Recitation 2, Probability Review
 Paolo Bertolotti

1 Elementary Probability

Probability allows us to study the likelihood of an event's occurrence. Consider rolling a fair die. We do not know what number will be rolled with certainty but we know there is a chance of rolling a 4. Before assigning likelihoods to values, we define the basic underlying framework.

- Experiment: an action where the result is uncertain
- Sample space: the set of all possible outcomes of an experiment
- Event: a subset of the sample space

In our die example, the experiment is rolling a die once. The sample space is $\{1,2,3,4,5,6\}$. Rolling a 4 would be an example of an event.

Given a sample space S, the probability P is a function from the space of events in S to the interval $[0,1]$. It satisfies the following properties:

1. Countable additivity: For any sequence A_{i} of events in S such that $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$, then $P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$. In words, the probability of any disjoint event occurring in some sequence is equal to the sum of their individual probabilities.
2. Normalization: $P(S)=1$

Question: If $A \in S$ with probability $P(A)$, what is the probability of the event A_{c}, A^{\prime} 's complement? By their definition, A and A_{c} satisfy $A \cup A_{c}=S$ and $A \cap A_{c}=\emptyset$. Therefore, we have $1=P(S)=$ $P\left(A \cup A_{c}\right)=P(A)+P\left(A_{c}\right)$ and $P\left(A_{c}\right)=1-P(A)$. For example, the probability of not rolling a 4 is equal to 1 minus the probability of rolling a 4 .

Given events A and B where $P(B)>0$, the conditional probability of A given B is

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \tag{1}
\end{equation*}
$$

Example: Consider a fair die, where fair means every outcome in $\{1,2,3,4,5,6\}$ happens with equal probability $1 / 6$. Define the event $A=\{4 o r 5\}$. What is $P(A)$? Simple, $P(A)=1 / 6+1 / 6=1 / 3$. Now, what happens if we have additional information regarding the toss.

- Case 1: If $B_{1}=$ "the outcome is an even number", then $P\left(A \mid B_{1}\right)=1 / 3$
- Case 2: If $B_{2}=$ "the outcome is larger than 3 ", then $P\left(A \mid B_{2}\right)=2 / 3$
- Case 3: If $B_{3}=$ "the outcome is less or equal to 3 ", then $P\left(A \mid B_{3}\right)=0$

Two events are independent iff $P(A \cap B)=P(A) P(B)$. Independence implies $P(A)=$ $P(A \mid B)$ assuming $P(B)>0$, which means that B 's occurrence provides no information about A. Independence simplifies many calculations. Two important theorems using the concept of conditional expectation are:

Theorem 1 (Law of Total Probability) If A is an event and B_{i} is a sequence of n events that partitions the sample space (meaning they are all disjoint and their union equals the sample space), then

$$
\begin{equation*}
P(A)=\sum_{i=1}^{n} P\left(A \mid B_{i}\right) P\left(B_{i}\right) . \tag{2}
\end{equation*}
$$

Theorem 2 (Bayes' Theorem) For events A and B with $P(B)>0$,

$$
\begin{equation*}
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P\left(B \mid A_{c}\right) P\left(A_{c}\right)} \tag{3}
\end{equation*}
$$

where the second equality follows from the Law of Total Probability.

2 Random Variables

A random variable (rv) is a function $X: S \rightarrow \mathbb{R}$ that assigns a real number to each event in the sample space. For example, consider an experiment where we toss a coin ten times. The sample space is the collection of all possible combinations of H and T of size 10. A possible event is $s=\{H H H T H H H T T T\} \in S$. We can define the random variable Y that counts the number of heads. In our example, $Y(s)=6$.

A random variable is called discrete if it takes on at most a countable set of values. For every discrete random variable X we define the probability mass function (pmf) of X by

$$
\begin{equation*}
p_{X}(x)=P(\{s \in S: X(s)=x\}) \tag{4}
\end{equation*}
$$

We usually omit the argument of the rv X and simply write

$$
\begin{equation*}
p_{X}(x)=P(X=x) \tag{5}
\end{equation*}
$$

Assume the random variable X takes values in the set $a_{1}, a_{2}, \ldots, a_{n}$ and the random variable Y takes values in the set $b_{1}, b_{2}, \ldots, b_{m}$. We say that X and Y are independent random variables if

$$
\begin{equation*}
P\left(\left\{X=a_{i}\right\} \cap\left\{Y=b_{j}\right\}\right)=P\left(X=a_{i}\right) P\left(Y=b_{j}\right) \tag{6}
\end{equation*}
$$

for every $i=1,2, \ldots, n$ and $j=1,2, \ldots, m$.
All random variables have a cumulative distribution function F, which is defined as

$$
\begin{equation*}
F_{X}(x)=P(X \leq x) \tag{7}
\end{equation*}
$$

Continuous random variables, which can take a uncountably infinite set of values, do not have a pmf. Instead, they have a probability density function (pdf) f, defined as

$$
\begin{equation*}
f_{X}(x)=\frac{d}{d x} F(x) \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
P(x \in A)=\int_{A} f_{X}(x) d x \tag{9}
\end{equation*}
$$

2.1 Expectation and Variance

The expected value of a random variable X, also called its mean, is the probability-weighted average value for the variable. It is defined as

$$
\begin{align*}
E\left[X_{\text {continuous }}\right] & =\int x f_{X}(x) d x \tag{10}\\
E\left[X_{\text {discrete }}\right] & =\sum_{i} x_{i} p_{X}\left(x_{i}\right) \tag{11}
\end{align*}
$$

For independent random variables X and $Y, E[X Y]=E[X] E[Y]$.
The variance of a random variable X measures how dispersed it is around its mean. In a sense, it captures how variable it is.

$$
\begin{equation*}
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2} \tag{12}
\end{equation*}
$$

The covariance of two random variables X and Y measures how much they co-vary or co-move. I.e., if X goes up, does Y go up or down. It is defined as

$$
\begin{equation*}
\operatorname{cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y] \tag{13}
\end{equation*}
$$

Theorem 3 (Variance of Sums) For any sequence X_{i} of random variables

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+\sum_{i \neq j} \operatorname{cov}\left(X_{i}, X_{j}\right) \tag{14}
\end{equation*}
$$

Remark: As a special case, when X_{i} and X_{j} are independent for each $i \neq j$, the second term above vanishes and

$$
\begin{equation*}
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \tag{15}
\end{equation*}
$$

2.2 Common Distributions

A quick reminder of some useful random variables and their distributions.

- Bernoulli: Models a biased coin toss with bias parameter p. Random variable X takes value 1 with probability p and value 0 with probability $1-p$
- Binomial: Models the sum of outcomes of n biased coin tosses with bias parameter p. Random variable X takes the values in $\{0, \ldots, n\}$ with $\operatorname{pmf} p_{X}(x)=\binom{n}{x} p^{x}(1-p)^{n-x}$
- Geometric: Models the number of tosses until a heads appears in biased coin tosses with bias parameter p (giving the probability of heads). I.e. the number of trials until the first success. Random variable X takes the values in $\{1, \ldots\}$ with $\operatorname{pmf} p_{X}(x)=(1-p)^{x-1} p$
- Poisson: One form of continuum limit for the binomial distribution when p becomes small and n becomes large. Governed by an intensity / rate parameter λ. Random variable X takes values in $\{0, \ldots\}$ with $\operatorname{pmf} p_{X}(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}$

1

[^0]MIT OpenCourseWare
https://ocw.mit.edu/

1.022 Introduction to Network Models

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

[^0]: ${ }^{1}$ The skeleton for these notes was provided by the recitation notes for MIT 6.268 Network Science and Models

