
    
       

    
  

   

                
                    

             

         

            

        

                     
          

                    
        

                       
                  

 
           

     

                   
                         

                      
            

                  

    
    

  

                   
               

           

               

               

 

    
       

    
  

   

                
                    

             

         

            

        

                     
          

                    
        

                       
                  

 
           

     

                   
                         

                      
            

                  

    
    

  

                    
               

           

               

               

 

    
       

    
  

   

                
                    

             

         

            

        

                     
          

                    
        

                       
                  

 
           

     

                   
                         

                      
            

                  

    
    

  

                    
               

           

               

               

 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
1.022 Introduction to Network Models Fall 2018 

Recitation 2, Probability Review 
Paolo Bertolotti 

1 Elementary Probability 

Probability allows us to study the likelihood of an event’s occurrence. Consider rolling a fair die. 
We do not know what number will be rolled with certainty but we know there is a chance of rolling 
a 4. Before assigning likelihoods to values, we define the basic underlying framework. 

• Experiment: an action where the result is uncertain 

• Sample space: the set of all possible outcomes of an experiment 

• Event: a subset of the sample space 

In our die example, the experiment is rolling a die once. The sample space is {1, 2, 3, 4, 5, 6}. 
Rolling a 4 would be an example of an event. 

Given a sample space S, the probability P is a function from the space of events in S to the 
interval [0, 1]. It satisfies the following properties: 

1. Countable additivity: For any sequence Ai of events in S such that Ai ∩ Aj = ∅ for all i =6 j, 
∞S P∞ then P ( Ai) = i=1 P (Ai). In words, the probability of any disjoint event occurring in 
i=1 

some sequence is equal to the sum of their individual probabilities. 

2. Normalization: P(S) = 1 

Question: If A ∈ S with probability P (A), what is the probability of the event Ac, A’s complement? 
By their definition, A and Ac satisfy A ∪ Ac = S and A ∩ Ac = ∅. Therefore, we have 1 = P (S) = 
P (A ∪ Ac) = P (A) + P (Ac) and P (Ac) = 1 − P (A). For example, the probability of not rolling a 
4 is equal to 1 minus the probability of rolling a 4. 

Given events A and B where P (B) > 0, the conditional probability of A given B is 

P (A ∩ B) 
P (A|B) = (1) 

P (B) 

Example: Consider a fair die, where fair means every outcome in {1, 2, 3, 4, 5, 6} happens with equal 
probability 1/6. Define the event A = {4or5}. What is P (A)? Simple, P (A) = 1/6 + 1/6 = 1/3. 
Now, what happens if we have additional information regarding the toss. 

• Case 1: If B1 = ”the outcome is an even number”, then P (A|B1) = 1/3 

• Case 2: If B2 = ”the outcome is larger than 3”, then P (A|B2) = 2/3 
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• Case 3: If B3 = ”the outcome is less or equal to 3”, then P (A|B3) = 0 

Two events are independent iff P (A ∩ B) = P (A)P (B). Independence implies P (A) = 
P (A|B) assuming P (B) > 0, which means that B’s occurrence provides no information about 
A. Independence simplifies many calculations. Two important theorems using the concept of 
conditional expectation are: 

Theorem 1 (Law of Total Probability) If A is an event and Bi is a sequence of n events 
that partitions the sample space (meaning they are all disjoint and their union equals the sample 
space), then 

nX 
P (A) = P (A|Bi)P (Bi). (2) 

i=1 

Theorem 2 (Bayes’ Theorem) For events A and B with P (B) > 0, 

P (B|A)P (A) P (B|A)P (A) 
P (A|B) = = (3) 

P (B) P (B|A)P (A) + P (B|Ac)P (Ac) 

where the second equality follows from the Law of Total Probability. 

2 Random Variables 

A random variable (rv) is a function X : S → R that assigns a real number to each event in the 
sample space. For example, consider an experiment where we toss a coin ten times. The sample 
space is the collection of all possible combinations of H and T of size 10. A possible event is 
s = {HHHTHHHTTT } ∈ S. We can define the random variable Y that counts the number of 
heads. In our example, Y (s) = 6. 

A random variable is called discrete if it takes on at most a countable set of values. For every 
discrete random variable X we define the probability mass function (pmf) of X by 

pX (x) = P ({s ∈ S : X(s) = x}) (4) 

We usually omit the argument of the rv X and simply write 

pX (x) = P (X = x) (5) 

Assume the random variable X takes values in the set a1, a2, ..., an and the random variable Y 
takes values in the set b1, b2, ..., bm. We say that X and Y are independent random variables if 

P ({X = ai} ∩ {Y = bj }) = P (X = ai)P (Y = bj ) (6) 

for every i = 1, 2, ..., n and j = 1, 2, ..., m. 

All random variables have a cumulative distribution function F , which is defined as 

FX (x) = P (X ≤ x) (7) 
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Continuous random variables, which can take a uncountably infinite set of values, do not have a 
pmf. Instead, they have a probability density function (pdf) f , defined as 

d 
fX (x) = F (x) 

dx 
(8) 

where Z 
P (x ∈ A) = fX (x)dx (9) 

A 

2.1 Expectation and Variance 

The expected value of a random variable X, also called its mean, is the probability-weighted 
average value for the variable. It is defined as Z 

E[Xcontinuous] = xfX (x)dx (10) X 
E[Xdiscrete] = xi pX (xi) (11) 

i 

For independent random variables X and Y , E[XY ] = E[X]E[Y ]. 

The variance of a random variable X measures how dispersed it is around its mean. In a sense, 
it captures how variable it is. 

V ar(X) = E[(X − E[X])2] = E[X2] − E[X]2 (12) 

The covariance of two random variables X and Y measures how much they co-vary or co-move. 
I.e., if X goes up, does Y go up or down. It is defined as 

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ] − E[X]E[Y ] (13) 

Theorem 3 (Variance of Sums) For any sequence Xi of random variables 

n n X X X 
V ar( Xi) = V ar(Xi) + cov(Xi, Xj ) (14) 

i=1 i=1 i=6 j 

Remark: As a special case, when Xi and Xj are independent for each i 6= j, the second term above 
vanishes and 

n n X X 
V ar( Xi) = V ar(Xi) (15) 

i=1 i=1 

2.2 Common Distributions 

A quick reminder of some useful random variables and their distributions. 

• Bernoulli: Models a biased coin toss with bias parameter p. Random variable X takes value 
1 with probability p and value 0 with probability 1 − p 
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• Binomial: Models the sum of outcomes of n biased coin tosses with bias parameter p. � � 
n Random variable X takes the values in {0, ..., n} with pmf pX (x) = px(1 − p)n−x 
x 

• Geometric: Models the number of tosses until a heads appears in biased coin tosses with 
bias parameter p (giving the probability of heads). I.e. the number of trials until the first 
success. Random variable X takes the values in {1, ...} with pmf pX (x) = (1 − p)x−1p 

• Poisson: One form of continuum limit for the binomial distribution when p becomes small 
and n becomes large. Governed by an intensity / rate parameter λ. Random variable X takes 

−λλx e values in {0, ...} with pmf pX (x) = x! 

1The skeleton for these notes was provided by the recitation notes for MIT 6.268 Network Science and Models 
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