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Growing random networks 

I Static random graph models: 
I edges among “fixed” n nodes are formed via random rules in a static 

manner. 

− Erdös-Renyi model: small distances, but low clustering and a rapidly 
falling degree distribution. 

− Small-world model: small distances, high clustering. 

I Most networks form dynamically: 
I new nodes are born over time 
I attach to existing nodes when they are born. 

− Examples: creation of web pages, citations, professional 
relationships. 

− Evolution over time introduces a natural heterogeneity to nodes 
based on their age in a growing network. 

− https://www.youtube.com/watch?v=4GDqJVtPEGg 
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A bit of history on power laws 

I In a power law distribution, the tails fall off polynomially with power 
α. 

−α P(X ≥ x) ∼ cx , 

for constants c > 0 and α > 0. 
I Power law degree distributions are observed frequently in real-world 

networks. 
I The earliest apparent reference is the work by Pareto in 1897: 

I studying wealth distributions 
I Pareto observed that there were many more individuals who had 

large amounts of wealth than would appear in Gaussian or 
exponential distributions. 

I Power laws also appeared in the work of Zipf in 1916, in describing 
word frequencies in documents. 

I Zipf’s Law states that the frequency of the j th most common word in 
English (or other common languages) is proportional to j−1 . 
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Power laws in preferential attachment model 

I In 1965, Price studied the network of citations between scientific 
papers 

I Found that the in-degrees (number of times a paper has been cited) 
have power law distributions. 

I An article would gain citations over time proportional to the number 
of citations the paper already had. 

I Consistent with the idea that researchers find some article (e.g. via 
searching for keywords on the Internet), and then search for 
additional papers by tracing through the references of the first 
article. 

I The more citations an article has, the higher the likelihood that it 
will be found and cited again. 

I Price called this dynamic link formation process cumulative 
advantage. 

I Today it is known under the name preferential attachment after the 
influential work of Barabasi and Albert in 1999. 
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Preferential attachment model 

I Nodes are born over time and indexed by their date of birth, i.e., 
node i is born at date i , i = 1, . . .. 

I Start the network with M = 2m + 1 nodes (born at times 1, . . . , M) 
all connected to one another. 

I Thus, the first newborn node is the one born at time M + 1. 

I Each node upon birth forms m (undirected) edges with pre-existing 
nodes. 

I It attaches to nodes with probabilities proportional to their degrees. 
I Let ki (t) be the degree of node i at time t. 
I The expected number of edges that an existing node i receives at 

time t + 1 is: 
ki (t) 

m Pt . 
kj (t) j=1 
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Preferential attachment model 

I There are tm total links at time t (t ≥ M), hence 
tX 

kj (t) = 2tm. 
j=1 

I The expected number of new edges that node i received at time 
t + 1 is ki (t) . 2t 

I We can write down the evolution of expected degrees in 
continuous-time as 

d ki (t) ki (t) 
= , 

dt 2t 
with initial condition ki (i) = m (for i > M). 

I This equation has a solution: r 
t 

ki (t) = m 
i 

I Expected degrees of nodes are increasing over time. 
I How to find the fraction of nodes with degrees above a certain level 

d at time t? identify which node is exactly at level d at time t. 
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Preferential attachment degree distribution 

I Let i(d) be the node that has degree d at time t, or ki(d)(t) = d . 
I From the degree expression, this yields � �2 m 

i(d) = t 
d 

, 

I All nodes 1, . . . , i(d) have expected degrees ≥ d at time t. 
I There are a total of t nodes at time t. Therefore, 

P (ki (t) ≥ d) = 
i(d) 
t 

= 
� �2 m 

. 
d 

I The (expected) degree distribution is power law. 
I This is the argument given by Barabasi and Albert (1999). 
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Configuration model 

I Goal is to generate random networks with a “given degree 
distribution”. 

I One of the most widely method used for this purpose is the 
configuration model developed by Bender and Canfield in 1978. 

I Specified in terms of a degree sequence: 
I for a network of n nodes, we have a desired degree sequence 

(k1, . . . , kn), which specifies the degree ki of node i , for i = 1, . . . , n. 

I Given a degree distribution pk , we can generate the degree sequence 
for n nodes by sampling the degrees independently from the 
distribution pk , i.e., ki ∼ pk . 

(n) (n) I Frequency of degrees p . p → pk as n →∞. k k 
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Configuration model 

Lecture 12 

I Given the degree ki for node i for all i = 1, . . . , n, we create a 
random network with these degrees as follows: 

I Give each node i , ki “stubs” sticking out of it, which are ends of P 
edges-to-be (there are a total of ki = 2m stubs, where m is the i 
number of edges). 

I Choose two stubs uniformly at random and create an edge between 
the corresponding nodes. 

I Choose another pair from the remaining 2m − 2 stubs, connect 
those and continue until all the stubs are used up. 

I Remarks: 
− This process generates each possible matching of stubs with equal 

probability. 
− The sum of degrees needs to be even (or else an entry will be left 

out at the end). 
− It is possible to have self-edges and multiedges. 
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Degree distribution of a neighboring node 

I Needed in studying the giant component in the configuration model. 
I Given some node i with degree di , consider a neighbor j . What is 

the degree distribution of node j? 

1

k1 ∼ pk
j

k2 ∼ p̃k

# of children = k2 − 1

I Naive intuition: Same distribution as node i . 
I Example: Consider a graph with 4 nodes and links {1,2}, {2,3}, 
{3,4}. 
− we have p1 = p2 = 1/2. Pick a link at random, then randomly pick 

an end of it. What is the degree distribution of this node? 
− there is a 2/3 chance of finding a node with degree 2 and 1/3 

chance of finding a node with degree 1. 
− higher degree nodes are involved in a higher percentage of the links. 
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Degree distribution of a neighboring node 

I The degree of a node we reach by following a randomly chosen edge 
is not given by pk . 

I In the configuration model, an edge emerging from a node has equal 
chance of terminating at any of the stubs. 

I Since there are 2m stubs in total, the probability of this edge ending 
at any particular node of degree k is k/2m. 

I Since the total number of nodes with degree k is given by npk , the 
probability of the edge attaching to a node with degree k is given by 

k kpk 
npk = , 

2m hki 

where hki is the expected degree in the network and the equality 
follows from the relation 2m = nhki. 
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Degree distribution of a neighboring node 

I Intuitively, there are k edges that arrive at a node of degree k, we 
are k times as likely to arrive at that node than another node that 
has degree 1. 

I Thus, the degree distribution of the neighboring node p̃k is 
proportional to kpk , kpk kpk 

p̃k = P = . 
j jpj hki 

1

k1 ∼ pk

j

∼ p̃k

∼ p̃k
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Emergence of a giant component in the configuration 
model 

I We will use a branching process approximation to analyze the 
emergence of the giant component. 
− We ignore self loops (can be shown to have small probability) and 

conflicts (do not matter until the graph grows to a substantial size). 

I Note that we have 

µ = Ẽ[number of children] = Ẽ[k − 1] X 
= kp̃k − 1 

k 

= 
X k2pk − 1 hki 
k 

hk2i 
= − 1. hki 
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Emergence of a giant component in the configuration 
model 

I Using the branching process analysis, this yields the following 
threshold for the emergence of the giant component: 
Subcritical: µ < 1, or equivalently 

hk2i 
< 2 ⇔ hk(k − 2)i < 0. hki 

Supercritical: µ > 1, or equivalently 

hk(k − 2)i > 0. 

I In the case of an Erdös-Renyi graph, we have hk2i = hki + hki2 , and 
so the giant component emerges when 

hki2 > hki ⇔ hki > 1. 

I Since hki = (n − 1)p in the Erdös-Renyi graph, this indeed yields the 
1 threshold function t(n) = for the emergence of the giant n 

component. 
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