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Centrality and web search 

I When you go to Google and type MIT 

⇒ First result is the home page of MIT 

⇒ How does Google know that this was the best answer? 

I Problem of information retrieval 

⇒ Search data repositories in response to keyword queries 

⇒ Classical approach has been textual analysis ⇒ No link structure 
I Links that point to the webpage ⇒ authority of a page on the topic 

⇒ First, collect a large sample of pages relevant to a topic 

⇒ Then, look at the number of in-links (score) from these pages 
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Link structure 

I For a query like ”newspaper”, the most important page is less obvious 

Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge University Press, 2019. 
© Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/. 

I Mix of newspapers and other pages that always receive links 
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Page Rank 

I Multi-billion query-independent idea of Google 
I Each node (or page) is important if it is cited by other important pages 
I Each node j has a centrality value (PageRank value) w(j) 

⇒ Function of the centralities of his (incoming) neighbors

⇒ Similar to eigenvector centralityX w(i)
w(j) = Aij

dout (i) 
i 

I Dividing by degree dilutes the importance of pages linking to many nodes 

T I In matrix notation w = wT P where Pij = Aij /dout (i) P 
⇒ Note that Pij = 1 j 
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Page Rank 

I This defines a random walk on the nodes of the network 

⇒ Walker starts from a node chosen uniformly at random

⇒ Walker moves out choosing uniformly among the out-links
I PageRank is the limiting probability of the random walk 

⇒ But, dangling ends may cause the walk to get trapped

I We allow random walk to teleport with probability 1 − s 

1 − s T
k +1 +1P + 

n 

I This is a simpler version of PageRank ⇒ More tricks in practice 

T
k 1 w = sw 
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Eigenvalues and eigenvectors of graph matrices 

I Vector v is an eigenvector with eigenvalue λ if 

Mv = λv . 

For any symmetric real n × n matrix M: 
I If v and w are eigenvectors with distinct eigenvalues, then v and w 
are orthogonal. 

I If v and w are eigenvectors corresponding to the same eigenvalue, 
then for any scalars a and b, av + bw is an eigenvector with the 
same eigenvalue as v and w . 

I M has a full orthonormal basis of eigenvectors v1, v2, . . . , vn. All 
eigenvalues and eigenvectors are real. 

I M is diagonalizable. That is, 

M = V ΛV T , 

I V : matrix with n orthonormal eigenvectors as columns 
I Λ: diagonal matrix with eigenvalues on diagonalP 
I M = i λi vi v T (note that VV T = I ). i 
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Eigenvalues and eigenvectors of graph matrices 

I Complete graph K5: 
λ(A) = {4, −1, −1, −1, −1} 

I Bipartite graph K 3, 3: 
λ(A) = {3, 0, 0, 0, 0, −3} 

I Ring graph P5: 
λ(A) = √ √ √ √ 

−1+ (5) −1+ (5) −1− (5) −1− (5){2, , , , } 2 2 2 2 

I Peterson graph: 
λ(A) = {3, 1, 1, 1, 1, 1, −2, −2, −2, −2} 
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Graph Laplacian 

I Vertex degrees often stored in the diagonal matrix D, where Dii = di

2 
4 3 

1 ⎞ ⎛ ⎜⎜⎝
2 0 0 0 
0 2 0 0 
0 0 1 0 
0 0 0 3 

⎟⎟⎠D = 

I The |V | × |V | symmetric matrix L := D − A is called graph 
Laplacian ⎞ ⎛ 

2 −1 0 −1⎧⎨ di , if i = j ⎜⎜⎝ −1 2 0 −1
0 0 1 −1

⎟⎟⎠Lij = −1, if (i , j) ∈ E , L =⎩ 
0, otherwise −1 −1 −1 3

I Variants of the Laplacian exist, with slightly different interpretations 

⇒ Normalized Laplacian Ln = D−1/2LD−1/2 

⇒ Random-walk Laplacian Lrw = D−1L
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Laplacian matrix properties 

I Smoothness: For any vector x ∈ R|V | of “vertex values”, one has X 
x >Lx = (xi − xj )

2 

(i,j)∈E 

which can be minimized to enforce smoothness of functions on G 

I Incidence relation: L = BB> where B has arbitrary orientation 

I Positive semi-definiteness: Follows since x>Lx ≥ 0 for all x ∈ R|V | 

I Rank deficiency: Since L1 = 0, L is rank deficient 
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