1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems
Institute for Data, Systems, and Society
Massachusetts Institute of Technology

Lecture 5

Centrality and web search

- When you go to Google and type MIT
\Rightarrow First result is the home page of MIT
\Rightarrow How does Google know that this was the best answer?
- Problem of information retrieval
\Rightarrow Search data repositories in response to keyword queries
\Rightarrow Classical approach has been textual analysis \Rightarrow No link structure
- Links that point to the webpage \Rightarrow authority of a page on the topic
\Rightarrow First, collect a large sample of pages relevant to a topic
\Rightarrow Then, look at the number of in-links (score) from these pages

Link structure

- For a query like "newspaper", the most important page is less obvious

Leskovec, Jure, Anand Rajaraman, and Jeffrey David Ullman. Mining of Massive Datasets. Cambridge University Press, 2019. © Cambridge University Press. All rights reserved. This content is excluded from our Creative Commons license. For more information
see https://ocw.mit.edu/help/fag-fair-use/.

- Mix of newspapers and other pages that always receive links

Page Rank

- Multi-billion query-independent idea of Google
- Each node (or page) is important if it is cited by other important pages
- Each node j has a centrality value (PageRank value) $w(j)$
\Rightarrow Function of the centralities of his (incoming) neighbors
\Rightarrow Similar to eigenvector centrality

$$
w(j)=\sum_{i} \frac{w(i)}{d_{\text {out }}(i)} A_{i j}
$$

- Dividing by degree dilutes the importance of pages linking to many nodes
- In matrix notation $\mathbf{w}^{\top}=\mathbf{w}^{\top} \mathbf{P}$ where $P_{i j}=A_{i j} / d_{\text {out }}(i)$
\Rightarrow Note that $\sum_{j} P_{i j}=1$

Page Rank

- This defines a random walk on the nodes of the network
\Rightarrow Walker starts from a node chosen uniformly at random
\Rightarrow Walker moves out choosing uniformly among the out-links
- PageRank is the limiting probability of the random walk
\Rightarrow But, dangling ends may cause the walk to get trapped
- We allow random walk to teleport with probability 1 -s

$$
\mathbf{w}_{k+1}^{T}=s \mathbf{w}_{k+1}^{T} \mathbf{P}+\frac{1-s}{n} \mathbf{1}
$$

- This is a simpler version of PageRank \Rightarrow More tricks in practice

Eigenvalues and eigenvectors of graph matrices

- Vector v is an eigenvector with eigenvalue λ if

$$
M v=\lambda v
$$

For any symmetric real $n \times n$ matrix M :

- If v and w are eigenvectors with distinct eigenvalues, then v and w are orthogonal.
- If v and w are eigenvectors corresponding to the same eigenvalue, then for any scalars a and $b, a v+b w$ is an eigenvector with the same eigenvalue as v and w.
- M has a full orthonormal basis of eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$. All eigenvalues and eigenvectors are real.
- M is diagonalizable. That is,

$$
M=V \wedge V^{T}
$$

- V : matrix with n orthonormal eigenvectors as columns
- Λ : diagonal matrix with eigenvalues on diagonal
- $M=\sum_{i} \lambda_{i} v_{i} v_{i}^{\top}$ (note that $V V^{T}=I$).

Eigenvalues and eigenvectors of graph matrices

- Complete graph K_{5} :

$$
\lambda(A)=\{4,-1,-1,-1,-1\}
$$

- Bipartite graph $K 3,3$:
$\lambda(A)=\{3,0,0,0,0,-3\}$

- Ring graph P_{5} :

$$
\begin{aligned}
& \lambda(A)= \\
& \left\{2, \frac{-1+\sqrt{(5)}}{2}, \frac{-1+\sqrt{(5)}}{2}, \frac{-1-\sqrt{(5)}}{2}, \frac{-1-\sqrt{(5)}}{2}\right\}
\end{aligned}
$$

- Peterson graph:

$$
\lambda(A)=\{3,1,1,1,1,1,-2,-2,-2,-2\}
$$

Graph Laplacian

- Vertex degrees often stored in the diagonal matrix \mathbf{D}, where $D_{i i}=d_{i}$

$$
\mathbf{D}=\left(\begin{array}{llll}
2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 3
\end{array}\right)
$$

- The $|V| \times|V|$ symmetric matrix $\mathbf{L}:=\mathbf{D}-\mathbf{A}$ is called graph Laplacian
$L_{i j}=\left\{\begin{array}{cc}d_{i}, & \text { if } i=j \\ -1, & \text { if }(i, j) \in E \\ 0, & \text { otherwise }\end{array}, \mathbf{L}=\left(\begin{array}{cccc}2 & -1 & 0 & -1 \\ -1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ -1 & -1 & -1 & 3\end{array}\right)\right.$
- Variants of the Laplacian exist, with slightly different interpretations

$$
\begin{aligned}
& \Rightarrow \text { Normalized Laplacian } \mathbf{L}_{n}=\mathbf{D}^{-1 / 2} \mathbf{L D}^{-1 / 2} \\
& \Rightarrow \text { Random-walk Laplacian } \mathbf{L}_{r w}=\mathbf{D}^{-1} \mathbf{L}
\end{aligned}
$$

Laplacian matrix properties

- Smoothness: For any vector $\mathbf{x} \in \mathbb{R}^{|V|}$ of "vertex values", one has

$$
\mathbf{x}^{\top} \mathbf{L} \mathbf{x}=\sum_{(i, j) \in E}\left(x_{i}-x_{j}\right)^{2}
$$

which can be minimized to enforce smoothness of functions on G

- Incidence relation: $\mathbf{L}=\mathbf{B B}^{\top}$ where \mathbf{B} has arbitrary orientation
- Positive semi-definiteness: Follows since $\mathbf{x}^{\top} \mathbf{L x} \geq 0$ for all $\mathbf{x} \in \mathbb{R}^{|V|}$
- Rank deficiency: Since $\mathbf{L 1}=\mathbf{0}, \mathbf{L}$ is rank deficient

MIT OpenCourseWare
https://ocw.mit.edu/

1.022 Introduction to Network Models

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

