
             

   

     

Controlling Epidemics on Networks 

Final Project – 1.022: Introduction to Network Models, Fall 2018 

In this project we will consider the problem of epidemic spreading on networks and how 
to prevent their outbreaks. The project will consist of three main parts, dealing with both 
theoretical and numerical analysis of epidemics on networks. 
Parts I and II will consider the theoretical and computational analysis of some epidemic 

models. For these parts we will focus on a real-world network of global flight connections as 
our main dataset. Specifically, in Part I you will need to get the main dataset that will be 
used in the subsequent parts of the project. This is similar to the homework that you have 
been doing for the course, and will ensure that there are no errors with the implementation 
of your vaccination strategy later. Part II will then guide you through designing simple 
spread models on networks that you will use in order to test various immunization strategies 
for the airport network from a theoretical and practical viewpoint. 
Finally, in Part III you will have to design a general immunization strategy for a set of 

(generic) networks on which an SIS epidemic is simulated. You will have to write an algorithm 
that, given the adjacency matrix of a network and some further parameters, provides a list 
of the nodes to vaccinate. We will test your code on set of test networks, to which you will 
not have access a priori. You will have to describe the strategy you developed in your report 
and hand in your code. 

Timeline 

Each group will have to write a report, and submit the code written in form of an ipython 
notebook (like in your homework). There will be several deadlines associated with the 
individual tasks, so make sure you keep track of those deadlines in order not to lose points. 
As Part II builds up on Part I, you will have to hand in your results for this part earlier. 
We will provide you with a correct solution for the first part afterwards to ensure that there 
are no follow-up errors in Part II. 

Timeline 

There will be the following deadlines. 

• Lecture 22: Get familiar with the data and hand in your results for Part I. 

• Lecture 25: Oral Presentation (15 minutes). 

• One week after Lecture 25: Final project report (including all code). 
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1 Part I – Getting familiar with the data 

Throughout the first two parts of the project we will consider a real world network as our main 
example, namely, the global network of flight connections. In this first task, you will have 
to read in the data, construct and visualize the network, and perform simple computations 
on the data. Many of these tasks should be familiar to you from your homework. 
The original dataset was made available by Tore Opsahl and is discussed in the blog post 

Opsahl, T., 2011. Why Anchorage is not (that) important: Binary ties and 
Sample selection. Available at http://wp.me/poFcY-Vw. 

We have provided you with 2 csv files, that contain all the information of all the airports 
(nodes), and flights (links). In this first part you should familiarize yourself with this dataset, 
and conduct a first analysis which will also be useful for the later tasks. Moreover, the airport 
dataset will be one of the networks on which your algorithm in Part III of this project will 
be evaluated on, so it might be useful to study it carefully. 
Your tasks for this part of the project are the following. 

Task 1 Construct a network from the csv data (5 points) 
In the network data, the edges are directed and correspond to the number of flights from 
airport A to airport B. You should construct a network G from this data as follows. 

• Read in the edge data and create an initial (directed) network. 

• We will work with undirected graphs in the first two parts of this project, so form the 
undirected graph of this network by symmetrizing its adjacency matrix as follows 

Asym = (A + A>)/2. 

• If the undirected graph obtained is not connected, keep its giant component as your 
new graph and work with it from here onwards. 

Hint: Note that command networkx.DiGraph.to undirected returns an undirected 
graph with the same name and nodes and with edge (u, v, data) if either (u, v, data) or 
(v, u, data) is in the digraph. If both edges exist in the digraph and their edge data is differ-
ent, only one edge is created with an arbitrary choice of which edge data to use. 
You must check and correct for this manually if desired, or use other methods to obtain the 
symmetry operation required above. 

Task 2 Analysis of the airport network (10 points) 
Now that you have obtained the network, perform some initial analysis on it. 

• Compute the degree, closeness, betweenness, eigenvector, page-rank, and Katz cen-
trality measures. For page-rank and Katz (that depend on the choice of a parameter) 
select any valid parameter. 

• Describe the results that you have obtained from this analysis. Are there some airports 
that are consistently ranked as important throughout? 
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• Plot the flight network, using some of the extra information for the node files: use the 
longitude and latitude coordinates provided when drawing the nodes; color the nodes 
according to their country labels, and scale the node size according to its eigenvector 
centrality. You may find it useful as well to adjust the transparency of the edges for 
visual clarity. 

Task 3 Produce a simple vaccination function (5 points) 
In Part III of this project you will have to develop an algorithm for efficiently vaccinating 
a network to prevent an epidemic from spreading. In this last task of Part I, you will write 
a simple vaccination function that chooses the nodes to be vaccinated according to degree 
(i.e., the highest degree nodes are to be vaccinated). Your function should take as inputs a 
graph adjacency matrix A (in the form of a sparse scipy matrix), infection rate beta (float), 
recovery rate gamma (float), and the number of nodes to immunize M (integer), and return 
an array nodeList (numpy array) containing the ids of the M nodes to be vaccinated. Your 
function should thus be of the following form: 

def vaccinateNetwork(A,beta,gamma,M): 
# do some calculations.. 
# insert your code... 

return nodeList 

Make sure you hand in your results for Part I in electronic form as ipython notebook and 
pdf (exported from the notebook) on or before Lecture 22. Late submissions will not be 
accepted. 

2 Part II – Analysis and control of epidemics 

2.1 Networked susceptible-infected-susceptible model 

In this part, we study in more detail the model that you have seen in the course for the spread 
of a virus over networks. We denote the set of the vertices with V = {v1, . . . , vn} and the 
adjacency matrix with A = [aij ]. The state of node vi at time t ≥ 0 is a binary random variable 
Xi(t) ∈ {0, 1}. The state Xi(t) = 0 (resp., Xi(t) = 1) indicates that node vi is in the susceptible 
(resp., infected) state. We define the vector of states as X(t) = (X1(t), . . . , Xn(t))

> . The state 
of a node can experience two possible stochastic transitions: 
1) Assume node vi is in the susceptible state at time t. This node can switch to the infected 
state during the time interval [t, t + Δ) with a probability that depends on: (i) an infection 
rate β, (ii) the probability of contact with its neighboring nodes Ni = {j | aij =6 0} and their 
states. We can write the probability of this transition as 

Prob[Xi(t +Δ) = 1|Xi(t) = 0, X(t)] = 1 − Πj∈Ni∧Xj (t)=1(1 − βaij ). (1) 
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We usually have β � 1. Therefore, instead of (1), we use the following first-order approxi-
mation: X 

Prob[Xi(t +Δ) = 1|Xi(t) = 0, X(t)] = βaijXj (t). (2) 
j∈Ni 

2) Assuming that node vi is infected, the probability of vi recovering back to the susceptible 
state in the time interval [t, t + Δ) is given by 

Prob[Xi(t +Δ) = 0|Xi(t) = 1] = γ, (3) 

where 0 ≤ γ ≤ 1 is the curing rate. 

Task 1 First-order approximation of the transition probabilities (5 points) 
Show that the first-order approximation in (2) is in fact an upper bound for the original 
transition probabilities in (1). 

The spread model characterized by (2) and (3) may be hard to analyze for large-scale 
networks. One standard approach is to use a mean-field approximation of the model: define 
pi(t) = Prob[Xi(t) = 1] = E[Xi(t)], i.e., the marginal probability of node vi being infected 
at time t. We can use (2) and (3) to approximate the dynamics of pi(t): X dpi(t) 

n 

dt 
= β(1 − pi(t)) aij pj (t) − γpi(t). (4) 

j=1 

This approximation is widely used in the field of epidemic analysis and control, since it 
performs numerically well for many realistic network topologies. 

Task 2 Simulating the spread dynamics using the mean-field approximation (20 
points) 
Suppose that the first 20 nodes (according to their ids in the dataset) are initially infected. 

a) Use (4) to simulate the evolution of the expected size of the infection defined as p̄(t) = P n 
i=1 pi(t) over time, assuming a recovery rate γ = 0.1 and an infection rate β = 0.1. 

dpi(t) ≈ pi(t+Δ)−pi(t) (Hint: you can use 
dt Δ where Δ = 0.05 and time horizon [0, 5]. ) 

b) Use simulations to find the smallest value of β that results in an outbreak (i.e., the 
infection never dies out). 

Task 3 A criteria for the extinction of the epidemic (15 points) 
Considering only the linear terms in (4) gives an upper bound on the dynamics of pi(t): X dpi(t) 

n 

≤ β aij pj (t) − γpi(t). (5) 
dt 

j=1 

The objective of this task is to use this upper bound to find conditions that ensure virus 
extinction, that is to have limt→∞ p̄(t) = 0. 
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a) Define qi(t) = eγtpi(t). Use (5) to show that 

X dqi(t) 
n 

≤ β aij qj (t). 
dt 

j=1 

b) Let λmax(A) denote the largest eigenvalue of A. Use part (a) to show that 

q(t) ≤ Keβλmax(A)t ¯ ¯ q(0), P n for some K > 0, where q̄(t) = i=1 qi(t). Use this to prove the following upper bound 
on the expected size of the infection: 

p(t) ≤ Ke(βλmax(A)−γ)t ¯ ¯ p(0). 

c) Show that a sufficient condition for virus extinction, that is to ensure that the virus 
will eventually die out, is to have 

γ 
λmax(A) < . (6) 

β 

Effective immunization strategies: An immunization strategy is to choose a subset of 
nodes I ⊆ V and immunizing them against the virus. An immunized node can neither get 
infected nor pass the infection. We call an immunization strategy “effective” if it results in 
the eventual extinction of the virus (almost surely), no matter how widespread the initial 
infection is. A potential idea for designing an effective immunization strategy is to rank the 
nodes based on some centrality measure and immunize them in order of their centralities 
until the condition (6) is satisfied. Note that immunizing node vi is equivalent to removing 
the i-th row and column of A. 

Task 4 Centrality-based effective immunization strategies (15 points) 

a) Assume that β = 0.01 and γ = 0.4. (i) What is the minimum number of immunizations 
required to satisfy condition (6) if you use degree centrality to sort the nodes? (ii) What 
is this minimum number when you use eigenvector centrality instead? 

b) Design a better immunization strategy that requires to immunize at least (i) 1 node 
less, and (ii) 9 nodes less, than the best of the two strategies in part (a) 

3 Part III – Design your own immunization scheme 

Task 1 Strategy description (10 points + 10 bonus points) 
In the final part of this project, you have to design an efficient strategy for vaccinating a 
network. Your function should be of the same form as indicated in Task 3 of Part I of this 
project (c.f. Task 3 in Part I). 
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def vaccinateNetwork(A,beta,gamma,M): 
# do some calculations.. 
# insert your code... 

return nodeList 

You will have to hand in a vaccination function together with your final report explaining 
the reasoning and, where applicable, any addional calculations made to justify this strategy. 
Your vaccination strategy should be well motivated and described in your report; mereley 
submitting the code will not be enough to gain full points. 
Your algorithm will be evaluated on 4 test networks. The first test network is the airport 

network used in Parts I and II of this project. There will be three other networks on 
which your algorithm will be evaluated, to which you will however not have access. The 
only additional information is that these networks have been generated according to a) a 
configuration model, b) a Barabasi-Albert model, and c) a stochastic blockmodel. We may 
reveal some further information about these networks within the duration of the project. 
The evaluation of your algorithm will be according to a full stochastic simulation of an 

SIS dynamics. For each network we will report the mean performance in terms of the fraction 
of the nodes in the network that is infected ± the standard deviation, after a sufficiently 
long simulation time (which will in general be different for each network, but reported back 
to you with the results). The lower the fraction of infected nodes, the better the score of 
your algorithm. 
In terms of computational complexity, we will run your function for a fixed amount of 

time and, if no nodeList is returned by that time then no node will get immunized. This 
upper bound on the running time will of course depend on the number of nodes n in the √ 
network considered and will be equal to n tinv(n), where tinv(n) is the amount of time 
required to invert a full n × n matrix. 
You may want to test your algorithm on some further networks as well. To this end, 

you can employ some of your own simulations and approximations developed above, or use 
a third party python package. For our evaluation we will make use of the companion python 
package to the book Mathematics of Epidemics on Networks by Kiss, Miller, and Simon 
(Springer, 2017), which contains plenty of addional information and resources on epidemic 
spreading on networks. 
https://github.com/springer-math/Mathematics-of-Epidemics-on-Networks. 
Note that you should not employ the functionality of this or any other simulation package 

for any of the earlier parts of this project. 
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