

1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts Institute of Technology

Lecture 5

<ロ> <同> <同> < 回> < 回>

- When you go to Google and type MIT
 - \Rightarrow First result is the home page of MIT
 - \Rightarrow How does Google know that this was the best answer?
- Problem of information retrieval
 - \Rightarrow Search data repositories in response to keyword queries
 - \Rightarrow Classical approach has been textual analysis \Rightarrow No link structure
- Links that point to the webpage \Rightarrow authority of a page on the topic
 - \Rightarrow First, collect a large sample of pages relevant to a topic
 - \Rightarrow Then, look at the number of in-links (score) from these pages

イロト イ団ト イヨト イヨト

▶ For a query like "newspaper", the most important page is less obvious

Leakovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. *Mining of Massive Datasets*. Cambridge University Press, 2019. @ Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://occ.mit.dou/hof/sia_finit-use/.

Mix of newspapers and other pages that always receive links

イロン イロン イヨン イヨン

- Multi-billion query-independent idea of Google
- Each node (or page) is important if it is cited by other important pages
- Each node j has a centrality value (PageRank value) w(j)
 - \Rightarrow Function of the centralities of his (incoming) neighbors
 - \Rightarrow Similar to eigenvector centrality

$$w(j) = \sum_{i} \frac{w(i)}{d_{out}(i)} A_{ij}$$

- Dividing by degree dilutes the importance of pages linking to many nodes
- ► In matrix notation $\mathbf{w}^T = \mathbf{w}^T \mathbf{P}$ where $P_{ij} = A_{ij}/d_{out}(i)$ ⇒ Note that $\sum_i P_{ij} = 1$

<ロ> <部> < 部> < き> < き> < き</p>

- ► This defines a random walk on the nodes of the network

 ⇒ Walker starts from a node chosen uniformly at random
 ⇒ Walker moves out choosing uniformly among the out-links

 ► PageRank is the limiting probability of the random walk

 ⇒ But, dangling ends may cause the walk to get trapped
- \blacktriangleright We allow random walk to teleport with probability 1-s

$$\mathbf{w}_{k+1}^{T} = s \mathbf{w}_{k+1}^{T} \mathbf{P} + \frac{1-s}{n} \mathbf{1}$$

► This is a simpler version of PageRank ⇒ More tricks in practice

イロト イポト イヨト イヨト

Eigenvalues and eigenvectors of graph matrices

• Vector v is an **eigenvector** with **eigenvalue** λ if

 $Mv = \lambda v.$

For any symmetric real $n \times n$ matrix M:

- ▶ If *v* and *w* are eigenvectors with distinct eigenvalues, then *v* and *w* are orthogonal.
- ► If v and w are eigenvectors corresponding to the same eigenvalue, then for any scalars a and b, av + bw is an eigenvector with the same eigenvalue as v and w.
- ► M has a full orthonormal basis of eigenvectors v₁, v₂, ..., v_n. All eigenvalues and eigenvectors are real.
- ▶ *M* is diagonalizable. That is,

$$M = V \Lambda V^{T},$$

- V: matrix with n orthonormal eigenvectors as columns
- Λ: diagonal matrix with eigenvalues on diagonal

•
$$M = \sum_{i} \lambda_{i} v_{i} v_{i}^{T}$$
 (note that $VV^{T} = I$)

Eigenvalues and eigenvectors of graph matrices

Complete graph K₅: λ(A) = {4, −1, −1, −1, −1}

▶ Bipartite graph K3, 3: λ(A) = {3,0,0,0,0,-3}

• Peterson graph: $\lambda(A) = \{3, 1, 1, 1, 1, 1, -2, -2, -2, -2\}$

< □ > < 同

Graph Laplacian

▶ Vertex degrees often stored in the diagonal matrix **D**, where $D_{ii} = d_i$

► The |V| × |V| symmetric matrix L := D - A is called graph Laplacian

$$L_{ij} = \begin{cases} d_i, & \text{if } i = j \\ -1, & \text{if } (i,j) \in E \\ 0, & \text{otherwise} \end{cases}, \ \mathbf{L} = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix}$$

▶ Variants of the Laplacian exist, with slightly different interpretations
 ⇒ Normalized Laplacian L_n = D^{-1/2}LD^{-1/2}
 ⇒ Random-walk Laplacian L_{rw} = D⁻¹L

・ロン ・回 と ・ ヨ と ・ ヨ と …

Smoothness: For any vector $\mathbf{x} \in \mathbb{R}^{|V|}$ of "vertex values", one has

$$\mathbf{x}^{ op}\mathbf{L}\mathbf{x} = \sum_{(i,j)\in E} (x_i - x_j)^2$$

which can be minimized to enforce smoothness of functions on G

- Incidence relation: $\mathbf{L} = \mathbf{B}\mathbf{B}^{\top}$ where **B** has arbitrary orientation
- ▶ Positive semi-definiteness: Follows since $\mathbf{x}^{\top}\mathbf{L}\mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^{|V|}$
- **•** Rank deficiency: Since L1 = 0, L is rank deficient

ヘロト ヘヨト ヘヨト ヘヨト

1.022 Introduction to Network Models Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.