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Outline 

I Decisions, utility maximization 
I Games and Strategies 
I Best Responses and Dominant Strategies (Split or Steal) 
I Dominance Solvability (Split, Steal, or Quit) 
I Nash Equilibrium in pure strategies (coordination game) 
I Nonexistence of pure strategy Nash equilibria 
I Multiplicity of Nash equilibria 

Reading: 
I Easley-Kleinberg, Ch. 6.1-6.6, 6.10 (A&B). 
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Golden Balls: Split or Steal? 

I Two TV show contestants simultaneously pick to either split or steal 
the prize. 

Player 1 / Player 2 Split Steal 
Split (7, 7) (0, 14) 
Steal (14, 0) (0, 0) 

I Here the first number is the payoff to player 1 and the second 
number is the payoff to player 2. More formally, the cell indexed by 
row x and column y contains a pair, (a, b) where a = u1(x , y) and 
b = u2(x , y). 

I What will the outcome of this game be? How would you play? 
I Regardless of what the other player does, playing Steal is better for 

each player. Does it help to talk your opponent out of playing Steal? 
I This is also known as a “prisoner’s dilemma”. 
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Motivation 

I In the context of networked systems (social, communication, 
trasportation, . . . ) agents make a variety of choices. 

I For example: 
I What kind of information to share with others you are connected to. 
I How to evaluate information obtained from friends, neighbors, 

coworkers and media. 
I Whether to trust and form friendships. 
I Which of the sellers in your neighborhood to use. 
I Which websites to visit. 
I How to map your drive in the morning (or equivalently how to route 

your network traffic). 

I In all of these cases, interactions with other agents you are 
connected to affect your payoff, well-being, utility. 

I How to make decisions in such situations? 
I → “multiagent decision theory” or game theory. 
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Rationality and Decision-Making 

I Powerful working hypothesis in economics: individuals act rationally 
in the sense of choosing the option that gives them higher “payoff”. 

I Payoff here need not be monetary payoff. Social and psychological 
factors influence payoffs and decisions. 

I People do not literally maximize utility, but they often act as if they 
do. 

I Can be hard to write down the “right” utility function. 
I Nevertheless, the rational decision-making paradigm is useful because 

it provides us with a (testable) theory of economic and social 
decisions. 

I Classical view of game theory: the game describes everything we 
need to know and the game can be studied in isolation. 

I Instrumental view of game theory: the game as an imperfect 
model of the real world, but a more realistic model isn’t necessarily a 
better model. 
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Strategic Form Games 

I We study the games in which all of the participants act 
simultaneously and without knowledge of other players’ actions. 
Such games are referred to as strategic form games—or as normal 
form games or matrix games. 

I For each game, we have to define 

1. The set of players. 
2. The strategies. 
3. The payoffs. 

I More generally, we also have to define the game form, which 
captures the order of play (e.g., in chess) and information sets (e.g., 
in asymmetric information or incomplete information situations). 
But in strategic form games, play is simultaneous, so no need for 
this additional information. 
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Strategic Form Games (continued) 

More formally: 
Strategic Form Game: A strategic forms game is a triplet 
hI, (Si )i∈I , (ui )i∈I i such that: 

I I is a finite set of players, i.e., I = {1, . . . , I }; 
I Si is the set of available actions for player i ; 

I si ∈ Si is an action for player i ; Q 
I ui : S → R is the payoff (utility) function of player i where S = i Si is 

the set of all action profiles. 

In addition, we use the notation: 

I s−i = [sj ]j 6=i : vector of actions for all players except i . Q 
I S−i = j 6=i Sj is the set of all action profiles for all players except i 

I (si , s−i ) ∈ S is a strategy profile, or outcome. 
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Strategies 

I In game theory, a strategy is a complete description of how to play a 
game. 

I It requires full contingent planning. If instead of playing the game 
yourself, you had to delegate the play to a “computer” with no initiative, 
then you would have to spell out a full description of how the game would 
be played in every contingency. 

I For example, in chess, this would be a hard task (though in some simpler 
games, it can be done more easily). 

I Thinking in terms of strategies is important. 

I But in strategic form games, there is no difference between an action and 
a pure strategy, and we will use them interchangeably. (not valid for 
mixed strategies) 
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Finite Strategy Spaces 

I When the strategy space is finite, and the number of players and actions 
is small, a game can be represented in matrix form. 

I Recall that the cell indexed by row x and column y contains a pair, (a, b) 
where a = u1(x , y ) and b = u2(x , y). 

Example: Matching Pennies. 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

I This game represents pure conflict in the sense that one player’s utility is 
the negative of the utility of the other player. Thus, it is a zero sum 
game. 
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Dominant Strategies 

I Example: Prisoner’s Dilemma. 
I Two people arrested for a crime, placed in separate rooms, and the 

authorities are trying to extract a confession against each other. 

prisoner 1 / prisoner 2 Betray Stay silent 
Betray (−4, −4) (−1, −5) 

Stay silent (−5, −1) (−2, −2) 

I What will the outcome of this game be? 
I Regardless of what the other player does, playing “Betray” is better 

for each player. 
I The action “Betray” strictly dominates the action “Stay silent” 
I Prisoner’s dilemma paradigmatic example of a self-interested, 

rational behavior not leading to jointly (socially) optimal result. 
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Prisoner’s Dilemma and ISP Routing Game 

I Consider two Internet service providers that need to send traffic to 
each other 

I Assume that the unit cost along a link (edge) is 1 

DC C Peering points

s1

t1

s2

t2

ISP1: s1 t1
ISP2: s2 t2

I This situation can be modeled by the “Prisoner’s Dilemma” payoff 
matrix. 

ISP 1 / ISP 2 Hot potato routing Minimum distance routing 
Hot potato routing (−4, −4) (−1, −5) 

Minimum distance routing (−5, −1) (−2, −2) 
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Dominant Strategy Equilibrium 

I Compelling notion of equilibrium in games would be dominant 
strategy equilibrium, where each player plays a dominant strategy. 

Dominant Strategy: A strategy si ∈ Si is dominant for player i if 

0 0 ui (si , s−i ) ≥ ui (si , s−i ) for all s ∈ Si and for all s−i ∈ S−i . i 

∗ Dominant Strategy Equilibrium: A strategy profile s is the dominant 
∗ strategy equilibrium if for each player i , s is a dominant strategy. i 

I These notions could be defined for strictly dominant strategies as 
well. 
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Dominant Strategy Equilibrium 

I Show that in the prisoner’s dilemma game, “betray, betray” is a 
dominant strategy equilibrium. 

Example: Split or Steal? 

Player 1 / Player 2 Split Steal 
Split (7, 7) (0, 14) 
Steal (14, 0) (0, 0) 

It’s easy to check that (Steal, Steal) is a dominant strategy equilibrium. 
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Dominant and Dominated Strategies 

Player 1 / Player 2 
Split (7, 7) (0, 14) (7, −10) 
Steal (14, 0) (0, 0) (0, −10) 
Quit (−10, 7) (−10, 0) (−10, −10) 

Split Steal Quit 

It’s easy to check that there is no dominant strategy equilibrium. But 
Quit is not a “rational” strategy. Why? 
Strictly Dominated Strategy: A strategy si ∈ Si is strictly dominated 

0 for player i if there exists some s ∈ Si such that i 

0 ui (si , s−i ) > ui (si , s−i ) for all s−i ∈ S−i . 
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Iterated Elimination of Strictly Dominated Strategies 

Example: Split, Steal, or Quit 

Player 1 / Player 2 
Split (7, 7) (0, 14) (7, −10) 
Steal (14, 0) (0, 0) (0, −10) 
Quit (−10, 7) (−10, 0) (−10, −10) 

Split Steal Quit 

I Quit is a strictly dominated strategy for both players. 
I No “rational” player would choose Quit. Hence if Player 1 is certain 

that Player 2 is rational, then he can eliminate the latter’s Quit 
strategy, and likewise for Player 2. 

I Thus after one round of elimination of strictly dominated strategies, 
we are back to the Split or Steal, which has a dominant strategy 
equilibrium. 

I Thus iterated elimination of strictly dominated strategies leads to a 
unique outcome, (Steal, Steal) —such a game is called dominance 
solvable. 
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A game that is not dominance solvable 

Example: Meeting Tom Schelling in New York 

Player 1 \ Player 2 library station 
library (1, 1) (0, 0) 
station (0, 0) (1, 1) 

It’s easy to check that this game is not dominance solvable, but (library, 
library) and (station, station) seems to be quite reasonable strategy 
profiles. 
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Pure Strategy Nash Equilibrium 

Pure strategy Nash equilibrium: A pure strategy Nash Equilibrium of a 
∗ strategic game hI, (Si )i∈I , (ui )i∈I i is a strategy profile s ∈ S such that 

for all i ∈ I 

∗ ∗ ∗ ui (si , s−i ) ≥ ui (si , s−i ) for all si ∈ Si . 

I Put differently, the conjectures of the players are consistent: each 
∗ ∗ player i chooses s expecting all other players to choose s−i , and i 

each player’s conjecture is verified in a Nash equilibrium. 

Player 1 \ Player 2 library station 
library (1,1) (0, 0) 
station (0, 0) (1,1) 

Dominant strategy equilibrium ⇒ dominance solvable ⇒ Unique PSNE 
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Reasoning about Nash Equilibrium 

I This has a “steady state” type flavor. In fact, two ways of justifying 
Nash equilibrium rely on this flavor: 

1. Introspection: what I do must be consistent with what you will do 
given your beliefs about me, which should be consistent with my 
beliefs about you,... 

2. Steady state of a learning or evolutionary process. 

I A complementary justification: Nash equilibrium is self-reinforcing 
I If player 1 is told about player 2’s strategy, in a Nash equilibrium she 

would have no incentive to change her strategy. Think back to 
Golden Balls example! 

I Role of conjectures: let us revisit matching pennies 

Player 1 \ Player 2 heads tails 
heads (−1, 1) (1, −1) 
tails (1, −1) (−1, 1) 

I Here, player 1 can play heads expecting player 2 to play tails. Player 
2 can play tails expecting player 1 to play tails. 

I But these conjectures are not consistent with each other. 
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Nonexistence of Pure Strategy Nash Equilibria 

Pure strategy Nash equilibrium might not always exist. Example: Soccer 

Kicker \ Goalie left right 
left (−1, 1) (1, −1) 

right (1, −1) (−1, 1) 

I There is no pure strategy Nash equilibrium: kickers do not always 
shoot left and goalies do not always jump right... 

I ... instead they randomize! 

Example: Matching Pennies 

Player 1 \ Player 2 
heads 
tails 

heads 
(−1, 1) 
(1, −1) 

tails 
(1, −1) 
(−1, 1) 

I 

I 

No pure Nash equilibrium. 

How would you play this game? 
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Multiple Pure Strategy Nash Equilibria 

I While non-existence of Pure Strategy Nash Equilibria feels like a 
problem, in many games, the opposite is true: there are very many 
pure strategy Nash equilibria. 

I Which equilibrium is played is an interesting theoretical and 
empirical question. Expectations matter for equilibrium selection! 

Example: Meeting Tom Schelling in New York. 

Player 1 \ Player 2 library station 
library (1,1) (0, 0) 
station (0, 0) (1,1) 

I Experimentally, huge breakdown in coordination for tiny payoff 
asymmetries.1 

1
Crawford, V.P. et al. (2006) The power of focal points is limited: even minute payoff asymmetry may yield large coordination 

failures, American Economic Review. 
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Multiple Pure Strategy Nash Equilibria 

Example: Battle of the Sexes Game. 

Player 1 \ Player 2 
ballet 

football 

ballet football 
(1,4) (0, 0) 
(0, 0) (4,1) 

I This game has two pure Nash equilibria. 

Example: Partnership Game. 

Player 1 \ Player 2 
work hard 

shirk 

I Also two pure Nash equilibria. 

work hard shirk 
(2,2) (−1, 1) 
(1, −1) (0,0) 
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