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An Example: Spam Filtering 

I Bayes’ Rule was a crucial conceptual ingredient in 
the first generation of e-mail spam filters, 

I Suppose that you receive a piece of e-mail whose 
subject line contains “check this out” (a popular 
phrase among spammers) 

I What is the chance the message is spam? (without 
looking at the sender or the message content) 
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An Example: Spam Filtering (Continued) 

I This is a question about conditional probability: 

Pr(spam|“check this out”) 

I To determine this value, we need to know some facts: 
I 40% of all your e-mail is spam 
I 1% of all spam messages contain the phrase “check this out” 
I 0.4% of all non-spam messages contain this phrase 

Lectures 18 and 19 Introduction to Network Models 3 



/
2

An Example: Spam Filtering (Continued) 

I Writing these in terms of probabilities: 

Pr(spam) = 0.4 

Pr(“check this out”|spam) = 0.01 

Pr(“check this out”|not spam) = 0.004 

Pr(“check this out”) = Pr(spam).Pr(“check this out”|spam) + 

Pr(not spam).Pr(“check this out”|not spam) 

= 0.4 × 0.01 + 0.6 × 0.004 = 0.0064 

⇒ Use Bayes’ Rule to write

Pr(“check this out”|spam)
Pr(spam|“check this out”) = Pr(spam)

Pr(“check this out”) 
0.004 5 

= = = 0.625 
0.0064 8 
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I Realization: Assume θ = Indian

I Agent 1 arrives. Her signal indicates ‘Chinese’.
I She chooses to have a Chinese dinner

/

Simple Herding Experiment 

I Individuals (hereafter called agents) arrive in town sequentially and choose to 
dine in an Indian or in a Chinese restaurant. 

I One restaurant strictly better, underlying state θ ∈ {Chinese, Indian}
⇒ is determined by initial random event that the agents can’t observe

I Agents have independent binary private signals (si ) 

⇒ Signals indicate the better option with probability p > 1/2.
I Agents observe prior decisions, but not the signals of others 
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I Agent 1 arrives. Her signal indicates ‘Chinese’.
I She chooses to have a Chinese dinner

Simple Herding Experiment 

I Individuals (hereafter called agents) arrive in town sequentially and choose to 
dine in an Indian or in a Chinese restaurant. 

I One restaurant strictly better, underlying state θ ∈ {Chinese, Indian}
⇒ is determined by initial random event that the agents can’t observe

I Agents have independent binary private signals (si ) 

⇒ Signals indicate the better option with probability p > 1/2.
I Agents observe prior decisions, but not the signals of others 
I Realization: Assume θ = Indian 
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Signal = ‘Chinese’
Decision = ‘Chinese’

Simple Herding Experiment 

I Individuals (hereafter called agents) arrive in town sequentially and choose to 
dine in an Indian or in a Chinese restaurant. 

I One restaurant strictly better, underlying state θ ∈ {Chinese, Indian}
⇒ is determined by initial random event that the agents can’t observe

I Agents have independent binary private signals (si ) 

⇒ Signals indicate the better option with probability p > 1/2.
I Agents observe prior decisions, but not the signals of others 
I Realization: Assume θ = Indian 

I Agent 1 arrives. Her signal indicates ‘Chinese’. 
I She chooses to have a Chinese dinner 
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Decision = ‘Chinese’

2

Signal = ‘Chinese’
Decision = ‘Chinese’

Simple Herding Experiment 

I Individuals (hereafter called agents) arrive in town sequentially and choose to 
dine in an Indian or in a Chinese restaurant. 

I One restaurant strictly better, underlying state θ ∈ {Chinese, Indian}
⇒ is determined by initial random event that the agents can’t observe

I Agents have independent binary private signals (si ) 

⇒ Signals indicate the better option with probability p > 1/2.
I Agents observe prior decisions, but not the signals of others 
I Realization: Assume θ = Indian 

I Agent 2 arrives. His signal indicates ‘Chinese’. 
I He also chooses to eat Chinese food 
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Decision = ‘Chinese’

2

Decision = ‘Chinese’

3

Signal = ‘Indian’
Decision = ‘Chinese’

Simple Herding Experiment 

I Individuals (hereafter called agents) arrive in town sequentially and choose to 
dine in an Indian or in a Chinese restaurant. 

I One restaurant strictly better, underlying state θ ∈ {Chinese, Indian}
⇒ is determined by initial random event that the agents can’t observe

I Agents have independent binary private signals (si ) 

⇒ Signals indicate the better option with probability p > 1/2.
I Agents observe prior decisions, but not the signals of others 
I Realization: Assume θ = Indian 

I Agent 3 arrives. Her signal indicates ‘Indian’. 
I She disregards her signal and copies the decisions of agents 1 and 2. 
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Decision = ‘Chinese’

2

Decision = ‘Chinese’

3

Decision = ‘Chinese’

Simple Herding Experiment 

I Individuals (hereafter called agents) arrive in town sequentially and choose to 
dine in an Indian or in a Chinese restaurant. 

I One restaurant strictly better, underlying state θ ∈ {Chinese, Indian}
⇒ is determined by initial random event that the agents can’t observe

I Agents have independent binary private signals (si ) 

⇒ Signals indicate the better option with probability p > 1/2.
I Agents observe prior decisions, but not the signals of others 
I Realization: Assume θ = Indian 

I If the first two agents choose Chinese, everyone else selects Chinese. 
I People do not converge on the better restaurant 
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Proof Idea 

I Agent i should guess ”Chinese” if 

1 
Pr (θ = “Chinese” | what Agent i has observed + her private signal ) > 

2 

and guess “Indian” otherwise. 
I The prior probabilities are 

1 1 
Pr (θ = “Chinese”) = 

2 
& Pr (θ = “Indian”) = 

2 

1I We assume private signals indicate the better option with probability p > 2 

1 
Pr (si = “Chinese” | θ = “Chinese”) = p > 

2 

1 
Pr (si = “Indian” | θ = “Indian”) = p > 

2 
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–Proof Idea -- More Details 

I Can use Bayes’ Rule to calculate 

Pr(θ=“Chinese”).Pr(si =“Chinese”|θ=“Chinese”)Pr (θ = “Chinese” | si = “Chinese”) = Pr(si =“Chinese”) 

I The numerator is 12 .p 
I For the denominator 

Pr (si = “Chinese”) = Pr (θ = “Chinese”) .Pr (si = “Chinese” | θ = “Chinese”) 

+ Pr (θ = “Indian”) .Pr (si = “Chinese” | θ = “Indian”)
1 1 1 

= p + (1 − p) = 
2 2 2 

1 makes sense – the roles of “Chinese” and “Indian” in this experiment are 2 
completely symmetric. 

1 

⇒ Pr (θ = “Chinese” | si = “Chinese”) = 2 .p 
= p > 1 

1 2 
2 
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–Proof Idea -- More Details 

I We get the intuitive result that the first agent should select “Chinese” when 
her private signal s1 = “Chinese”. 

I Bayes’ Rule also provides a probability, namely p, that the guess will be 
correct. 

I All individuals trust their own observations when there is a tie between two 
choices. 

I The calculation is similar for the second agent, and we skip it here to move 
on to the calculation for the third agent, where a cascade begins 

⇒ Pr (θ = “Chinese” | s1 = “Chinese”, s2 = “Chinese”, s3 = “Indian”)

I Using Bayes’ Rule 

Pr (θ = “C” | s1 = “C”, s2 = “C”, s3 = “I”) = 

Pr (θ = “C”) .Pr (s1 = “C”, s2 = “C”, s3 = “I” | θ = “C”) 
Pr (s1 = “C”, s2 = “C”, s3 = “I”) 
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I Agent 3 should ignore her private signal (“Indian”) in favor of the two
actions she’s already observed

–Proof Idea -- More Details 

Pr (s1 = “C”, s2 = “C”, s3 = “I” | θ = “C”) = p2(1 − p) 

Pr (s1 = “C”, s2 = “C”, s3 = “I”) 

= Pr (s1 = “C”, s2 = “C”, s3 = “I” | θ = “C”) .Pr (θ = “C”) 

+ Pr (s1 = “C”, s2 = “C”, s3 = “I”|θ = “I”) .Pr (θ = “I”)

=
1 
p 2(1 − p) + 

1 
p(1 − p)2 

2 2 

I Plugging all this back into 

Pr (θ = “C” | s1 = “C”, s2 = “C”, s3 = “I”) 

Pr (θ = “C”) .Pr (s1 = “C”, s2 = “C”, s3 = “I” | θ = “C”) 
= 

Pr (s1 = “C”, s2 = “C”, s3 = “I”) 
1 
2 .p

2(1 − p) 
= 1 

2 .p
2(1 − p) + 12 .p(1 − p)2 

1 
= p > 

2 
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–Proof Idea -- Summary 

I If the first two agents choose “Chinese”, then agent 3 is better off choosing 
“Chinese” even if her signal indicates “Indian” (since two signals are stronger 
than one, and the behavior of the first two agents indicates that their signals 
were pointing to “Chinese”). 

I This is because 

1 
Pr [θ = “Chinese” | s1 = s2 = “Chinese” and s3 = “Indian”] > 

2 

I This reasoning applies later in the sequence (though agents rationally 
understand that those herding is not revealing information). 
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Simple Herding Experiment (continued) 

I If the first two people choose “Chinese” then everyone in order will choose 
the Chinese restaurant as well 

I Of course, the same thing happens if the first two people choose the Indian 
restaurant 

Easley, David and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. 
Cambridge University Press, 2010. © Cambridge University Press. All rights reserved. This content is excluded from our 
Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Simple Herding Experiment (continued) 

I We refer to this phenomenon as herding, since agents after a certain number 
“herd” on the behavior of the earlier agents. 

I Bikchandani, Hirshleifer and Welch refer to this phenomenon as informational 
cascade. 

I Information cascades can lead to non-optimal outcomes 

Lectures 18 and 19 Introduction to Network Models 17 



Potential Challenges 

I In general networks, this gets too complicated very quickly! 
I In fact we proved that the problem of learning is NP Hard, i.e., even 

computers cannot solve it efficiently (in the worst case). 
I We have also developed simpler approaches 
I Let us turn to a simple model of (rule-of-thumb) learning that also 

incorporate network structure. 
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Myopic Learning 

I First introduced by DeGroot (1974) and more recently analyzed by Golub and 
Jackson (2007). 

I Beliefs updated by taking weighted averages of neighbors’ beliefs 
I A finite set {1, . . . , n} of agents 
I Interactions captured by an n × n nonnegative interaction matrix T 

I Tij > 0 indicates the trust or weight that i puts on j 
I T is a stochastic matrix (row sum=1) 

I There is an underlying state of the world θ ∈ R PnI Each agent has initial belief xi (0); we assume θ = 1/n i=1 xi (0) 
I Each agent at time k updates his belief xi (k) according to 

nX 
xi (k + 1) = Tij xj (k) 

j=1 

I For all i , Tij > 0 only if j ∈ N(i), i.e., [Tij ]j captures the neighborhood of 
agent i . 

Lectures 18 and 19 Introduction to Network Models 19 



What Does This Mean? 

I Each agent is updating his or her beliefs as an average of the neighbors’ 
beliefs. 

I Reasonable in the context of one shot interaction. 

I Is it reasonable when agents do this repeatedly? 
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Stochastic Matrices 

Definition 
T is a (row) stochastic matrix, if the sum of the elements in each row is equal to 
1, i.e., X 

Tij = 1 for all i . 
j 

Definition 
T is a doubly stochastic matrix, if the sum of the elements in each row and each 
column is equal to 1, i.e., X X 

Tij = 1 for all i and Tij = 1 for all j . 
j i 

I Throughout, assume that T is a stochastic matrix. Why is this reasonable? 
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Example 

I Consider the following example ⎛ ⎞ 
1/3 1/3 1/3 

T = ⎝ 1/2 1/2 0 ⎠ 

0 1/4 3/4 

I The interaction matrix induces a weighted directed graph: there is an edge 
from i to j (with weight Tij ) if Tij > 0. 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Example (continued) 

I Suppose that initial vector of beliefs is ⎛ ⎞ 
1 

x (0) = ⎝ 0 ⎠ 

0 
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Example (continued) 

I Then updating gives ⎛ ⎞⎛ ⎞ ⎛ ⎞ 
1/3 1/3 1/3 1 1/3 

x (1) = Tx (0) = ⎝ 1/2 1/2 0 ⎠⎝ 0 ⎠ = ⎝ 1/2 ⎠ 

0 1/4 3/4 0 0 
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Example (continued) 

I In the next round, we have ⎛ ⎞⎛ ⎞ 
1/3 1/3 1/3 1/3 

x (2) = Tx (1) = T 2 x (0) = ⎝ 1/2 1/2 0 ⎠⎝ 1/2 ⎠ 

0 1/4 3/4 0 ⎛ ⎞ 
5/18 

= ⎝ 5/12 ⎠ 

1/8 

/ 
225 
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Example (continued) 

I In the next round, we have ⎛ ⎞⎛ ⎞ 
1/3 1/3 1/3 1/3 

x (2) = Tx (1) = T 2 x (0) = ⎝ 1/2 1/2 0 ⎠⎝ 1/2 ⎠ 

0 1/4 3/4 0 ⎛ ⎞ 
5/18 

= ⎝ 5/12 ⎠ 

1/8 
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Example (continued) 

I In the next round, we have ⎛ ⎞⎛ ⎞ 
1/3 1/3 1/3 1/3 

x (2) = Tx (1) = T 2 x (0) = ⎝ 1/2 1/2 0 ⎠⎝ 1/2 ⎠ 

0 1/4 3/4 0 ⎛ ⎞ 
5/18 

= ⎝ 5/12 ⎠ 

1/8 
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Example (continued) 

I In the limit, we have ⎛ ⎞ ⎛ ⎞ 
3/11 3/11 5/11 3/11 

x (n) = T n x (0) → ⎝ 3/11 3/11 5/11 ⎠ x (0) = ⎝ 3/11 ⎠ . 
3/11 3/11 5/11 3/11 

∗I Note that the limit matrix, T = limn→∞ T n has identical rows. 
I Is this kind of convergence general? Yes, but with some caveats. 
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Example of Nonconvergence 

I Consider instead ⎛ ⎞ 
0 

T = ⎝ 1 
1/2 
0 

1/2 
0 ⎠ 

1 0 0 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. 
For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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Example of Nonconvergence 

I In this case, we have ⎛ ⎞ 
1 0 0 

T n = ⎝ 0 1/2 1/2 ⎠ for all n even. 
0 1/2 1/2 ⎛ ⎞ 
1/2 1/2 0 

T n = ⎝ 1 0 0 ⎠ for all n odd. 
1 0 0 

I Matrix oscillates and there is no convergence. 

Lectures 18 and 19 Introduction to Network Models 30 



Convergence 

I Problem in the above example is periodic behavior. 
I It is sufficient to assume that Tii > 0 for all i to ensure aperiodicity. Then we 

have: 

Theorem 
Suppose that T induces a strongly connected network and Tii > 0 for each i , then 

T n = T ∗ ∗ >limn exists and is unique. Moreover, T = ew , where1 
e = [1, 1, . . . , 1]T and w1 is the left eigenvector corresponding to eigenvalue 1, 

Tnormalized such that w e = 1.1 

∗I In other words, T will have identical rows given by w1. 

Lectures 18 and 19 Introduction to Network Models 31 



Consensus and Social Influence 

I An immediate corollary of the preceding result is: 

Proposition 
In the myopic learning model above, if the interaction matrix T defines a strongly 
connected network and Tii > 0 for each i , then there will be consensus among the 

∗agents, i.e., limn→∞ xi (n) = x for all i . 

∗I We can express x as X 
∗ > x = w x(0) = w1i xi (0).1 

i 

I Hence, the limiting beliefs will be weighted averages of the initial beliefs, and 
the relative weights will represent the influences that the various agents have 
on the final consensus beliefs. 

I This shows that the influences of the agents are given by the left eigenvector 
of matrix T corresponding to eigenvalue 1, providing a foundation for 
eigenvector based centrality measures. 
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