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Diameter of the ER graph 

◦ Recall the diameter of a graph: let dij be the distance between nodes i 
and j (i.e., length of the shortest path between i and j). 

diameter = max dij . 
i,j 

◦ We will show that the diameter of the ER graph varies as ln n. 

◦ Heuristic Argument: 

I 

− Let c denote the average degree of a node, c = (n − 1)p. 
− The average number of nodes s steps away from a randomly chosen 

node is c s . 
− The number of nodes reached is equal to the total number of nodes 

when c s ≈ n, or s ≈ ln n 
ln c 

− Every node is within s steps of the starting point, implying that the 
diameter is approximately 

ln
ln n

c . 
− This argument works when s is small (breaks down when c s become 

comparable with n since number of nodes within distance s cannot 
exceed number of nodes in the whole graph). 
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Diameter of the ER graph 

◦ Consider two different starting nodes i and j . The average number of 
nodes s and t steps away from them will be equal to c s and c t (assume 
both remain smaller than order n). 

◦ We have dij > s + t + 1 if and only if there is no edge between the 
surfaces. Since there are on average c s × c t pairs of nodes between 
surfaces, this implies P(dij > s + t + 1) = (1 − p)c

s+t 
. Denoting 

l = s + t + 1, we have � �cl−1 
c 

P(dij > l) = (1 − p)c
l−1 
≈ 1 − . 

n 

Newman, M.E.J. Networks: An Introduction. Oxford University Press, 2010. © Oxford University Press. All 
rights reserved. This content is excluded from our Creative Commons license. For more information, see 
https://ocw.mit.edu/help/faq-fair-use/. 
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Diameter of the ER graph 

◦ Taking logs of both sides, we find � � l c c 
ln P(dij > l) = c l−1 ln 1 − ≈ − , 

n n 
where we used ln(1 + x) ≈ x (which holds for large n). Therefore, � l � 

c 
P(dij > l) = exp − . 

n 

◦ The diameter is the smallest l such that P(dij > l) is zero. The preceding 
l l 1+�will tend to zero only if c grows faster than n, i.e., c = an for some 

constant a and � → 0 (note that this can be achieved while keeping both 
c s and c t smaller than n). 

◦ Rearranging for l , we obtain the diameter as 

ln a (1 + �) ln n ln n 
l = + lim = A + ,

ln c �→0 ln c ln c 

◦ Example: Let n = 7 × 109 and c = 1000. Then, l = ln
ln 

n
c = 3.3. 
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Stochastic block model (SBM) 

I ER graphs are too homogeneous 
⇒ No community structure arises 

I What if probabilities p are not the same for all edges? 
⇒ Divide the nodes into blocks 
⇒ Edge probability p is larger within blocks 
⇒ Edge probability q is smaller between blocks 

I If p = q, we recover the traditional ER graph 

© Source unknown. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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SBM with two symmetric communities 

I Also called the planted bisection model ⇒ Equal size communities 

© Source unknown. All rights reserved. This content is excluded from our Creative Commons license. For 
more information, see https://ocw.mit.edu/help/faq-fair-use/. 

I When can we recover both communities from observing the graph? 
X,X)I Detection ⇒ P( d(ˆ 

< 0.5 − �) → 1 [Mossel, Neeman, Sly, 2012]n 

⇒ p = a/n, q = b/n, Detection iff (a − b)2 > 2(a + b) 
I Recovery ⇒ P(X̂ = X) → 1 [Abbe, Bandeira, Hall, 2016]√ 

a log n b log n a+b⇒ p = , q = , Recovery iff ≥ 1 + ab n n 2 
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The Gn,p model and real-world networks 

I For large graphs, Gn,p suggests P [d ] with an exponential tail 

⇒ Unlikely to see degrees spanning several orders of magnitude 
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I Concentrated distribution around the mean E [Dv ] = (n − 1)p 

I Q: Is this in agreement with real-world networks? 
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World Wide Web 

I Degree distributions of the WWW analyzed in [Broder et al ’00] 

⇒ Web a digraph, study both in- and out-degree distributions 

Courtesy of Elsevier, Inc., https://www.sciencedirect.com. Used with permission. Source: Broder, Andrei, 
Ravi Kumar, Farzin Maghoul, et al. "Graph structure in the Web." Computer Networks 33 (2000) 309–20. 

I Majority of vertices naturally have small degrees 

⇒ Nontrivial amount with orders of magnitude higher degrees 
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Seems to be a structural pattern 

I More heavy-tailed degree distributions found in [Barabasi-Albert ’99] 
I Caveat: Their mathematics is not very precise and some of their 

conclusions are incorrect 

P(
d)

 

d d d 
Author collaboration Web graph Power grid 

Barabási, Albert-László, and Réka Albert. "Emergence of Scaling in Random Networks." Science 286 (1999): 509–12. 
© American Association for the Advancement of Science. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

I These heterogeneous, diffuse degree distributions are not exponential 
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Power-law degree distributions 
1
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Fig. 4.1 Degree distributions. Left: the router-level Internet network graph described in Sec-
tion 3.5.2. Right: the network of measured interactions among proteins in S. cerevisiae (yeast),
as of January 2007. In each plot, both x- and y-axes are in base-2 logarithmic scale.

Copyright 2009 Springer Science+Business Media, LLC. These figures may be used for noncom-
mercial purposes as long as the source is cited: Kolaczyk, Eric D. Statistical Analysis of Network
Data: Methods and Models (2009) Springer Science+Business Media LLC.

I Log-log plots show roughly a linear decay, suggesting the power law 

P [d ] ∝ d−α ⇒ log P [d ] = C − α log d 

I Power-law exponent (negative slope) is typically α ∈ [2, 3] 
I Normalization constant C is mostly uninteresting 

I Power laws often best followed in the tail, i.e., for d ≥ dmin 
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Poisson vs. Power-law Distributions
Figure 4.4

(d)

(b)(a)

(c)

(a) Comparing a Poisson function with a 
power-law function (ਠ= 2.1) on a linear plot. 
Both distributions have .10  =ࢮkࢭ

(b) The same curves as in (a), but shown on a 
log-log plot, allowing us to inspect the dif-
ference between the two functions in the 
high-k regime. 

(c) A random network with ࢭk3 =ࢮ and N = 50, 
illustrating that most nodes have compara-
ble degree k  .ࢮkࢭݍ

(d) A scale-free network with ਠ=2.1 and  =ࢮkࢭ
3, illustrating that numerous small-degree 
nodes coexist with a few highly connected 
hubs.

The Largest Hub

All real networks are finite. The size of the WWW is estimated to be Nݍ
1012 nodes; the size of the social network is the Earth’s population, about N 
× �7ݍ 109. These numbers are huge, but finite. Other networks pale in com-
parison: The genetic network in a human cell has approximately 20,000 
genes while the metabolic network of the E. Coli bacteria has only about a 
thousand metabolites. This prompts us to ask: How does the network size 
affect the size of its hubs? To answer this we calculate the expected maxi-
mum degree, kmax, called the natural cutoff of the degree distribution pk. It 
represents the expected size of the largest hub in a network.

It is instructive to perform the calculation first for the exponential dis-
tribution 

For a network with minimum degree kmin, the normalization condition

provides C = ਨeਨkmin. To calculate kmax we assume that in a network of N
nodes we expect at most one node in the (kmax, ∞) regime (ADVANCED TOPICS 
3.B). In other words the probability to observe a node whose degree exceeds 
kmax is 1/N:

(4.16)

(4.15)∫ =
∞ p k dk( ) 1
kmin

∫ =
∞ p k dk N( ) 1 .
kmax
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p(k) = Ce��k .

P(d) 

d	   d	  

P(d)=d-‐2.1	   P(d)=d-‐2.1	  

Poisson

Poisson	  

 

Power law and exponential degree distributions 

I Erdös-Renyi’s Poisson degree distribution exhibits a sharp cutoff 

⇒ Power laws upper bound exponential tails for large enough d 
I Scale-free network: degree distribution with power-law tail 
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Popularity as a network phenomenon 

I Popularity is a phenomenon characterized by extreme imbalances 
I How can we quantify these imbalances? Why do they arise? 

Barabási, Albert-László. Linked: The New Science of Networks. Perseus Books Group, 2002. © Perseus Books Group. All rights reserved. 
This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

I Basic models of network behavior can be very insightful 

⇒ Result of coupled decisions, correlated behavior in a population 

12 / 
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Barabasi-Albert model 

I Network model capturing the notion of preferential attachment 
I Initial graph size M, connection number m, and stopping time T 

⇒ 1) Start with M fully connected nodes 

⇒ 2) Add a new node and randomly connect it to m existing nodes 

⇒ 3) Random connections with probability proportional to degrees 

⇒ 4) Repeat T times 

⇒ Turns out this model has existed in literature in one way or another for 
50 years. 

⇒ Barabasi and Albert rediscovered and popularized it 

⇒ Click here for a brief history. 

I Degree distribution of resulting graph is power law up to a certain degree 
1/6I for degrees up to n 

⇒ https://www.youtube.com/watch?v=4GDqJVtPEGg 
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Does the internet have an Achille’s heel? 

I Barabasi and Albert claimed the network of routers connecting the internet is 
scale-free 

⇒ They claimed degree distribution follows a power law 
I If true, potentially, by attacking popular nodes we can make the network fail: 

⇒ NO (fortunately) 
I Preferential attachment implies power-law degree distribution 
I However, the converse is NOT true! [Li, Alderson, Doyle, Willinger 2005] 
I Power law can arise from constrained optimization of network performance 
I you need more than random graph models to talk about internet 
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Li, Lun, David Alderson, Reiko Tanaka, et al. "Towards A Theory of Scale-Free Graphs: 
Definition, Properties, and Implications." Internet Mathematics 2, no. 4 (2005): 431–523. 
© A.K. Peters, Ltd.. All rights reserved. This content is excluded from our Creative 
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 
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