1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems
Institute for Data, Systems, and Society
Massachusetts Institute of Technology

Lecture 3

Bipartite graphs

- A graph $G(V, E)$ is called bipartite when
$\Rightarrow V$ can be partitioned in two disjoint sets, say V_{1} and V_{2}; and
\Rightarrow Each edge in E has one endpoint in V_{1}, the other in V_{2}

- Useful to represent e.g., membership or affiliation networks
\Rightarrow Nodes in V_{1} could be people, nodes in V_{2} clubs
\Rightarrow Associated graph $G\left(V_{1}, E_{1}\right)$ joins members of same club

Adjacency matrix

- Algebraic graph theory deals with matrix representations of graphs \Rightarrow Leverage algebra to 'visualize' graphs as if being plotted
- Q: How can we capture the connectivity of $G(V, E)$ in a matrix?
- A: Binary, symmetric adjacency matrix $\mathbf{A} \in\{0,1\}^{|V| \times|V|}$, with entries

$$
A_{i j}=\left\{\begin{array}{cc}
1, & \text { if }(i, j) \in E \\
0, & \text { otherwise }
\end{array} .\right.
$$

\Rightarrow Note that vertices are indexed with integers $1, \ldots,|V|$

- In words, A is one for those entries whose row-column indices denote vertices in V joined by an edge in E, and is zero otherwise

Adjacency matrix examples

- Examples for undirected graphs and digraphs

$$
\mathbf{A}_{u}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right), \quad \mathbf{A}_{d}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

- If the graph is weighted, store the (i, j) weight instead of 1

Adjacency matrix properties

- Adjacency matrix useful to store graph structure.
\Rightarrow Also, operations on A yield useful information about G
- Degrees: Row-wise sums give vertex degrees, i.e., $\sum_{j=1}^{|V|} A_{i j}=d_{i}$
- For digraphs \mathbf{A} is not symmetric and row-, colum-wise sums differ

$$
\sum_{j=1}^{|V|} A_{i j}=d_{i}^{\text {out }}, \quad \sum_{i=1}^{|V|} A_{i j}=d_{j}^{\text {in }}
$$

- Spectrum: G is d-regular if and only if $\mathbf{1}$ is an eigenvector of \mathbf{A}, i.e.,

$$
\mathbf{A} \mathbf{1}=d \mathbf{1}
$$

Walks, Paths, and Cycles

walk

path between i and j

cycle

shortest path

- Walks: Let \mathbf{A}^{r} denote the r-th power of \mathbf{A}, with entries $A_{i j}^{r}$
- $\left[A^{2}\right]_{i j}:=\sum_{k=1}^{n} A_{i k} A_{k j}$
- Corollary: $\operatorname{tr}\left(\mathbf{A}^{2}\right) / 2=|E|$ and $\operatorname{tr}\left(\mathbf{A}^{3}\right) / 6=\# \triangle$ in G
\Rightarrow You will prove this in your homework

Incidence matrix

- A graph can be also represented by its $|V| \times|E|$ incidence matrix \mathbf{B} $\Rightarrow \mathbf{B}$ is in general not a square matrix, unless $|V|=|E|$
- For undirected graphs, the entries of \mathbf{B} are

$$
B_{i j}=\left\{\begin{array}{lc}
1, & \text { if vertex } i \text { incident to edge } j \\
0, & \text { otherwise }
\end{array} .\right.
$$

- For digraphs we also encode the direction of the edge, namely

$$
B_{i j}=\left\{\begin{array}{cc}
1, & \text { if edge } j \text { is }(k, i) \\
-1, & \text { if edge } j \text { is }(i, k) \\
0, & \text { otherwise }
\end{array} .\right.
$$

Incidence matrix examples

- Examples for undirected graphs and digraphs

$\mathbf{B}_{u}=\left(\begin{array}{ccccc}1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0\end{array}\right), \quad \mathbf{B}_{d}=\left(\begin{array}{ccccc}-1 & 0 & -1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & -1 & 1 & -1 & 0\end{array}\right)$
- If the graph is weighted, modify nonzero entries accordingly

Triadic closure

- Networks are rarely static structures \Rightarrow Think about their evolution
\Rightarrow How are edges formed? \Rightarrow Universal feature \Rightarrow Triadic closure
- If two people in a social network have a friend in common, then there is an increased likelihood that they will become friends at some point in the future

(a) Before B-C edge forms.

(b) After B-C edge forms.

Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010. © Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Triadic closure is very natural \Rightarrow Some reasons ...
\Rightarrow Opportunity: B and C have a higher chance of meeting
\Rightarrow Trusting: B and C are predisposed to trusting each other
\Rightarrow Incentive: A might have incentive to make B and C friends

Homophily

- We tend to be similar to our friends \Rightarrow Well known for long time \Rightarrow Age, race, interests, beliefs, opinions, affluence, ...
- Contextual (as opposed to intrinsic) effect on network formation \Rightarrow Contextual: Friends because we attend the same school \Rightarrow Intrinsic: Friends because a common friend introduces us

Moody, James. "Race, School Integration, and Friendship Segregation in America." American Journal of Sociology 107 (2001): 679-716. © University of Chicago Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- In previous slide, B and C high chance of becoming friends
\Rightarrow Even if they are not aware of common knowledge of A

Measuring homophily

- Is homophily present or is it an artifact of how the network is drawn?
\Rightarrow We need to formulate a precise mathematical measure
- Consider a small network of girls ($q=3 / 9$) and boys ($p=6 / 9$)

- If edges are agnostic to gender, portion of cross-gender edges is $2 p q$
\Rightarrow Homophily Test: If the fraction of cross-gender edges is significantly less than 2 pq , then there is evidence for homophily
\Rightarrow Cross-gender edges $5 / 18<8 / 18=2 p q \Rightarrow$ Mild homophily

Hearing about a new job

- Mark Granovetter (1973) interviewed people that changed jobs
- Most heard about new jobs from acquaintances rather than close friends
\Rightarrow Explanation takes into account local properties and global structure

Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.© Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- A 's friends E, C, and D form a tightly-knit group
- B reaches to a different part of the network \Rightarrow New information
- Deleting (A, B) disconnects the network $\Rightarrow(A, B)$ is a bridge
\Rightarrow But bridges are rare in real-world networks

A social network closer to reality

- In real life, there are other multi-step paths joining A and B
\Rightarrow If (A, B) is deleted, distance becomes more than $2 \Rightarrow$ Local bridge
\Rightarrow An edge is a local bridge when it is not part of a triangle

Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010. © Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Closely knit group of friends are eager to help
\Rightarrow But have almost the same information as you

Strong triadic closure

- How does overrepresentation of bridges relate to acquaintances?
- Consider two different levels of strength in the links of a social network \Rightarrow Strong ties correspond to friends, weak ties to acquaintances

Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010.© Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- A violates the Strong Triadic Closure if it has strong ties to two other nodes B and C, and there is no edge at all (strong or weak) between B and C

Local bridges and weak ties

- Tie strength \Rightarrow Local/interpersonal feature
- Bridge property \Rightarrow Global/structural feature
- How do these two features relate in light of the strong triadic closure?
- If A satisfies the strong triadic closure and is involved in at least two strong ties, then any local bridge it is involved in must be a weak tie

Easley, David, and Jon Kleinberg. Networks, Crowds, and Markets: Reasoning about a Highly Connected World. Cambridge University Press, 2010. © Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

- Acquaintances are natural sources of new information
\Rightarrow Strict modeling assumptions, first-order conclusions, testable

MIT OpenCourseWare
https://ocw.mit.edu/

1.022 Introduction to Network Models

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

