2009: 026113, © American Poltical Saciety. Al rights reserved. This content is excluded from our Creative
Commonslicense. For more ion, see hitps://ocw.

> Tightly-knit subgroups are evident from the network structure

= Some researchers work at the boundary between two groups?
» Can we recover this information without relying on %‘/isualiinspgctiorl?
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Automatic detection of communities
» Recurring theme in all of the examples provided
= How can we automatically detect communities in a network?

> But ... what is a sensible definition of community?

= Multiple definitions lead to multiple community detection methods

>
oA
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Graph partitioning and community detection

» Community detection is a challenging problem

= No universal definition of community

= No prior knowledge of community number or sizes
= Rare ground-truth data for validation

» We begin with a simpler problem =- Graph partitioning

» Divide V into a given number of non-overlapping groups of a given size
» Graph partitioning is still a hard problem

= Even graph bisection (two groups, equal size) has (I
» Exhaustive search intractable beyond small datasets

V|/2) possibilities

Lecture 6
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> Need to rely on tractable relaxations of natural partitioning criteria
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Graph partitioning and minimum cuts

» Community members should be well-connected among themselves
= Loosely connected with members of other communities

]
7 v,

> A cut C is the weight of edges between blocks V4 and V, = V\V;
C = cut(Vl, \/2) = Z AU

ieVi,jeVvs
» Find cut that achieves the desired sizes in V4 and V5, while minimizing C
[m] [l = =
Introduction to Network Models
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Graph partitioning and the Laplacian matrix

> Assign to each node i € V an identifier s; € {—1,1}
= Form the vector s = [s, 5,

» Notice that C(s) = >_,; Aj where s;

OR] S|V|]
> It can be shown that C(s)

~landsj=+1
-1

7
= You will show this in your homework

s Ls, where L is the Laplacian matrix

> We have expressed the cut (relevant graph-related quantity)
= In terms of vectors and matrices (amenable algebraic objects)
» Find vector s € {—1,1}!VI such that:

_ 1

= 3 ;s5i = | Vo] — | V4| (desired group sizes), and
= Minimizes C(s) = zs Ls
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