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Diameter of the ER graph

o Recall the diameter of a graph: let djj be the distance between nodes i
and j (i.e., length of the shortest path between i and j).

diameter = max dj;.
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o We will show that the diameter of the ER graph varies as In n.
o Heuristic Argument:

— Let ¢ denote the average degree of a node, ¢ = (n— 1)p.
node is c*.

— The average number of nodes s steps away from a randomly chosen
when ¢® ~ n, or s ~ 00

— The number of nodes reached is equal to the total number of nodes
Inc
diameter is approximately

— Every node is within s steps of the starting point, implying that the
Inn

— This argument works whenlnsc is small (breaks down when ¢® become
comparable with n since number of nodes within distance s cannot
exceed number of nodes in the whole graph).
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Diameter of the ER graph

o Consider two different starting nodes i/ and j. The average number of

nodes s and t steps away from them will be equal to ¢® and ¢’ (assume
both remain smaller than order n).

o We have dj > s+t + 1 if and only if there is no edge between the
surfaces. Since there are on average ¢® x c¢' pairs of nodes between
surfaces, this implies P(dj >s+t+1)=(1— p)csﬂ. Denoting
| =s+t+1, we have

I—1 c\¢
P(d; >N =(1-p) =~ (1-%)

n

/-1

i

—s=3

Newman, M.E.J. Networks: An Introduction. Oxford University Press, 2010. © Oxford University Press. All
rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/. a
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Diameter of the ER graph
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o Taking logs of both sides, we find )
.. ey — S ~ _i
InP(dj > 1) = c"'ln (1 n) .

where we used In(1 + x) = x (which holds for Ilarge n). Therefore,

P(dj > I) = exp (_%>

I

o The diameter is the smallest / such that P(d; > /) is zero. The preceding

will tend to zero only if ¢’ grows faster than n, i.e., ¢’ = an'* for some
constant a and € — 0 (note that this can be achieved while keeping both
c® and c' smaller than n).

o Rearranging for /, we obtain the diameter as
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Stochastic block model (SBM)

» ER graphs are too homogeneous

= No community structure arises

» What if probabilities p are not the same for all edges?
= Divide the nodes into blocks

= Edge probability p is larger within blocks
=- Edge probability g is smaller between blocks
» If p = g, we recover the traditional ER graph

Commons license. For more i

see https://oc
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SBM with two symmetric communities

» Also called the planted bisection model =- Equal size communities

more i

see https://.

nit.

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For
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» When can we recover both communities from observing the graph?
» Detection = ]P’(@ < 0.5 —¢€) — 1 [Mossel, Neeman, Sly, 2012]

» Recovery = P(X = X) — 1 [Abbe, Bandeira, Hall, 2016]
= p= 2080 g

n 1

= p=a/n, g = b/n, Detection iff (a — b)?> > 2(a+ b)
Lecture 10

= @, Recovery iff %” >1++ab
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The G, , model and real-world networks

> For large graphs, G, , suggests P [d] with an exponential tail
= Unlikely to see degrees spanning several orders of magnitude

Linear scale L ithmic scale
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» Concentrated distribution around the mean E[D,] = (n—1)p

» Q: Is this in agreement with real-world networks?
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World Wide Web

» Degree distributions of the WWW analyzed in [Broder et al '00]

= Web a digraph, study both in- and out-degree distributions

Courtesy of Elsevier, Inc., https://wwiw.sciencedirect.com. Used with permission. Source: Broder, Andrei,

Ravi Kumar, Farzin Maghoul, et al. "Graph structure in the Web." Computer Networks 33 (2000) 309-20.
» Majority of vertices naturally have small degrees
Lecture 10

= Nontrivial amount with orders of magnitude higher degrees
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Seems to be a structural pattern

» More heavy-tailed degree distributions found in [Barabasi-Albert '99]
» Caveat: Their mathematics is not very precise and some of their

conclusions are incorrect

P(d)

d d d
Author collaboration Web graph Power grid

Barabisi, Albert-Ldszl6, and Réka Albert. "Emergence of Scaling in Random Networks." Science 286 (1999): 509-12.
© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative

‘Commons license. For more i v.mit. fag-fair-use/.
exponential

» These heterogeneous, diffuse degree distributions are not
ST Dae
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see http:

Introduction to Network Models

Lecture 10


https://ocw.mit.edu/help/faq-fair-use/

Power-law degree distributions
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» Log-log plots show roughly a linear decay, suggesting the power law
Pld] xd ™ = logP[d] = C —alogd

> Power-law exponent (negative slope) is typically a € [2, 3]
> Normalization constant C is mostly uninteresting

» Power laws often best followed in the tail, i.e., for d > dnin

] 5 =
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Power law and exponential degree distributions
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» Erdos-Renyi's Poisson degree distribution exhibits a sharp cutoff
= Power laws upper bound exponential tails for large enough d
> Scale-free network: degree distribution with power-law tail
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Popularity as a network phenomenon

» Popularity is a phenomenon characterized by extreme imbalances

> How can we quantify these imbalances? Why do they arise?

This content is excluded from our Creative Commons license. For more i

Barabisi, Albert-Liszl6. Linked: The New Science of Networks. Perseus Books Group, 2002. © Perseus Books Group. All rights reserved.

ion, see https://ocw.mit. fair-use/.
» Basic models of network behavior can be very insightful
= Result of coupled decisions, correlated behavior in a population
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Barabasi-Albert model

> Network model capturing the notion of preferential attachment
> Initial graph size M, connection number m, and stopping time T
= 1) Start with M fully connected nodes
= 2) Add a new node and randomly connect it to m existing nodes

= 3) Random connections with probability proportional to degrees
= 4) Repeat T times

= Turns out this model has existed in literature in one way or another for
50 years.

= Barabasi and Albert rediscovered and popularized it
= Click here for a brief history.

» Degree distribution of resulting graph is power law up to a certain degree
» for degrees up to n'/®

= https://www.youtube.com/watch?v=4GDqJVtPEGg
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Does the internet have an Achille’'s heel?

v

Barabasi and Albert claimed the network of routers connecting the internet is
scale-free

= They claimed degree distribution follows a power law

v

If true, potentially, by attacking popular nodes we can make the network fail:
= NO (fortunately)

> Preferential attachment implies power-law degree distribution

» However, the converse is NOT true! [Li, Alderson, Doyle, Willinger 2005]

» Power law can arise from constrained optimization of network performance

>

you need more than random graph models to talk about internet

(€) Poor
Design,

Li, Lun, David Alderson, Reiko Tanaka, et al. "Towards A Theory of Scale-Free Graphs:
Definition, Properties, and Implications.” Internet Mathematics 2, no. 4 (2005): 431-523.
© AK. Peters, Ltd.. All rights reserved. This content is excluded from our Creative
Commons license. For more ion, see https:/ L fair-us
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